• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    近20年塔里木河流域植被变化及与气候因子的关系

    岳胜如 王伦澈 曹茜 孙嘉 崔利芳

    岳胜如, 王伦澈, 曹茜, 孙嘉, 崔利芳, 2025. 近20年塔里木河流域植被变化及与气候因子的关系. 地球科学, 50(1): 33-45. doi: 10.3799/dqkx.2024.047
    引用本文: 岳胜如, 王伦澈, 曹茜, 孙嘉, 崔利芳, 2025. 近20年塔里木河流域植被变化及与气候因子的关系. 地球科学, 50(1): 33-45. doi: 10.3799/dqkx.2024.047
    Yue Shengru, Wang Lunche, Cao Qian, Sun Jia, Cui Lifang, 2025. Vegetation Changes in Tarim River Basin over Past 20 Years and Their Relationship with Climate Factors. Earth Science, 50(1): 33-45. doi: 10.3799/dqkx.2024.047
    Citation: Yue Shengru, Wang Lunche, Cao Qian, Sun Jia, Cui Lifang, 2025. Vegetation Changes in Tarim River Basin over Past 20 Years and Their Relationship with Climate Factors. Earth Science, 50(1): 33-45. doi: 10.3799/dqkx.2024.047

    近20年塔里木河流域植被变化及与气候因子的关系

    doi: 10.3799/dqkx.2024.047
    基金项目: 

    国家自然科学基金项目 41975044

    国家自然科学基金项目 42001314

    湖北省自然科学基金项目 2023AFB020

    兵团科技计划项目 2024AB064

    详细信息
      作者简介:

      岳胜如(1988-), 男, 博士生, 从事气候变化与生态环境遥感研究. ORCID:0009-0008-8879-8817. E-mail:nmgndysr@163.com

      通讯作者:

      王伦澈, E-mail: wang@cug.edu.cn

    • 中图分类号: P237

    Vegetation Changes in Tarim River Basin over Past 20 Years and Their Relationship with Climate Factors

    • 摘要: 为了解西北“暖湿化”进程中气候因素对塔里木河流域植被变化的驱动作用, 基于线性回归、变异系数、Person相关系数、Hurst指数和偏导数方法, 利用MODIS卫星遥感数据和气候数据对塔里木河流域植被变化的气候驱动机制进行定量评估.结果表明:该流域植被最优长势和生产力水平呈波动上升趋势, 指数NDVI、EVI、NPP增速分别为0.036 4/10a、0.023 8/10a、12.606 1 gC/(m2·10a).Hurst指数显示, 研究区大部分区域植被存在持续变化的不确定性问题, 持续改善区域分别占流域面积的19.7%、18.7%和6.1%.流域尺度上, 气候因素对NDVI、EVI、NPP的贡献分别为0.0016/10a、0.0010/ 10a、2.8019 gC/(m2∙10a).相较于气温, 降水是影响植被变化的主要气候因子;辐射对植被变化有抑制作用.气候变化对植被最优长势变化的贡献有限, 却促进了植被生产力的明显改善, 结果揭示了塔里木河流域植被变化及气候驱动的空间特征.

       

    • 图  1  塔里木河流域地理位置及气候特征

      该图基于国家青藏高原科学数据中心塔里木河流域边界数据集(2000)绘制, 底图边界无修改;国界基于自然资源部地图技术审查中心标准地图(审图号:GS(2019)1822号)绘制, 底图边界无修改.下同

      Fig.  1.  Geographical location and climatic characteristics of Tarim River Basin

      图  2  2001‒2020年塔里木河流域植被指数和变异系数空间格局及随海拔的变化特征

      Fig.  2.  Spatial pattern of vegetation index and coefficient of variation and its variation characteristics with altitude in Tarim River Basin from 2001 to 2020

      图  3  2001‒2020年塔里木河流域NDVI、EVI、NPP变化趋势

      Fig.  3.  NDVI, EVI and NPP trends in the Tarim River Basin from 2001 to 2020

      图  4  塔里木河流域NDVI、EVI、NPP的Hurst指数及可持续性的空间分布

      Fig.  4.  Spatial distribution of NDVI, EVI, NPP Hurst index and sustainability in Tarim River Basin

      图  5  2001‒2020年塔里木河流域气候变化特征

      Fig.  5.  Characteristics of climate change in Tarim River Basin from 2001 to 2020

      图  6  2001‒2020年塔里木河流域NDVI、EVI、NPP与气候因子相关系数分布

      Fig.  6.  Correlation coefficient distribution of NDVI, EVI, NPP and climatic factors in Tarim River Basin from 2001 to 2020

      图  7  气候因子对塔里木河流域NDVI、EVI、NPP变化的贡献

      Fig.  7.  Contribution of climatic factors to NDVI, EVI and NPP changes in the Tarim River Basin

      图  8  气候因子和其他因素对塔里木河流域植被变化的贡献

      Fig.  8.  Contribution of climatic factors and other factors to vegetation change in Tarim River Basin

      表  1  数据来源及说明

      Table  1.   Data source and description

      数据 产品 时段(年) 时间分辨率 空间分辨率 数据来源
      MOD13 A3 NDVI、EVI 2001‒2020 1 km https://www.earthdata.nasa.gov/
      MOD17 A3HGF NPP 2001‒2020 500 m https://www.earthdata.nasa.gov/
      气温 月平均气温 2001‒2020 1 km http://www.geodata.cn/
      降水 月累计降水 2001‒2020 1 km http://www.tpdc.ac.cn
      辐射 月平均辐射 2001‒2020 0.1° https://www.copernicus.eu/en
      下载: 导出CSV

      表  2  塔里木河流域NDVI、EVI、NPP变异系数面积比例(%)

      Table  2.   NDVI, EVI, NPP coefficient of variation area ratioin Tarim River Basin (%)

      变异系数 波动程度 NDVI EVI NPP
      0.00 < CV < 0.16 低波动 46.2 58.0 83.2
      0.16 < CV < 0.35 相对较低波动 43.5 34.6 15.2
      0.35 < CV < 0.76 中度波动 8.9 6.5 1.4
      0.76 < CV < 1.74 相对较高波动 1.3 0.9 0.2
      CV > 1.74 高波动 0.1 0 0
      下载: 导出CSV

      表  3  NDVI、EVI、NPP可持续性变化分类

      Table  3.   NDVI, EVI, NPP sustainability change classification

      Hurst 斜率 P 变化类型 NDVI(%) EVI(%) NPP(%)
      H > 0.5 S < 0 P≤0.05 持续显著减少 0.8 1.0 1.1
      H > 0.5 S < 0 P > 0.05 持续不显著减少 1.9 3.9 1.0
      H > 0.5 S > 0 P≤0.05 持续显著增加 19.1 17.0 5.8
      H > 0.5 S > 0 P > 0.05 持续不显著减少 12.3 3.4 7.7
      H= 0.5 随机游走分布 0.3 10.0 54.1
      H < 0.5 S < 0 P≤0.05 反持续显著减少 0.8 0.9 1.3
      H < 0.5 S < 0 P > 0.05 反持续不显著减少 6.3 7.4 1.7
      H < 0.5 S > 0 P≤0.05 反持续显著增加 28.9 26.7 10.5
      H < 0.5 S > 0 P > 0.05 反持续不显著增加 29.6 29.7 16.8
      下载: 导出CSV
    • Bai, J., Li, J. L., Bao, A. M., et al., 2021. Spatial-Temporal Variations of Ecological Vulnerability in the Tarim River Basin, Northwest China. Journal of Arid Land, 13(8): 814-834. https://doi.org/10.1007/s40333-021-0079-0
      Chen, F. H., Xie, T. T., Yang, Y. J., et al., 2023. Discussion of the "Warming and Wetting" Trend and Its Future Variation in the Drylands of Northwest China under Global Warming. Science China Earth Sciences, 66(6): 1241-1257. https://doi.org/10.1007/s11430-022-1098-x
      Chen, S. Y., Zhang, Y. L., Wu, Q. L., et al., 2021. Vegetation Structural Change and CO2 Fertilization More than Offset Gross Primary Production Decline Caused by Reduced Solar Radiation in China. Agricultural and Forest Meteorology, 296: 108207. https://doi.org/10.1016/j.agrformet.2020.108207
      Chen, X. X., Wang, L. C., Niu, Z. G., et al., 2020. The Effects of Projected Climate Change and Extreme Climate on Maize and Rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 282: 107867. https://doi.org/10.1016/j.agrformet.2019.107867
      Chen, Y. N., Chen, Y. P., Xu, C. C., et al., 2010. Effects of Ecological Water Conveyance on Groundwater Dynamics and Riparian Vegetation in the Lower Reaches of Tarim River, China. Hydrological Processes, 24(2): 170-177. https://doi.org/10.1002/hyp.7429
      Chen, Y. N., Pang, Z. H., Hao, X. M., et al., 2008. Periodic Changes of Stream Flow in the last 40 Years in Tarim River Basin, Xinjiang, China. Hydrological Processes, 22(21): 4214-4221. https://doi.org/10.1002/hyp.7024
      Chu, H. S., Venevsky, S., Wu, C., et al., 2019. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 650: 2051-2062. https://doi.org/10.1016/j.scitotenv.2018.09.115
      Deng, G., 2021. Temporal and Spatial Dynamics of Snow Cover and Its Influencing Factors in High Mountain Areas of Asia (Dissertation). Hunan University of Science and Technology, Xiangtan, 24-27 (in Chinese with English abstract).
      Deng, M. J., Shi, Q., 2014. Management and Regulation Pattern of Water Resource in Inland Arid Regions. Advances in Earth Science, 29(9): 1046-1054 (in Chinese with English abstract).
      Guo, H. W., Xu, H. L., Ling, H. B., 2017. Study of Ecological Water Transfer Mode and Ecological Compensation Scheme of the Tarim River Basin in Dry Years. Journal of Natural Resources, 32(10): 1705-1717 (in Chinese with English abstract). doi: 10.11849/zrzyxb.20160961
      He, B., Chen, A. F., Wang, H. L., et al., 2015. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China. Remote Sensing, 7(8): 9998-10016. https://doi.org/10.3390/rs70809998
      He, X. Y., Zhang, F. P., Li, L., et al., 2022. Quantitative Analysis of the Impact of Climate Changes and Human Activities on the NPP of Vegetation in the Inland River Basins of Northwest China. Journal of Lanzhou University (Natural Sciences), 58(5): 650-660 (in Chinese with English abstract).
      Hurst, H. E., 1951. Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116(1): 770-799. https://doi.org/10.1061/taceat.0006518
      Jeong, S. J., Ho, C. H., Gim, H. J., et al., 2011. Phenology Shifts at Start vs. End of Growing Season in Temperate Vegetation over the Northern Hemisphere for the Period 1982-2008. Global Change Biology, 17(7): 2385-2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x
      Jiang, L. L., Guli·Jiapaer, Bao, A. M., et al., 2017. Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia. Science of the Total Environment, 599: 967-980. https://doi.org/10.1016/j.scitotenv.2017.05.012
      Jiang, N., Zhang, Q. Q., Zhang, S. C., et al., 2022. Spatial and Temporal Evolutions of Vegetation Coverage in the Tarim River Basin and Their Responses to Phenology. Catena, 217: 106489. https://doi.org/10.1016/j.catena.2022.106489
      Li, Z., Ding, Y. J., Chen, A. J., et al., 2020. Hiatus Phenomenon and Its Characteristics in Climate Change in Northwest China from 1960 to 2019. Acta Geographica Sinica, 75(9): 1845-1859 (in Chinese with English abstract).
      Lian, X., Piao, S. L., Chen, A. P., et al., 2021. Seasonal Biological Carryover Dominates Northern Vegetation Growth. Nature Communications, 12: 983. https://doi.org/10.1038/s41467-021-21223-2
      Liu, C., Liu, B., Zhao, W. Z., et al., 2020. Temporal and Spatial Variability of Water Use Efficiency of Vegetation and Its Response to Precipitation and Temperature in Heihe River Basin. Acta Ecologica Sinica, 40(3): 1-12. https://doi.org/10.5846/stxb201810282323
      Liu, Q., Liu, Y., Niu, J., et al., 2022. Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change. Agriculture, 12(5): 657. https://doi.org/10.3390/agriculture12050657
      Nemani, R. R., Keeling, C. D., Hashimoto, H., et al., 2003. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300(5625): 1560-1563. https://doi.org/10.1126/science.1082750
      Newbold, T., Hudson, L. N., Hill, S. L. L., et al., 2015. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature, 520(7545): 45-50. https://doi.org/10.1038/nature14324
      Pan, T., Zou, X. T., Liu, Y. J., et al., 2017. Contributions of Climatic and Non-Climatic Drivers to Grassland Variations on the Tibetan Plateau. Ecological Engineering, 108: 307-317. https://doi.org/10.1016/j.ecoleng.2017.07.039
      Piao, S. L., Wang, X. H., Ciais, P., et al., 2011. Changes in Satellite-Derived Vegetation Growth Trend in Temperate and Boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10): 3228-3239. https://doi.org/10.1111/j.1365-2486.2011.02419.x
      Qu, S., Wang, L. C., Lin, A. W., et al., 2020. Distinguishing the Impacts of Climate Change and Anthropogenic Factors on Vegetation Dynamics in the Yangtze River Basin, China. Ecological Indicators, 108: 105724. https://doi.org/10.1016/j.ecolind.2019.105724
      Su, B. D., Jian, D. N., Li, X. C., et al., 2017. Projection of Actual Evapotranspiration Using the COSMO-CLM Regional Climate Model under Global Warming Scenarios of 1.5 ℃ and 2.0 ℃ in the Tarim River Basin, China. Atmospheric Research, 196: 119-128. https://doi.org/10.1016/j.atmosres.2017.06.015
      Tian, H. J., Cao, C. X., Chen, W., et al., 2015. Response of Vegetation Activity Dynamic to Climatic Change and Ecological Restoration Programs in Inner Mongolia from 2000 to 2012. Ecological Engineering, 82: 276-289. https://doi.org/10.1016/j.ecoleng.2015.04.098
      Tong, X. W., Wang, K. L., Yue, Y. M., et al., 2017. Quantifying the Effectiveness of Ecological Restoration Projects on Long-Term Vegetation Dynamics in the Karst Regions of Southwest China. International Journal of Applied Earth Observation and Geoinformation, 54: 105-113. https://doi.org/10.1016/j.jag.2016.09.013
      Wang, C. Y., Wang, J. N., Cui, X., et al., 2021. Spatio-Temporal Change in Vegetation Patterns and Its Climatic Drivers in the Core Region of Three Parallel Rivers in Southeast Tibet. Geographical Research, 40(11): 3191-3207 (in Chinese with English abstract). doi: 10.11821/dlyj020201123
      Wang, Y., Xia, T. T., Shataer, R., et al., 2021. Analysis of Characteristics and Driving Factors of Land-Use Changes in the Tarim River Basin from 1990 to 2018. Sustainability, 13(18): 10263. https://doi.org/10.3390/su131810263
      Wei, H., Li, J. G., Tan, H. C., 2023. Channel Morphological Evolution in Confluence Area of Hotan River in Tarim Basin. Earth Science, 48(1): 359-374 (in Chinese with English abstract).
      Yue, S. R., Wang, L. C., Cao, Q., et al., 2024. Vegetation Dynamics and Potential Factors Driving Mechanisms in the Tarim River Basin. Earth Science, 49(9): 3399-3410 (in Chinese with English abstract).
      Yue, Y. M., Wang, L., Zhang, X. B., et al., 2024. Towards Achieving Carbon Neutrality: The Role of Vegetation Restoration in Karst Regions of Southwest China. Journal of Earth Science, 35(3): 1044-1048. https://doi.org/10.1007/s12583-024-2010-z
      Zhang, H., Xue, L. Q., Wei, G. H., et al., 2020. Assessing Vegetation Dynamics and Landscape Ecological Risk on the Mainstream of Tarim River, China. Water, 12(8): 2156. https://doi.org/10.3390/w12082156
      Zhang, Y. L., Song, C. H., Zhang, K. R., et al., 2014. Spatial-Temporal Variability of Terrestrial Vegetation Productivity in the Yangtze River Basin during 2000-2009. Journal of Plant Ecology, 7(1): 10-23. https://doi.org/10.1093/jpe/rtt025
      Zhang, Y., Zhang, C. B., Wang, Z. Q., et al., 2016. Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563: 210-220. https://doi.org/10.1016/j.scitotenv.2016.03.223
      Zhao, J., Du, Z. Q., Wu, Z. T., et al., 2018. Seasonal Variations of Day- and Nighttime Warming and Their Effects on Vegetation Dynamics in China's Temperate Zone. Acta Geographica Sinica, 73(3): 395-404 (in Chinese with English abstract).
      Zhao, R. F., Chen, Y. N., Shi, P. J., et al., 2013. Land Use and Land Cover Change and Driving Mechanism in the Arid Inland River Basin: A Case Study of Tarim River, Xinjiang, China. Environmental Earth Sciences, 68(2): 591-604. https://doi.org/10.1007/s12665-012-1763-3
      Zhou, Z. Q., Ding, Y. B., Shi, H. Y., et al., 2020. Analysis and Prediction of Vegetation Dynamic Changes in China: Past, Present and Future. Ecological Indicators, 117: 106642. https://doi.org/10.1016/j.ecolind.2020.106642
      Zhu, L. J., Meng, J. J., Zhu, L. K., 2020. Applying Geodetector to Disentangle the Contributions of Natural and Anthropogenic Factors to NDVI Variations in the Middle Reaches of the Heihe River Basin. Ecological Indicators, 117: 106545. https://doi.org/10.1016/j.ecolind.2020.106545
      邓刚, 2021. 亚洲高山区积雪时空动态及其影响因素研究(硕士学位论文). 湘潭: 湖南科技大学, 24-27.
      邓铭江, 石泉, 2014. 内陆干旱区水资源管理调控模式. 地球科学进展, 29(9): 1046-1054.
      郭宏伟, 徐海量, 凌红波, 2017. 塔里木河流域枯水年生态调水方式及生态补偿研究. 自然资源学报, 32(10): 1705-1717. doi: 10.11849/zrzyxb.20160961
      何旭洋, 张福平, 李玲, 等, 2022. 气候变化与人类活动对中国西北内陆河流域植被净初级生产力影响的定量分析. 兰州大学学报(自然科学版), 58(5): 650-660.
      李哲, 丁永建, 陈艾姣, 等, 2020.1960-2019年西北地区气候变化中的Hiatus现象及特征. 地理学报, 75(9): 1845-1859.
      王春雅, 王金牛, 崔霞, 等, 2021. 藏东南三江并流核心区植被时空动态变化及其气候驱动力分析. 地理研究, 40(11): 3191-3207. doi: 10.11821/dlyj020201123
      魏豪, 李嘉光, 谭虎成, 2023. 塔里木盆地和田河汇流区的平面形态演变. 地球科学, 48(1): 359-374. doi: 10.3799/dqkx.2022.413
      岳胜如, 王伦澈, 曹茜, 等, 2024. 塔里木河流域植被动态及潜在因素驱动机制. 地球科学, 49(9): 3399-3410. doi: 10.3799/dqkx.2023.161
      赵杰, 杜自强, 武志涛, 等, 2018. 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 73(3): 395-404.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  431
    • HTML全文浏览量:  193
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-11
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回