• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海西部下古生界碳酸盐岩潜山储层成因机理及模式

    华晓莉 李慧勇 许鹏 孙哲 夏宇

    华晓莉, 李慧勇, 许鹏, 孙哲, 夏宇, 2025. 渤海西部下古生界碳酸盐岩潜山储层成因机理及模式. 地球科学, 50(2): 494-503. doi: 10.3799/dqkx.2024.050
    引用本文: 华晓莉, 李慧勇, 许鹏, 孙哲, 夏宇, 2025. 渤海西部下古生界碳酸盐岩潜山储层成因机理及模式. 地球科学, 50(2): 494-503. doi: 10.3799/dqkx.2024.050
    Hua Xiaoli, Li Huiyong, Xu Peng, Sun Zhe, Xia Yu, 2025. The Differential Genetic Mechanism and Model of the Lower Paleozoic Carbonate Buried Hill Reservoirs in the Western Bohai Sea. Earth Science, 50(2): 494-503. doi: 10.3799/dqkx.2024.050
    Citation: Hua Xiaoli, Li Huiyong, Xu Peng, Sun Zhe, Xia Yu, 2025. The Differential Genetic Mechanism and Model of the Lower Paleozoic Carbonate Buried Hill Reservoirs in the Western Bohai Sea. Earth Science, 50(2): 494-503. doi: 10.3799/dqkx.2024.050

    渤海西部下古生界碳酸盐岩潜山储层成因机理及模式

    doi: 10.3799/dqkx.2024.050
    基金项目: 

    渤海油田上产4000万吨新领域勘探关键技术 CNOOC-KJ 135 ZDXM 36 TJ 08 TJ

    详细信息
      作者简介:

      华晓莉(1988-),女,硕士,主要从事石油地质综合研究工作. E-mail:deam2006@126.com

    • 中图分类号: P618.13

    The Differential Genetic Mechanism and Model of the Lower Paleozoic Carbonate Buried Hill Reservoirs in the Western Bohai Sea

    • 摘要: 渤海西部下古生界碳酸盐岩潜山钻探证实寻找厚层优质储层是潜山勘探的关键. 根据钻井揭示下古生界储层特征和分布存在较大的差异,反应了储层成因存在本质差别. 基于断裂发育及构造演化分析,首次建立渤海西部剥蚀残丘型和剥蚀断块型两类碳酸盐岩潜山,在明确潜山类型划分的基础上,开展了两大类潜山储层差异成因机制分析. 结果表明,残丘型潜山形成岩溶体储层,在微古地貌控制下的岩溶古水系坡度越大的区带,岩溶体储层发育程度越大,形成枝蔓式储层发育模式;断块型潜山形成缝溶体储层,在多期构造应力叠加区,有效裂缝更为发育,储层厚度更大,形成裂隙式储层发育模式. 明确渤海西部不同潜山类型碳酸盐岩储层差异成因及模式,对下一步碳酸盐岩区油气勘探具有一定的指导意义.

       

    • 图  1  渤海西部古地质图

      Fig.  1.  Location geological map of Bohai Sea

      图  2  渤海碳酸盐岩潜山分类依据

      Fig.  2.  Classification basis of carbonate buried hills in the Bohai Sea

      图  3  渤中21残丘型潜山储层发育特征

      Fig.  3.  Development characteristics of buried hill reservoirs in Bozhong 21 residual hill type

      图  4  渤中21残丘型潜山典型井岩溶储层能谱测井和地球化学元素纵向分布

      Fig.  4.  Vertical distribution of energy spectrum logging and geochemical elements in Karst reservoirs of typical well in Bozhong 21 residual hill buried hills

      图  5  渤中21构造区古水系分布

      Fig.  5.  Distribution of paleowater systems in Bozhong 21 structural area

      图  6  渤中21构造区距古水系远近与储层物性关系

      Fig.  6.  The relationship between the distance from the paleowater system and the physical properties of the reservoir in the Bozhong 21 structural area

      图  7  渤中21构造区古水系地形坡度与储层厚度对应关系

      Fig.  7.  Corresponding relationship between topographic slope and reservoir thickness of paleo-water system in Bozhong 21 structural area

      图  8  渤中21残丘型潜山岩溶体储层发育模式

      Fig.  8.  Development model of karst reservoirs in Bozhong 21 residual hill type buried hill

      图  9  曹妃甸构造区断块型潜山储层发育特征

      a.裂缝发育宽度大,沿裂缝带形成溶蚀孔,CFD2-A井,3 396~3 400 m,成像测井;b. 裂缝发育宽度大,沿裂缝带溶蚀作用强,CFD2-A井,3 455~3 459 m,成像测井;c. 隐晶粒屑灰岩,沿裂缝见明显溶蚀现象,CFD2-A井,3 456 m,铸体薄片10(+);d. 裂缝发育宽度小,裂缝发生部分溶蚀,CFD2-B井,4 334~4 336 m,成像测井;e. 裂缝发育宽度较小,沿裂缝溶蚀作用弱,CFD2-B井,4 360~4 362 m,成像测井;f. 泥晶灰岩,裂缝充填作用严重,溶蚀较弱,CFD2-B井,4 335 m,铸体薄片10(+)

      Fig.  9.  Development characteristics of fault-block buried hill reservoirs in Caofeidian structural area

      图  10  曹妃甸构造区断裂期次与裂缝规模对应关系

      Fig.  10.  Corresponding relationship between fault periods and crack sizes in Caofeidian structural area

      图  11  曹妃甸构造区断块型潜山岩溶体储层发育模式

      Fig.  11.  Development model of fault-block buried hill karst reservoirs in Caofeidian structural area

    • Cai, Z. X., Liu, Y. L., Liu, Q., 2010. The Appearance and Significance of Palaeo-Drainage Systems Connection in the Top of Lower-Middle Ordovician in Tahe Oilfield. Geoscience, 24(2): 273-278(in Chinese with English abstract).
      Chen, H. H., Wu, Y., Zhu, H. T., et al., 2016. Eogenetic Karstification and Reservoir Formation Model of the Middle-Lower Ordovician in the Northeast Slope of Tazhong Uplift, Tarim Basin. Acta Petrolei Sinica, 37(10): 1231-1246(in Chinese with English abstract).
      Deng, X. L., Zhang, Q. Y., Liang, B., et al., 2015. Reconstruction of Karst Palaeogeomorphology for the Ordovician Yingshan Formation in the Central Tarim Basin. Carsologica Sinica, 34(2): 154-158(in Chinese with English abstract).
      Feng, R. W., Ouyang, Y. C., Pang, Y. J., et al., 2014. Evolution Modes of Interbedded Weathering Crust Karst: a Case Study of the 1st and 2nd Members of Ordovician Yingshan Formation in EPCC Block, Tazhong, Tarim Basin. Petroleum Exploration and Development, 41(1): 45-54(in Chinese with English abstract).
      Guo, C. J., Wang, D., Wang, B. J., 2013. Application of Natural Ggamma Ray Spectroscopy Logging in Sedimentology. World Well Logging Technology, 34-36(in Chinese with English abstract).
      Guo, T. L., Lou, Z. H., Ma, Y. S., 2003. Several Problems on Oil and Gas Preservation and Their Commercial Prospecting in Marine Sequences of South China. Petroleum Geology & Experiment, 25(1): 3-9(in Chinese with English abstract).
      He, Z. L., Yun, L., You, D. H., et al., 2019. Genesis and Distribution Prediction of the Ultra-Deep Carbonate Reservoirs in the Transitional Zone between the Awati and Manjiare Depressions, Tarim Basin. Earth Science Frontiers, 25(1): 13-21(in Chinese with English abstract).
      Hua, X. L., Li, H. Y., Sun, X. J., et al., 2018. Formation Mechanism of Lower Palaeozoic Dolomites in the Carbonate Buried Hill of the Shaxibei Structural Belt, Bohai Sea. Geological Journal of China Universities, 24(6): 833-840(in Chinese with English abstract).
      Ji, Y. G., Han, J. F., Zhang, Z. H., et al., 2012. Formation and Distribution of Deep High Quality Reservoirs of Ordovician Yingshan Formation in the Northern Slope of the Tazhong Area in Tarim Basin. Acta Geologica Sinica, 86(7): 1165-1175(in Chinese with English abstract).
      Jiang, Q. C., Hu, S. Y., Wang, Z. C., et al., 2012. Paleokarst Landform of the Weathering Crust of Middle Permian Maokou Formation in Sichuan Basin and Selection of Exploration regions. Acta Petrolei Sinica, 33(6): 949-960(in Chinese with English abstract).
      Lamberta, L., Durleta, C., Jean-paul Loreaua, J. P., et al., 2006. Burial Dissolution of Micrite in Middle East Carbonate Reservoirs (Jurassic-Cretaceous): Keys for Recognition and Timing. Marine and Petroleum Geology, 23(1): 79-92. https://doi.org/10.1016/j.marpetgeo.2005.04.003
      Li, H. Y., Xiao, S. G., Li, F., et al., 2023. Reservoir Characteristics and Main Controlling Factors of Hydrocarbon Accumulation of Lower Paleozoic Buried-Hill in Northwestern Shaleitian Slope of Western Bohai Sea. Earth Science, 48(1): 329-341(in Chinese with English abstract).
      Li, Q. G., Li, K. S., Zhou, Z. Z., et al., 2013. Palaeogeomorphology and Karst Distribution of Tongwan Unconformity in Sichuan Basin. Oil & Gas Geology, 34(4): 516-521(in Chinese with English abstract).
      Li, W. Q., Liu, H. S., Li, P. P., et al., 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 1-34(in Chinese with English abstract).
      Liu, D. W., Cai, C. F., Hu, Y. J., et al., 2020. Multi-Stage Dolomitization Process of Deep Burial Dolostones and Its Influence on Pore Evolution: A Case Study of Longwangmiao Formation in the Lower Cambrian of Central Sichuan Basin. Journal of China University of Mining & Technology, 49(6): 1150-1165(in Chinese with English abstract).
      Liu, L. H., Du, X. D., Xu, S. L., et al., 2017. Characteristics and Formation of the Cambrian Dolomite in Middle-South Sichuan Basin, China. Journal of Jilin University(Earth Science Edition), 47(3): 775-784(in Chinese with English abstract).
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multi-Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599(in Chinese with English abstract).
      Ma, X. H., Yang, Y., Wen, L., et al., 2019. Distribution and Exploration Direction of Medium- and Large-Sized Marine Carbonate Gas Fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 1-13(in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1
      Qiao, Z. F., Yu, Z., She, M., et al., 2023. Progresses on Ancient Ultra-Deeply Buried Marine Carbonate Reservoir in China. Journal of Palaeogeography, 25(6): 1257-1276(in Chinese with English abstract).
      Wang, J. B., Shen, A. J., Cai, X. Y., et al., 2008. A Review of the Ordovician Carbonate Reservoirs in the World. Journal of Stratigraphy, 32(4) : 363-373(in Chinese with English abstract).
      Wang, Z., Tang, D. Q., Kang, Z. J., et al., 2022. Development Characteristics and Its Role in Controlling Oil and Gas Accumulation of Mid-North Part of Shunbei No. 5 Strike-Slip Fault Zone in Tarim Basin. Earth Science, 9(1): 1-29(in Chinese with English abstract).
      Wang, Z. C., Zhao, W. Z., Hu, S. Y., et al., 2013. Reservoir Types and Distribution Characteristics of Large Marine Carbonate Oil and Gas Fields in China. Oil & Gas Geology, 34(2): 153-160(in Chinese with English abstract).
      Yao, T. T., Zhu, H. T., Yang, X. H., et al., 2020. Dolomite Origin of Shahejie Formation in Huanghekou Sag, Bohai Bay Basin. Earth Science, 45(10): 3567-3578(in Chinese with English abstract).
      Yu, Z., Ding, Z. C., Wu, D. Y., et al., 2017. Geochemical Characteristics and Genetic Model of Dolomite in Majiagou Submember-55 of Ordovician in East-Central Ordos Basin. Marine Origin Petroleum Geology, 22(4): 85-93(in Chinese with English abstract).
      Zan, N. M., Wang, Y. Z., Cao, Y. C., et al., 2018. Characteristics and Development Patterns of Reservoir Space of the Lower Paleozoic Buried Hills in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 39(2): 355-365(in Chinese with English abstract).
      Zenger, D. H., Dunham, J. B., Ethington, R. I., 1980. Concepts and Models of Dolomitization. SEPM Special Publication, 28: 1-320.
      蔡忠贤, 刘永立, 刘群. 2010. 塔河油田中下奥陶统顶面岩溶古水系对接现象及其意义. 现代地质, 24(2): 273-278.
      陈红汉, 吴悠, 朱红涛等, 2016. 塔中地区北坡中-下奥陶统早成岩岩溶作用及储层形成模式. 石油学报, 37(10): 1231-1246.
      邓兴梁, 张庆玉, 梁彬, 等, 2015. 塔中Ⅱ区奥陶系鹰山组岩溶古地貌恢复方法研究. 中国岩溶, 34(2): 154-158.
      冯仁蔚, 欧阳诚, 庞艳君, 等, 2014. 层间风化壳岩溶发育演化模式——以塔中川庆EPCC区块奥陶系鹰一段-鹰二段为例. 石油勘探与开发, 41(1): 45-54.
      郭春杰, 王迪, 王保军, 2013. 自然伽马能谱测井在沉积学中的应用研究. 国外测井技术, 34-36.
      郭彤楼, 楼章华, 马永生, 2003. 南方海相油气保存条件评价和勘探决策中应注意的几个问题. 石油实验地质, 25(1): 3-9.
      何治亮, 云露, 尤东华, 等, 2019. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测. 地学前缘, 25(1): 13-21.
      华晓莉, 李慧勇, 孙希家, 等, 2018. 渤海沙西北构造带下古生界碳酸盐岩潜山白云岩形成机制研究. 高校地质学报, 24(6): 833-840.
      吉云刚, 韩剑发, 张正红, 等, 2012. 塔里木盆地塔中北斜坡奥陶系鹰山组深部优质岩溶储层的形成与分布. 地质学报, 86(7): 1165-1175.
      江青春, 胡素云, 汪泽成, 等, 2012. 四川盆地茅口组风化壳岩溶古地貌及勘探选区. 石油学报, 33(6): 949-960.
      李慧勇, 肖述光, 李飞等, 2023. 渤海西部沙西北斜坡带下古生界潜山储层特征及成藏主控因素. 地球科学, 48(01): 329-341. doi: 10.3799/dqkx.2022.406
      李启桂, 李克胜, 周卓铸, 等, 2013. 四川盆地桐湾不整合面古地貌特征与岩溶分布预测. 石油与天然气地质, 34(4): 516-521.
      李文奇, 刘汇川, 李平平, 等, 2023. 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9): 1-34. doi: 10.3799/dqkx.2022.126
      刘大卫, 蔡春芳, 扈永杰, 等, 2020. 深层白云岩多期白云石化及其对孔隙演化的影响——以川中地区下寒武统龙王庙组为例. 中国矿业大学学报, 49(6): 1150-1165.
      刘丽红, 杜小弟, 徐守礼, 等, 2017. 四川盆地中南部寒武系白云岩特征及形成机制. 吉林大学学报(地球科学版), 47(3): 775-784.
      刘志波, 邢凤存, 胡华蕊, 等. 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      马新华, 杨雨, 文龙, 等, 2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向. 石油勘探与开发, 46(1): 1-13.
      乔占峰, 于洲, 佘敏等, 2023. 中国古老超深层海相碳酸盐岩储集层成因研究新进展. 古地理学报, 25(6): 1257-1276.
      汪泽成, 赵文智, 胡素云, 等, 2013. 我国海相碳酸盐岩大油气田油气藏类型及分布特征. 石油与天然气地质, 34(2): 153-160.
      王建波, 沈安江, 蔡习尧, 等, 2008. 全球奥陶系碳酸盐岩油气藏综述. 地层学杂志, 32(4): 363-373.
      王珍, 唐大卿, 康志江, 等, 2022. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用. 地球科学, 9(1): 1-29. doi: 10.3799/dqkx.2022.091
      姚婷婷, 朱红涛, 杨香华, 等, 2020. 渤海湾盆地黄河口凹陷沙河街组白云岩成因机制. 地球科学, 45(10): 3567-3578. doi: 10.3799/dqkx.2020.227
      于洲, 丁振纯, 吴东旭, 等, 2017. 鄂尔多斯盆地中东部奥陶系马五亚段白云岩地球化学特征及成因模式. 海相油气地质, 22(4): 85-93.
      昝念民, 王艳忠, 操应长, 等, 2018. 东营凹陷下古生界碳酸盐岩古潜山储层储集空间特征及发育模式. 石油与天然气地质, 39(2): 355-365.
    • 加载中
    图(11)
    计量
    • 文章访问数:  170
    • HTML全文浏览量:  93
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-22
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回