• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    武汉市碳酸盐岩天兴洲条带砂化白云岩成因机理及其工程特性

    莫云 胡新丽 崔德山 谢昭宇 金新锋 熊宗海

    莫云, 胡新丽, 崔德山, 谢昭宇, 金新锋, 熊宗海, 2025. 武汉市碳酸盐岩天兴洲条带砂化白云岩成因机理及其工程特性. 地球科学, 50(6): 2298-2310. doi: 10.3799/dqkx.2024.052
    引用本文: 莫云, 胡新丽, 崔德山, 谢昭宇, 金新锋, 熊宗海, 2025. 武汉市碳酸盐岩天兴洲条带砂化白云岩成因机理及其工程特性. 地球科学, 50(6): 2298-2310. doi: 10.3799/dqkx.2024.052
    Mo Yun, Hu Xinli, Cui Deshan, Xie Zhaoyu, Jin Xinfeng, Xiong Zonghai, 2025. Formation Mechanism and Engineering Characteristics of Sandy Dolomite in Wuhan Tianxingzhou Carbonate Rock Belt. Earth Science, 50(6): 2298-2310. doi: 10.3799/dqkx.2024.052
    Citation: Mo Yun, Hu Xinli, Cui Deshan, Xie Zhaoyu, Jin Xinfeng, Xiong Zonghai, 2025. Formation Mechanism and Engineering Characteristics of Sandy Dolomite in Wuhan Tianxingzhou Carbonate Rock Belt. Earth Science, 50(6): 2298-2310. doi: 10.3799/dqkx.2024.052

    武汉市碳酸盐岩天兴洲条带砂化白云岩成因机理及其工程特性

    doi: 10.3799/dqkx.2024.052
    基金项目: 

    国家自然科学基金重点国际(地区)合作与交流项目 42020104006

    详细信息
      作者简介:

      莫云(1981-),男,博士研究生,高级工程师,主要从事岩土工程勘察、设计、施工、监测与检测方面的实践与研究工作. ORCID: 0009-0005-2589-9432.E-mail: 18317108@qq.com

      通讯作者:

      胡新丽,教授,博士生导师,主要从事地质灾害防治及岩土体稳定性评价等研究工作.ORCID: 0000-0003-3440-0064.E-mail: huxinli@cug.edu.cn

    • 中图分类号: P64.4

    Formation Mechanism and Engineering Characteristics of Sandy Dolomite in Wuhan Tianxingzhou Carbonate Rock Belt

    • 摘要: 武汉市碳酸盐岩天兴洲条带,发育一套巨厚层砂化白云岩.为查明该岩层的成因及工程特性,采用构造调查、薄片鉴定、X射线衍射试验(X-ray diffraction,XRD)、X射线荧光光谱分析试验(X-ray fluorescence,XRF)、颗粒分析试验、饱和单轴抗压强度试验等多种方法,对砂化白云岩成因及其工程特性进行深入研究.结果表明:研究区位于3条断裂之间,且地层出现倒转现象,表明该区域在印支期所受的挤压应力及燕山期所受的张拉应力非常强烈,区域构造特征及显微镜下照片也佐证了这一观点;砂化程度越强烈,白云石矿物含量就越低,而石英石及黏土矿物含量则越高;CaO、MgO等主量化学成分迁移演化特征与白云岩砂化过程呈一定的负相关性,而SiO2、Al2O3、Fe2O3等主量化学成分则与之呈一定的正相关性.综上所述,研究区内砂化白云岩及其不均性特征的成因机理可以从“宏观构造动力作用”、“细观矿物结构组成”和“微观化学成分变迁”3个层面予以概括.砂化程度对白云岩饱和单轴抗压强度影响极大,其在砂化阶段“微-弱、微-中、微-强”的降幅分别可达38.6%、68.1%、90.0%,且呈幂函数关系;由此,拟合得到⑤1全砂化极破碎白云岩的饱和单轴抗压强度标准值为1.3 MPa,解决了全砂化白云岩难以制作标准岩样进行室内试验获取岩体力学参数的工程难题.

       

    • 图  1  武汉市碳酸盐岩条带分布图(底图据中国地质调查局武汉地质调查中心, 2019)

      Fig.  1.  Distribution map of carbonate rock belt in Wuhan (after Wuhan Center of China Geological Survey, 2019)

      图  2  研究区域地质构造图

      Fig.  2.  Geological structure map of study area

      图  3  砂化白云岩主层岩心照片及钻孔柱状图

      a.⑤1全砂化白云岩;b.⑤2弱砂化白云;c.钻孔柱状图

      Fig.  3.  Core detail photos and column chart of sanding dolomite main layer

      图  4  白云岩矿物成分含量实测

      a.⑤1全砂化白云岩;b. ⑤2弱砂化白云岩

      Fig.  4.  Measured map of dolomite mineral composition

      图  5  主要矿物含量随砂化程度变化

      Fig.  5.  Content of main minerals varying with sanding degree

      图  6  主要化学成分含量随砂化程度变化

      Fig.  6.  Content of main chemical components varying with sanding degree

      图  7  白云岩砂化进程

      Fig.  7.  Chart of dolomite sanding process

      图  8  不同砂化程度白云岩饱和单轴抗压强度试验值分布

      Fig.  8.  Saturation uniaxial compressive value distribution of dolomite in different sanding degrees

      图  9  饱和单轴抗压强度与砂化等级的关系

      Fig.  9.  Relation between saturated uniaxial compressive strength and sanding grade

      表  1  2层白云岩显微镜下照片及其特征

      Table  1.   Microscopically photographs of ⑤2 dolomite and its characteristics

      BP1-1 BP2-2 BP3-2
      角砾状结构,形成大小不等的孔洞和裂隙,被白云岩、硅质岩碎屑及粒间岩石矿物碎粒、碎粉填充(起胶结作用),低级区域变质 碎裂结构,形成大小不等的孔洞和裂隙,被碎粒、碎粉或石英充填;动力变质 角砾状结构,形成大小不等的孔洞和裂隙,局部充填破碎的岩粒并发生褐铁矿化,岩石角砾含量较低区域,多为微晶白云石与硅质物质;动力变质
      BP4-1 BP5-1 BP6-2
      微晶结构,裂隙发育,其宽度窄、延伸长,内部充填碳酸盐矿物,少量被硅质矿物充填,也有中空者;生物碎屑灰岩被白云石交代,动力变质 角砾状结构,形成大小不等的白云岩碎屑,周围为岩石或矿物碎粒、碎粉,有贯穿裂隙;动力变质 角砾状结构,形成大小不等的孔洞和裂隙,岩石角砾周围裂隙内见无色硅质填充;动力变质
      下载: 导出CSV

      表  2  各砂化程度时白云岩矿物成分含量(%)

      Table  2.   The contents of dolomite mineral composition in different sanding degrees (%)

      层号及名称 白云石含量 铁白云石含量 石英石含量 高岭土含量
      1全砂化 49.79 24.59 10.46 15.17
      1a强砂化 55.58 22.88 11.54 10.01
      2a中砂化 42.65 37.76 11.85 7.73
      2弱砂化 47.66 39.51 12.83 0.00
      2b微砂化 82.78 13.63 2.84 0.75
      下载: 导出CSV

      表  3  各砂化程度时白云岩化学成分含量(%)

      Table  3.   Statistical analysis of dolomite chemical components in different sanding degree (%)

      层号及名称 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO 其他 烧失量
      1全砂化 43.69 10.90 2.11 3.24 11.69 0.06 2.04 3.01 0.28 23.00
      1a强砂化 17.44 0.14 0.26 7.52 34.65 0.05 0.01 0.03 0.00 39.90
      2a中砂化 14.59 0.26 0.27 8.04 35.60 0.05 0.00 0.06 0.10 41.03
      2弱砂化 10.43 0.17 0.33 8.87 36.43 0.06 0.01 0.07 0.00 43.63
      2b微砂化 8.54 0.56 1.41 13.90 36.79 0.06 0.05 0.04 0.59 38.06
      最大值 43.69 10.90 2.11 13.90 36.79 0.06 2.04 3.01 0.59 43.63
      最小值 8.54 0.14 0.26 3.24 11.69 0.05 0.00 0.03 0.00 23.00
      平均值 18.94 2.41 0.88 8.31 31.03 0.06 0.42 0.64 0.19 37.12
      下载: 导出CSV

      表  4  白云岩砂化程度分级

      Table  4.   Classification table of sandy dolomite

      对应层号 1 1a 2a 2 2b
      砂化程度 全砂化 强砂化 中砂化 弱砂化 微砂化
      砂化等级 1 2 3 4 5
      岩石类别 极软岩 软岩 较软岩 较硬岩 坚硬岩
      岩体完整程度 极破碎 破碎 较破碎 较完整 完整
      frk范围(MPa) (0, 5] (5, 15] (15, 30] (30, 60] > 60
      标准值(MPa) 拟合值1.3 7.0 22.5 43.3 70.5
      下载: 导出CSV

      表  5  白云岩砂颗分试验统计

      Table  5.   Particle test statistics of dolomite sand

      样品号 取样深度(m) 颗粒级配占比 定名
      10.00~5.00 mm 5.00~0.00 mm 0.00~1.00 mm 1.00~0.50 mm 0.50~0.25 mm 0.250~0.075 mm < 0.075 mm
      RD1 30.5~30.7 1.46% 34.02% 16.69% 25.71% 7.55% 3.04% 11.54% 粗砂
      RD2 33.0~33.2 0.13% 14.23% 9.58% 40.72% 20.09% 8.26% 7.00% 粗砂
      RD3 33.5~33.7 1.09% 40.32% 11.42% 29.61% 10.37% 3.15% 4.04% 粗砂
      RD4 34.0~34.2 0.20% 18.21% 8.16% 32.40% 20.73% 8.94% 11.36% 粗砂
      最大值 - 1.46% 40.32% 16.69% 40.72% 20.73% 8.94% 11.54% -
      最小值 - 0.13% 14.23% 8.16% 25.71% 7.55% 3.04% 4.04% -
      平均值 - 0.75% 26.89% 11.78% 32.48% 14.50% 5.90% 8.25% -
      下载: 导出CSV

      表  6  白云岩砂颗粒级配曲线

      Table  6.   Particle grading curves of dolomite sand

      RD1 RD2 RD3 RD4
      d60=1.64,d30=0.62,d10=0.04,
      Cu=41.00,Cc=5.8
      d60=0.76,d30=0.42,d10=0.12,
      Cu=6.33,Cc=1.93
      d60=2.06,d30=0.67,d10=0.30,
      Cu=6.87,Cc=0.73
      d60=0.74,d30=0.35,d10=0.06,
      Cu=12.33,Cc=2.76
      下载: 导出CSV
    • Cui, J., 2009. Special Geological Environment of Bank Slope and Underground Engineering about Pingtou Hydroelectric Station of Meigu River (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Davies, G. R., Smith, L. B. Jr., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641-1690. https://doi.org/10.1306/05220605164
      Dong, J. X., Gong, X. Y., Mi, J., et al., 2024. Structure and Application of SHF Classification Method for Surrounding Rock of Sandy Dolomite Tunnel. Earth Science, 49(8): 2813-2825(in Chinese with English abstract).
      Dong, J. X., Shen, Z. L., Cao, L., et al., 2023. Water-Sand Inrush Risk Assessment Method of Sandy Dolomite Tunnel and Its Application in the Chenaju Tunnel, Southwest of China. Geomatics, Natural Hazards and Risk, 14(1). https://doi.org/10.1080/19475705.2023.2196369
      Dong, J. X., Zhang, S. W., Cheng, J., et al., 2023. Application of Fuzzy AHP Method to Classification of Dolomite Sandification Level. Journal of Changjiang River Scientific Research Institute, 40(2): 109-114, 123(in Chinese with English abstract).
      Guo, Y., Du, X. F., Yang, B., et al., 2023. Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area. Earth Science, 48(12): 4558-4574(in Chinese with English abstract).
      He, W. X., 2008. Study of Genetic Mechanism about Dolomite Sandification in the Site Area of Pingtou Hydroelectric Station of Meigu River and Its Influence on the Project (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Hu, X. B., 2009. Study of Dolostone's Karstic Sandification Characteristic and Mechanism in the Deep Bank Slope of Pingtou Hydropower Station in Meigu River (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Huang, R. Q., Pei, X. J., Cui, S. H., 2016. Cataclastic Characteristics and Formation Mechanism of Rock Mass in Sliding Zone of Daguangbao Landslide. Chinese Journal of Rock Mechanics and Engineering, 35(1): 1-15 (in Chinese with English abstract).
      Jiang, Y. F., Zhou, F. C., Lin, J. Y., et al., 2023. Evolution Mechanism of Tunnel Water and Sand Inrush Considering Water-Rich Sandy Dolomite Hazard-Causing Structures. Engineering Failure Analysis, 153: 107554. https://doi.org/10.1016/j.engfailanal.2023.107554
      Jiang, Y. F., Zhou, P., Zhou, F. C., et al., 2022. Failure Analysis and Control Measures for Tunnel Faces in Water-Rich Sandy Dolomite Formations. Engineering Failure Analysis, 138: 106350. https://doi.org/10.1016/j.engfailanal.2022.106350
      Li, F. F., Ye, Y., Yu, Y. C., et al., 2023. Research Progress of Carbonate Rock Diagenesis. Bulletin of Geological Science and Technology, 42(1): 170-190(in Chinese with English abstract).
      Li, G. X., Zhang, B. Y., Yu, Y. Z., 2013. Soil Mechanics (2nd Edition). Tsinghua University Press, Beijing(in Chinese).
      Li, R., Jiao, Y. Q., Wu, L. Q., et al., 2008. Structurally Controlled Hydrothermal Dolomitization: A New Model in International Carbonates Field. Geological Science and Technology Information, 27(3): 35-40(in Chinese with English abstract).
      Li, W. Q., Liu, H. C., Li, P. P., et al., 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 3360-3377(in Chinese with English abstract).
      Liu, H., Ma, T., Tan, X. C., et al., 2016. Origin of Structurally Controlled Hydrothermal Dolomite in Epigenetic Karst System during Shallow Burial: An Example from Middle Permian Maokou Formation, Central Sichuan Basin, SW China. Petroleum Exploration and Development, 43(6): 916-927 (in Chinese with English abstract).
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multi-Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599(in Chinese with English abstract).
      Luo, X. J., 2013. On the History of Tectonic Evolution and Karstification in Wuhan. Carsologica Sinica, 32(2): 195-202 (in Chinese with English abstract).
      Luo, X. J., 2015. Karst Abnormal Development and Origin of the Tianxingzhou Carbonate Rook Belt in the Wuhan Area. Carsologica Sinica, 34(1): 35-42(in Chinese with English abstract).
      Richter, D. K., Gillhaus, A., Neuser, R. D., 2018. The Alteration and Disintegration of Dolostones with Stoichiometric Dolomite Crystals to Dolomite Sand: New Insights from the Franconian Alb (Upper Jurassic, SE Germany). Zeitschrift der Deutschen Gesellschaft Für Geowissenschaften, 169(1): 27-46. https://doi.org/10.1127/zdgg/2018/0150
      Wang, P. P., Yao, J., Jiang, L., 2019. Sandification Characteristics of Guizhou Dolomite and the Influence on Tunnel Support Structure. Journal of Guizhou University (Natural Sciences), 36(3): 44-48(in Chinese with English abstract).
      Wang, Z. J., Du, Y. W., Jiang, Y. F., et al., 2021. Study on the Mechanism of Instability of Tunnel Face in Sandy Dolomite Stratum. Chinese Journal of Rock Mechanics and Engineering, 40(Suppl. 2): 3118-3126 (in Chinese with English abstract).
      Yao, T. T., Zhu, H. T., Yang, X. H., et al., 2020. Dolomite Origin of Shahejie Formation in Huanghekou Sag, Bohai Bay Basin. Earth Science, 45(10): 3567-3578 (in Chinese with English abstract).
      Zhang, L. X., 2012. Formation Mechanism and Engineering Properties of Dolomite Karst Sandification(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Zhang, L. X., Zhang, H. Q., Zhao, Q. H., et al., 2012a. Characteristics and Distribution of Dolomite Sandification at Pingtou Hydropower Station. Yangtze River, 43(19): 42-44, 78(in Chinese with English abstract).
      Zhang, L. X., Zhao, Q. H., Hu, X. B., et al., 2012b. Laboratory Dissolution Test on Dolomite and Its Micro-Dissolution Mechanism. Journal of Engineering Geology, 20(4): 576-584(in Chinese with English abstract).
      Zhao, Z. C., Zhang, Y. X., Liu, W. L., et al., 2023. Controlled Blasting Technology of Small Section Tunnel in Medium Sanded Dolomite: Taking the Yuxi Section Tunnel of the Central Yunnan Water Diversion Project as an Example. Science Technology and Engineering, 23(29): 12663-12671 (in Chinese with English abstract).
      Zhou, F. C., Li, J. Y., Jiang, Y. F., et al., 2023. Optimization of Radial Drainage Design for Water-Rich Tunnel in Sandy Dolomite Stratum Considering Pressure Relief Effect. Structures, 53: 861-881. https://doi.org/10.1016/j.istruc.2023.04.110
      崔杰, 2009. 美姑河坪头电站岸坡特殊地质现象与地下工程(博士学位论文). 成都: 成都理工大学.
      董家兴, 龚欣月, 米健, 等, 2024. 砂化白云岩隧洞围岩分类方法SHF构建及应用. 地球科学, 49(8): 2813-2825. doi: 10.3799/dqkx.2023.059
      董家兴, 张晟玮, 程娟, 等, 2023. 模糊层次分析法在白云岩砂化等级划分中的应用. 长江科学院院报, 40(2): 109-114, 123.
      郭颖, 杜晓峰, 杨波, 等, 2023. 下扬子地区上震旦统-下古生界白云岩地球化学特征及成因: 以南京地区为例. 地球科学, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492
      何文秀, 2008. 美姑河坪头水电站厂址区白云岩砂化成因及其对工程影响研究(博士学位论文). 成都: 成都理工大学.
      胡相波, 2009. 美姑河坪头水电站岸坡深部白云岩岩溶砂化特征及机理研究(博士学位论文). 成都: 成都理工大学.
      黄润秋, 裴向军, 崔圣华, 2016. 大光包滑坡滑带岩体碎裂特征及其形成机制研究. 岩石力学与工程学报, 35(1): 1-15.
      李峰峰, 叶禹, 余义常, 等, 2023. 碳酸盐岩成岩作用研究进展. 地质科技通报, 42(1): 170-190.
      李广信, 张丙印, 于玉贞, 2013. 土力学(第2版). 北京: 清华大学出版社.
      李荣, 焦养泉, 吴立群, 等, 2008. 构造热液白云石化: 一种国际碳酸盐岩领域的新模式. 地质科技情报, 27(3): 35-40.
      李文奇, 刘汇川, 李平平, 等, 2023. 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126
      刘宏, 马腾, 谭秀成, 等, 2016. 表生岩溶系统中浅埋藏构造-热液白云岩成因: 以四川盆地中部中二叠统茅口组为例. 石油勘探与开发, 43(6): 916-927.
      刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      罗小杰, 2013. 试论武汉地区构造演化与岩溶发育史. 中国岩溶, 32(2): 195-202.
      罗小杰, 2015. 武汉地区天兴洲碳酸盐岩条带岩溶发育的异常性及其成因探讨. 中国岩溶, 34(1): 35-42.
      王朋朋, 姚静, 姜笠, 2019. 贵州白云岩砂化特征及其对隧道支护结构影响. 贵州大学学报(自然科学版), 36(3): 44-48.
      王志杰, 杜逸文, 姜逸帆, 等, 2021. 砂化白云岩地层隧道掌子面失稳机制研究. 岩石力学与工程学报, 40(S2): 3118-3126.
      姚婷婷, 朱红涛, 杨香华, 等, 2020. 渤海湾盆地黄河口凹陷沙河街组白云岩成因机理. 地球科学, 45(10): 3567-3578. doi: 10.3799/dqkx.2020.227
      张良喜, 2012. 白云岩岩溶砂化形成机理及其工程特性研究: 以美姑河坪头水电站为例(博士学位论文). 成都: 成都理工大学.
      张良喜, 张海泉, 赵其华, 等, 2012a. 四川坪头水电站白云岩砂化特征及发育分布规律. 人民长江, 43(19): 42-44, 78.
      张良喜, 赵其华, 胡相波, 等, 2012b. 某地区白云岩室内溶蚀试验及微观溶蚀机理研究. 工程地质学报, 20(4): 576-584.
      赵泽昌, 张翼翔, 刘万林, 等, 2023. 中等砂化白云岩小断面隧洞控制爆破技术: 以滇中引水工程玉溪段隧洞为例. 科学技术与工程, 23(29): 12663-12671.
    • 加载中
    图(9) / 表(6)
    计量
    • 文章访问数:  8
    • HTML全文浏览量:  3
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-02-22
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回