• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    板块运动“加速剂”:岩石圈之下的两个软流圈熔体汇聚层

    刘勇胜 张军波 徐荣 赵亮

    刘勇胜, 张军波, 徐荣, 赵亮, 2024. 板块运动“加速剂”:岩石圈之下的两个软流圈熔体汇聚层. 地球科学, 49(6): 2296-2300. doi: 10.3799/dqkx.2024.056
    引用本文: 刘勇胜, 张军波, 徐荣, 赵亮, 2024. 板块运动“加速剂”:岩石圈之下的两个软流圈熔体汇聚层. 地球科学, 49(6): 2296-2300. doi: 10.3799/dqkx.2024.056
    Liu Yongsheng, Zhang Junbo, Xu Rong, Zhao Liang, 2024. Plate Motion "Accelerator": Two Layers of Melt Accumulattion beneath the Lithosphere. Earth Science, 49(6): 2296-2300. doi: 10.3799/dqkx.2024.056
    Citation: Liu Yongsheng, Zhang Junbo, Xu Rong, Zhao Liang, 2024. Plate Motion "Accelerator": Two Layers of Melt Accumulattion beneath the Lithosphere. Earth Science, 49(6): 2296-2300. doi: 10.3799/dqkx.2024.056

    板块运动“加速剂”:岩石圈之下的两个软流圈熔体汇聚层

    doi: 10.3799/dqkx.2024.056
    基金项目: 

    地质过程与矿产资源国家重点实验室科技部专项经费资助 MSFGPMR01

    详细信息
      作者简介:

      刘勇胜(1971-),教授,博士生导师,主要从事微区地球化学分析技术和壳-幔物质相互作用研究. E-mail:yshliu@hotmail.com

    Plate Motion "Accelerator": Two Layers of Melt Accumulattion beneath the Lithosphere

    • 图  1  岩石圈之下的两个熔体汇聚层

      Fig.  1.  Two-layered melt accumulattion in the asthenosphere

    • Barrell, J., 1914. The Strength of the Earth's Crust. The Journal of Geology, 22(6): 537-555. https://doi.org/10.1086/622170
      Beghein, C., Yuan, K., Schmerr, N., et al., 2014. Changes in Seismic Anisotropy Shed Light on the Nature of the Gutenberg Discontinuity. Science, 343(6176): 1237-1240. https://doi.org/doi: 10.1126/science.1246724
      Cline Ⅱ, C. J., Faul, U. H., David, E. C., et al., 2018. Redox-Influenced Seismic Properties of Upper-Mantle Olivine. Nature, 555: 355-358. https://doi.org/10.1038/nature25764
      Davies, D. R., Rawlinson, N., Iaffaldano, G., et al., 2015. Lithospheric Controls on Magma Composition along Earth's Longest Continental Hotspot Track. Nature, 525: 511-514. https://doi.org/10.1038/nature14903
      Debayle, E., Bodin, T., Durand, S., et al., 2020. Seismic Evidence for Partial Melt below Tectonic Plates. Nature, 586: 555-559. https://doi.org/10.1038/s41586-020-2809-4
      Ellam, R. M., 1992. Lithospheric Thickness as a Control on Basalt Geochemistry. Geology, 20(2): 153-156. https://doi.org/10.1130/0091-7613(1992)020<0153:Ltaaco>2.3.Co;2 doi: 10.1130/0091-7613(1992)020<0153:Ltaaco>2.3.Co;2
      Faul, U. H., Jackson, I., 2005. The Seismological Signature of Temperature and Grain Size Variations in the Upper Mantle. Earth and Planetary Science Letters, 234(1-2): 119-134 doi: 10.1016/j.epsl.2005.02.008
      Foley, S. F., Pintér, Z., 2018. Primary Melt Compositions in the Earth's Mantle. In: Kono, Y., Sanloup, C., eds. Magmas under Pressure, Elsevier Amsterdam, Netherlands, 3-42.
      Haase, K. M., 1996. The Relationship between the Age of the Lithosphere and the Composition of Oceanic Magmas: Constraints on Partial Melting, Mantle Sources and the Thermal Structure of the Plates. Earth and Planetary Science Letters, 144(1-2): 75-92. https://doi.org/10.1016/0012-821x(96)00145-8
      He, D. T., Liu, Y. S., Chen, C. F., et al., 2020. Oxidization of the Mantle Caused by Sediment Recycling may Contribute to the Formation of Iron-Rich Mantle Melts. Science Bulletin, 65(7): 519-521. https://doi.org/10.1016/j.scib.2020.01.003
      Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385: 219-229. https://doi.org/10.1038/385219a0
      Höink, T., Lenardic, A., Richards, M., 2012. Depth-Dependent Viscosity and Mantle Stress Amplification: Implications for the Role of the Asthenosphere in Maintaining Plate Tectonics. Geophysical Journal International, 191(1): 30-41. https://doi.org/10.1111/j.1365-246X.2012.05621.x
      Hong, L. B., Xu, Y. G., Zhang, L., et al., 2020. Recycled Carbonate-Induced Oxidization of the Convective Mantle beneath Jiaodong, Eastern China. Lithos, 366/367: 105544. https://doi.org/10.1016/j.lithos.2020.105544
      Hua, J. L., Fischer, K. M., Becker, T. W., et al., 2023. Asthenospheric Low-Velocity Zone Consistent with Globally Prevalent Partial Melting. Nature Geoscience, 16: 175-181. https://doi.org/10.1038/s41561-022-01116-9
      Karato, S. I, 2012. On the Origin of the Asthenosphere. Earth and Planetary Science Letters, 321-322: 95-103. https://doi.org/10.1016/J.EPSL.2012.01.001
      Karato, S. I., Olugboji, T., Park, J., 2015. Mechanisms and Geologic Significance of the Mid-Lithosphere Discontinuity in the Continents. Nature Geoscience, 8(7): 509-514. https://doi.org/10.1038/ngeo2462
      Kim, W. Y., Hudon, P., Jung, I. H., 2021. Modeling the Viscosity of Silicate Melts Containing Fe Oxide: Fe Saturation Condition. Calphad, 72: 102242. https://doi.org/10.1016/j.calphad.2020.102242
      Lee, C. T A., Luffi, P., Plank, T., et al., 2009. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and Other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 279(1-2): 20-33. https://doi.org/10.1016/j.epsl.2008.12.020
      Liu, C. Z., Yang, Y. Liu, B. D., et al., 2022. Compositional Heterogeneity of the Asthenosphere: Advancement and Implications. Acta Petrologica Sinica, 38(12): 3712-3734(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.12.11
      Nimis, P., 1995. A Clinopyroxene Geobarometer for Basaltic Systems Based on Crystal-Structure Modeling. Contributions to Mineralogy and Petrology, 121(2): 115-125. https://doi.org/10.1007/s004100050093
      Nimis, P., Taylor, W. R., 2000. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology, 139(5): 541-554. https://doi.org/10.1007/s004100000156
      Niu, Y. L., 2021. Lithosphere Thickness Controls the Extent of Mantle Melting, Depth of Melt Extraction and Basalt Compositions in all Tectonic Settings on Earth: A Review and New Perspectives. Earth-Science Reviews, 217: 103614. https://doi.org/10.1016/j.earscirev.2021.103614
      Niu, Y. L., Wilson, M., Humphreys, E. R., et al., 2011. The Origin of Intra-Plate Ocean Island Basalts (OIB): The Lid Effect and Its Geodynamic Implications. Journal of Petrology, 52(7/8): 1443-1468. https://doi.org/10.1093/petrology/egr030
      O'Reilly, S. Y., Griffin, W. L., 2010. The Continental Lithosphere-Asthenosphere Boundary: Can We Sample It? Lithos, 120(1-2): 1-13. https://doi.org/10.1016/j.lithos.2010.03.016
      Plank, T., Forsyth, D. W., 2016. Thermal Structure and Melting Conditions in the Mantle beneath the Basin and Range Province from Seismology and Petrology. Geochemistry, Geophysics, Geosystems, 17(4): 1312-1338 doi: 10.1002/2015GC006205
      Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy & Geochemistry, 69: 61-120. https://doi.org/10.2138/RMG.2008.69.3
      Rychert, C., Harmon, N., Constable, S., et al., 2020. The Nature of the Lithosphere-Asthenosphere Boundary. Journal of Geophysical Research: Solid Earth, 125(10): e2018JB016463. https://doi.org/10.1029/2018jb016463
      Rychert, C. A., Shearer, P. M., 2009. A Global View of the Lithosphere-Asthenosphere Boundary. Science, 324: 495-498. https://doi.org/10.1126/science.1169754
      Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geoscience, 6: 1041-1044. https://doi.org/10.1038/ngeo1982
      Schmerr, N., 2012. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary. Science, 335(6075): 1480-1483. https://doi.org/doi: 10.1126/science.1215433
      Sun, C. G., Dasgupta, R., 2020. Thermobarometry of CO2-Rich, Silica-Undersaturated Melts Constrains Cratonic Lithosphere Thinning through Time in Areas of Kimberlitic Magmatism. Earth and Planetary Science Letters, 550: 116549. https://doi.org/10.1016/j.epsl.2020.116549
      Thybo, H., 2006. The Heterogeneous Upper Mantle Low Velocity Zone. Tectonophysics, 416(1-4): 53-79. https://doi.org/10.1016/j.tecto.2005.11.021
      Vander Kaaden, K. E., Agee, C. B., McCubbin, F. M., 2015. Density and Compressibility of the Molten Lunar Picritic Glasses: Implications for the Roles of Ti and Fe in the Structures of Silicate Melts. Geochimica et Cosmochimica Acta, 149: 1-20. https://doi.org/10.1016/j.gca.2014.10.029
      Wang, Y., Forsyth, D. W., Savage, B., 2009. Convective Upwelling in the Mantle beneath the Gulf of California. Nature, 462: 499-501. https://doi.org/10.1038/nature0855
      Yuan, H., Romanowicz, B., 2018. Introduction—Lithospheric Discontinuities. In: Yuan, H., Romanowicz, B., eds., Lithospheric Discontinuities. American Geophysical Union, San Francisco. https://doi.org/10.1002/9781119249740.ch0
      Zhang, J. B., Liu, Y. S., Foley, S. F., et al., 2024. Widespread Two-Layered Melt Structure in the Asthenosphere. Nature Geoscience, 17: 472-477. https://doi.org/10.1038/s41561-024-01433-1
      Zhang, J. B., Liu, Y. S., Ling, W. L., et al., 2017. Pressure-Dependent Compatibility of Iron in Garnet: Insights into the Origin of Ferropicritic Melt. Geochimica et Cosmochimica Acta, 197: 356-377. https://doi.org/10.1016/j.gca.2016.10.047
      刘传周, 杨阳, 刘博达, 等. 2022. 软流圈地幔成分不均一性的研究进展与意义. 岩石学报, 38(12): 3712-3734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202212011.htm
    • 加载中
    图(1)
    计量
    • 文章访问数:  654
    • HTML全文浏览量:  385
    • PDF下载量:  148
    • 被引次数: 0
    出版历程
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回