• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    红层判识及其科学研究意义:从岩表特征模糊区分到地质基因定量判定

    周翠英 廖进 刘镇

    周翠英, 廖进, 刘镇, 2024. 红层判识及其科学研究意义:从岩表特征模糊区分到地质基因定量判定. 地球科学, 49(11): 4249-4264. doi: 10.3799/dqkx.2024.058
    引用本文: 周翠英, 廖进, 刘镇, 2024. 红层判识及其科学研究意义:从岩表特征模糊区分到地质基因定量判定. 地球科学, 49(11): 4249-4264. doi: 10.3799/dqkx.2024.058
    Zhou Cuiying, Liao Jin, Liu Zhen, 2024. Review on Identification and Significance of Red Beds: From Rock Surface Feature Fuzzy Distinction to Geological Gene Quantitative Determination. Earth Science, 49(11): 4249-4264. doi: 10.3799/dqkx.2024.058
    Citation: Zhou Cuiying, Liao Jin, Liu Zhen, 2024. Review on Identification and Significance of Red Beds: From Rock Surface Feature Fuzzy Distinction to Geological Gene Quantitative Determination. Earth Science, 49(11): 4249-4264. doi: 10.3799/dqkx.2024.058

    红层判识及其科学研究意义:从岩表特征模糊区分到地质基因定量判定

    doi: 10.3799/dqkx.2024.058
    基金项目: 

    国家自然科学基金重大项目 42293350

    国家自然科学基金重大项目 42293354

    国家自然科学基金重大项目 2293351

    国家自然科学基金重大项目 42293355

    国家自然科学基金重大项目 42277131

    国家自然科学基金重大项目 41977230

    详细信息
      作者简介:

      周翠英(1963-),女,博士,现任教授,博士生导师,主要从事岩土工程方面的研究工作.ORCID:0000-0003-1337-7424. E-mail:zhoucy@mail.sysu.edu.cn

      通讯作者:

      刘镇,E-mail:liuzh8@mail.sysu.edu.cn

    • 中图分类号: P53

    Review on Identification and Significance of Red Beds: From Rock Surface Feature Fuzzy Distinction to Geological Gene Quantitative Determination

    • 摘要: 红层是岩石圈层具有代表性的沉积地层之一.其分布之广,厚度之大,沉积之典型、地貌之完整,实属罕见.同时又是中华文明与文化传承的重要载体.长期以来,是地质、工程、生态与材料等领域关注的热点之一.但是,自1835年英国工程师和1925年李四光先生提出红层概念以来,至今尚未达成统一认识,缺乏较为系统的对红层判识及其科学意义的归纳总结,约束了对红层的全面认识,难以满足红层科学发展的需要.为此,较为系统地回顾了红层判识的岩表特征模糊区分、地貌颜色明确辨别、地层规律定性识别与地质基因定量判定等4个阶段的主要历程,归纳总结了不同阶段红层判识的科学意义,讨论了地质演化关联、对象范畴扩展与材料属性模型等红层判识趋势及其主要发展方向,在此基础上,提出红层判识的价值与展望.

       

    • 图  1  红层判识研究主要历程

      Fig.  1.  The main history of red bed identification research

      图  2  红层的地质演化对比

      Fig.  2.  The geological evolutionary correlation of red beds

      图  3  红层判识的对象范畴扩展

      Fig.  3.  Expansion of red bed identification

      图  4  红层判识的材料特性模型

      Fig.  4.  The material property model for red bed identification

    • Aygar, E. B., Gokceoglu, C., 2021. Analytical Solutions and 3D Numerical Analyses of a Shallow Tunnel Excavated in Weak Ground: A Case from Turkey. International Journal of Geo-Engineering, 12(1): 9. https://doi.org/10.1186/s40703-021-00142-7
      Azizi, H., Hosseinzadeh, M. R., Moayyed, M., et al., 2018. Geology and Geochemistry of the Sediment-Hosted Stratabound Red Bed-Type Cu-Pb (Zn-Ag) Mineralization in the Dozkand-Moshampa Area, NW Zanjan, Iran. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 195(2): 123-143.
      Bábek, O., Vodrážková, S., Kumpan, T., et al., 2021. Geochemical Record of the Subsurface Redox Gradient in Marine Red Beds: A Case Study from the Devonian Prague Basin, Czechia. Sedimentology, 68(7): 3523-3548. https://doi.org/10.1111/sed.12910
      Baker, J. W., 1971. The Proterozoic History of Southern Britain. Proceedings of the Geologists' Association, 82(2): 249-266. https://doi.org/10.1016/S0016-7878(71)80005-6
      Benison, K. C., 2006. A Martian Analog in Kansas: Comparing Martian Strata with Permian Acid Saline Lake Deposits. Geology, 34(5): 385. https://doi.org/10.1130/g22176.1
      Benison, K. C., Goldstein, R. H., 2001. Evaporites and Siliciclastics of the Permian Nippewalla Group of Kansas, USA: A Case for Non-Marine Deposition in Saline Lakes and Saline Pans. Sedimentology, 48(1): 165-188. https://doi.org/10.1046/j.1365-3091.2001.00362.x
      Bensing, J. P., Mozley, P. S., Dunbar, N. W., 2005. Importance of Clay in Iron Transport and Sediment Reddening: Evidence from Reduction Features of the Abo Formation, New Mexico, U.S.A. . Journal of Sedimentary Research, 75(4): 562-571. https://doi.org/10.2110/jsr.2005.046
      Bian, K., Liu, J., Zhang, W., et al., 2019. Mechanical Behavior and Damage Constitutive Model of Rock Subjected to Water-Weakening Effect and Uniaxial Loading. Rock Mechanics and Rock Engineering, 52(1): 97-106. https://doi.org/10.1007/s00603-018-1580-4
      Bonney, T. G., 1880. Ⅲ. —Note on the Pebbles in the Bunter Beds of Staffordshire. Geological Magazine, 7(9): 404-407. https://doi.org/10.1017/s001675680014823x
      Branson, E. B., 1915. Origin of the Red Beds of Western Wyoming. Geological Society of America Bulletin, 26(1): 217-230. https://doi.org/10.1130/gsab-26-217
      Card, C. J., Montenari, M., 2023. Comparative Geochemistry of Early Carboniferous Marine Red Beds (MRBS) and Their Significance for Deep Time Paleoceanographic Reconstructions. Sedimentary Geology, 444: 106313. https://doi.org/10.1016/j.sedgeo.2022.106313
      Case, E. C., 1915. The Permo-Carboniferous Red Beds of North America and Their Vertebrate Fauna. Carnegie Institution of Washington, Washington, D.C. . https://doi.org/10.5962/bhl.title.57276
      Chadwick, G. H., 1918. Stratigraphy of the New York Clinton. Geological Society of America Bulletin, 29(1): 327-368. https://doi.org/10.1130/gsab-29-327
      Chen, G. D., Liu, H. S., 1939. Geology of Gongshui River Basin in Jiangxi. Jiangxi Geological Journal, (2): 1-64 (in Chinese).
      Cloud, P., 1972. A Working Model of the Primitive Earth. American Journal of Science, 272(6): 537-548. https://doi.org/10.2475/ajs.272.6.537
      Condra, G. E., 1907. Opening of the Indian Territory. Bulletin of the American Geographical Society, 39(6): 321. https://doi.org/10.2307/198869
      Cope, E. D., 1877. Report upon the Extinct Vertebrata Obtained in New Mexico by Parties of the Expedition of 1874. US Government Printing Office, Washington, D.C. . https://doi.org/10.5962/bhl.title.146777
      Cross, W., Howe, E., 1905. Red Beds of Southwestern Colorado and Their Correlation. Geological Society of America Bulletin, 16(1): 447-498. https://doi.org/10.1130/gsab-16-447
      Crowley, S. F., Higgs, K. T., Piper, J. D. A., et al., 2009. Age of the Peel Sandstone Group, Isle of Man. Geological Journal, 44(1): 57-78. https://doi.org/10.1002/gj.1129
      Cui, G., Liao, J., Kong, L., et al., 2024. Basic Chemical Compositions Combination Rules and Quantitative Criterion of Red Beds. EGU Sphere, 1-29.
      Dawson, J. W., 1849. On the Colouring Matter of Red Sandstones and of Greyish and White Beds Associated with Them. Quarterly Journal of the Geological Society of London, 5(1-2): 25-30. https://doi.org/10.1144/gsl.jgs.1849.005.01-02.11
      De Jaime-Soguero, C., Mujal, E., Oms, O., et al., 2023. Palaeoenvironmental Reconstruction of a Lower to Middle Permian Terrestrial Composite Succession from the Catalan Pyrenees: Implications for the Evolution of Tetrapod Ecosystems in Equatorial Pangaea. Palaeogeography, Palaeoclimatology, Palaeoecology, 632: 111837. https://doi.org/10.1016/j.palaeo.2023.111837
      Dorland, H. C., 2006. Precise SHRIMP U-Pb Zircon Age Constraints on the Lower Waterberg and Soutpansberg Groups, South Africa. South African Journal of Geology, 109(1-2): 139-156. https://doi.org/10.2113/gssajg.109.1-2.139
      Duan, J. R., Peng, E. S., Wei, Z. L., 1978. Study on Lithofacies of Cretaceous-Tertiary Red Bed in Chayong Basin, Hunan Province. Geotectonica et Metallogenia, 2(2): 13-41 (in Chinese with English abstract).
      Duan, Q. F., Tu, B., Tang, C. Y., et al., 2012. Discovery of Schizaeoisporites from the Qumalai Basin, Qinghai and Its Geological Significance. Journal of Stratigraphy, 36(1): 31-36 (in Chinese with English abstract).
      Emeleus, C. H., Allwright, E. A., Kerr, A. C., et al., 1996. Red Tuffs in the Palaeocene Lava Successions of the Inner Hebrides. Scottish Journal of Geology, 32(1): 83-89. https://doi.org/10.1144/sjg32010083
      Fakhraee, M., Tarhan, L. G., Reinhard, C. T., et al., 2023. Earth's Surface Oxygenation and the Rise of Eukaryotic Life: Relationships to the Lomagundi Positive Carbon Isotope Excursion Revisited. Earth-Science Reviews, 240: 104398. https://doi.org/10.1016/j.earscirev.2023.104398
      Feng, J. L., Zhu, D. S., 1928. Geology and Mineral Resources of Nanxiong, Shixing, Renhua, Qujiang, Guangdong. Annual Report of Liangguang Geological Survey, (2) : 38-42 (in Chinese with English abstract).
      Feng, Z. J., Xie, Y. L., Zhang, H. G., et al., 2005. Comprehensive Analysis on Influencing Factors of Bearing Capacity of Large Diameter Pile Foundation for Red Bed in West Yunnan. Chinese Journal of Geotechnical Engineering, 27(5): 540-544 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2005.05.011
      Forte, G., Kustatscher, E., 2023. Cordaites and Pteridosperm-Like Foliage from the Kungurian (Early Permian) Flora of Tregiovo (Trento, NE Italy). Review of Palaeobotany and Palynology, 316: 104931. https://doi.org/10.1016/j.revpalbo.2023.104931
      Galtier, J., Broutin, J., 2008. Floras from Red Beds of the Permian Basin of Lodeve (Southern France). Journal of Iberian Geology, 34(1): 57-72.
      Grygar, T., Dědeček, J., Kruiver, P. P., et al., 2003. Iron Oxide Mineralogy in Late Miocene Red Beds from la Gloria, Spain: Rock-Magnetic, Voltammetric and Vis Spectroscopy Analyses. CATENA, 53(2): 115-132. https://doi.org/10.1016/S0341-8162(03)00023-7
      Gulliver, F. P., 1909. Section E-Geology and Geography. Science, 29(749): 747-757. https://doi.org/10.1126/science.29.749.747
      Guo, F. X., 1988. On the Features of Yunnan Mesozoic Red Beds. Yunnan Geology, 7(4): 311-316 (in Chinese with English abstract).
      Guo, J. J., Han, W. F., Zhao, H. T., et al., 2014. Tectonic Layer Division of Mesozoic-Cenozoic Red Bed Basins in the Western Qinling Mountains and Its Tectonic Significance. Geological Review, 60(6): 1231-1244 (in Chinese with English abstract).
      Gutzmer, J., Schaefer, M. O., Beukes, N. J., 2002. Red Bed-Hosted Oncolitic Manganese Ore of the Paleoproterozoic Soutpansberg Group, Bronkhorstfontein, South Africa. Economic Geology, 97(6): 1151-1166. https://doi.org/10.2113/gsecongeo.97.6.1151
      Han, L. F., Wang, Y. S., Wang, X. X., et al., 2009. Experimental Research on the Time Effect of Water-Rock Interaction of the Mesozoic Red Bed in the Longquan Area. Hydrogeology & Engineering Geology, 36(6): 59-61 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2009.06.013
      He, J. L., Niu, F. J., Luo, F., et al., 2023. Mechanical Properties and Modified Binary-Medium Constitutive Model for Red-Bed Soft Rock Subjected to Freeze-Thaw Cycles. Cold Regions Science and Technology, 209: 103803. doi: 10.1016/j.coldregions.2023.103803
      He, J. L., Xing, E. D., Liu, Y. P., 2007. Water Conservancy and Water Conservation Control Pattern in Keshi Keteng Banner in Inner Mongolia. Research of Soil and Water Conservation, 14(6): 148-150 (in Chinese with English abstract).
      Higgitt, D. L., Rowan, J. S., 1996. Erosion Assessment and Administration in Subtropical China: A Case Study from Fujian Province. Land Degradation & Development, 7(1): 1-10. https://doi.org/10.1002/(sici)1099-145x(199603)7: 11: aid-ldr209>3.3.co;2-7 doi: 10.1002/(sici)1099-145x(199603)7:11:aid-ldr209>3.3.co;2-7
      Hill, R. T., 1892. Occurrence of Underground Waters in Texas. The American Naturalist, 26(311): 935. doi: 10.1086/275616
      Horiuchi, Y., Charusiri, P., Hisada, K. I., 2012. Identification of an Anastomosing River System in the Early Cretaceous Khorat Basin, Northeastern Thailand, Using Stratigraphy and Paleosols. Journal of Asian Earth Sciences, 61: 62-77. https://doi.org/10.1016/j.jseaes.2012.08.022
      Hu, X. M., Wang, C. S., Li, X. H., et al., 2006. Upper Cretaceous Oceanic Red Beds in Southern Tibet: Rock Types, Sedimentary Environment and Color Genesis. Science in China (Series D: Earth Sciences), 36(9): 811-821 (in Chinese).
      Hu, Z., Huang, B. Q., Lu, Y. M., et al., 2022. Age Framework and Sedimentary Evolution of IODP U1499 Site in the Northern South China Sea from Oligocene to Miocene. Journal of Micropalaeontology, 39(2): 146-160 (in Chinese with English abstract).
      Huang, J., Chen, Z. J., 2003. Exploration of Some Problems in the Definition and Classification of Danxia Landforms. Economic Geography, 23: 6-12 (in Chinese with English abstract).
      Huang, W., Liu, Z., Zhou, C. Y., et al., 2020. Enhancement of Soil Ecological Self-Repair Using a Polymer Composite Material. CATENA, 188: 104443. doi: 10.1016/j.catena.2019.104443
      Huang, W., Zhou, C. Y., Liu, Z., et al., 2021. Improving Soil-Water Characteristics and Pore Structure of Silty Soil Using Nano-Aqueous Polymer Stabilisers. KSCE Journal of Civil Engineering, 25(9): 3298-3305. https://doi.org/10.1007/s12205-021-2036-z
      Huo, H., Sun, C. P., 2021. Spatiotemporal Variation and Influencing Factors of Vegetation Dynamics Based on Geodetector: A Case Study of the Northwestern Yunnan Plateau, China. Ecological Indicators, 130: 108005. https://doi.org/10.1016/j.ecolind.2021.108005
      Irwin, J. S., 1922. Oil Possibilities in Western Kansas and North Central Wyoming. Missouri University of Science and Technology, 2: 1-48.
      Jian, W. X., Yin, K. L., Ma, C. Q., et al., 2005. Characteristics of Incompetent Beds in Jurassic Red Clastic Rocks in Wanzhou. Rock and Soil Mechanics, 26(6): 901-905, 914 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.06.015
      Jiao, Y. Q., Wu, L. Q., Lu, Y. C., et al., 2008. Evolution of the Chepaizi-Mosuowan Paleo-Uplift, Junggar Basin, China: Evidence from Diagenesis of Late Jurassic Red Beds. Earth Science, 33(2): 219-226 (in Chinese with English abstract).
      Jones, S. M., Cloutier, J., Prave, A. R., et al., 2023. Fluid Flow, Alteration, and Timing of Cu-Ag Mineralization at the White Pine Sediment-Hosted Copper Deposit, Michigan, USA. Economic Geology, 118(6): 1431-1465. https://doi.org/10.5382/econgeo.5013
      Ju, H. Y., Gu, R. J., 1983. Geological Characteristics and Engineering Geological Problems of Red Beds in Southern China. Shanghai Geology, 4(3): 1-16 (in Chinese with English abstract).
      Jutras, P., Young, G. M., Caldwell, W. G. E., 2011. Reinterpretation of James Hutton's Historic Discovery on the Isle of Arran as a Double Unconformity Masked by a Phreatic Calcrete Hardpan. Geology, 39(2): 147-150. https://doi.org/10.1130/g31490.1
      Kaboudmehri, N., Kouhestani, H., Mokhtari, M. A., et al., 2022. Type and Genetic Model of the Toryan Sediment-Hosted Pb-Zn Occurrence, NW Zanjan. Scientific Quarterly Journal of Geosciences, 32(1): 103-118.
      Khankahdani, K. N., 2020. Spatial Data and Remote Sensing Techniques Integration to Detection and Slicing of Bavanat Red Bed Copper Deposits (NE Shiraz, Iran). Journal of Sciences-Islamic Republic of Iran, 31(4): 337-348.
      Khorassani, M. P. K., Ghasemi-Nejad, E., 2015. Biostratigraphy and Geochemistry of Upper Paleocene-Lower Eocene Oceanic Red Beds from the Zagros Mountains, SW Iran. Journal of Earth Science & Climatic Change, 6(8): : 2. https://doi.org/10.4172/2157-7617.1000302
      Klootwijk, C. T., 1980. Early Palaeozoic Palaeomagnetism in Australia I. Cambrian Results from the Flinders Ranges, South Australia Ⅱ. Late Early Cambrian Results from Kangaroo Island, South Australia Ⅲ. Middle to Early-Late Cambrian Results from the Amadeus Basin, Northern Territory. Tectonophysics, 64(3/4): 249-332. https://doi.org/10.1016/0040-1951(80)90100-6
      Krynine, P. D., 1949. Section of Geology and Mineralogy: The Origin of Red Beds. Transactions of the New York Academy of Sciences, 11(3 Series Ⅱ): 60-68. https://doi.org/10.1111/j.2164-0947.1949.tb00131.x
      Kong, L. H., 2019. The Basic Element Combination Rule and Control Mechanism of the Red Beds Characteristics. Sun Yat-sen University, Guangzhou (in Chinese with English abstract).
      Lai, H. Q., Du, J. X., Zhou, C. Y., et al., 2022. Experimental Study on Ecological Performance Improvement of Sprayed Planting Concrete Based on the Addition of Polymer Composite Material. International Journal of Environmental Research and Public Health, 19(19): 12121. https://doi.org/10.3390/ijerph191912121
      Lavrov, A., 2018. Stiff Cement, Soft Cement: Nonlinearity, Arching Effect, Hysteresis, and Irreversibility in CO2-Well Integrity and Near-Well Geomechanics. International Journal of Greenhouse Gas Control, 70: 236-242. https://doi.org/10.1016/j.ijggc.2017.11.012
      Lee, W. T., 1918. Early Mesozoic Physiography of the Southern Rocky Mountains. Smithsonian Miscellaneous Collections, 69 (4): 1-41.
      Li, H., Cheng, D., Wang, J., et al., 2018. Research Progress of Soil Stabilizer and Its Applications in Soil and Water Loss Prevention and Control. Yangtze River, 49(7): 11-15.
      Li, H. L., Chen, L., Yang, D., et al., 2022. Geological Genesis of the Juexue Red Strata Landslide in Qamdo, Eastern Tibet. Sedimentary Geology and Tethyan Geology, 42(4): 684-695 (in Chinese with English abstract).
      Li, M., Lin, B. Y., 2022. Distribution and Ages of the Cambrian Marine Red Beds from Western Hills, Beijing. Acta Geologica Sinica, 96(6): 1895-1921 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.06.001
      Li, N. Y., Han, Z. Y., Ren, Y., et al., 2022. Retarding Performance of the Vadose Zone for Nitrogen Pollutants Derived from Municipal Solid Waste Landfills in the Red Bed Zone. Journal of Environmental Management, 306: 114406. https://doi.org/10.1016/j.jenvman.2021.114406
      Li, Q. B., Wang, G. J., Liu, Q. L., et al., 2021. High-Pressure Jet Flushing & Grouting Experiment for Muddy Interlayers in the Red-Bed Dam Foundation. Yellow River, 43(5): 132-136 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2021.05.026
      Li, S. G., Zhao, Y. Z., 1924. Geology of the Yangtze River Canyon. Acta Geologica Sinica, 3(3-4): 382 (in Chinese).
      Liao, J., Liu, Z., Zhou, C. Y., et al., 2022. Disintegration Resistance of Steep-Rocky-Slope Wall-Hanging Soil Based on High-Performance Ester Materials. Sustainability, 14(14): 8850. https://doi.org/10.3390/su14148850
      Liu, C., Runyon, S. E., Knoll, A. H., et al., 2019. The Same and not the Same: Ore Geology, Mineralogy and Geochemistry of Rodinia Assembly versus Other Supercontinents. Earth-Science Reviews, 196: 102860. https://doi.org/10.1016/j.earscirev.2019.05.004
      Liu, J. X., Yang, C. H., Xie, Q., et al., 2015. Settlement Mechanism of Unsaturated Red Layers Embankment Based on Rheology and Consolidation Theories. Rock and Soil Mechanics, 36(5): 1295-1305 (in Chinese with English abstract).
      Liu, L. F., Shang, X. Q., Wang, Y., et al., 2012. Controlling Factors on Oil and Gas Accumulation and Accumulation Modes of the Paleogene "Red Bed" in the South Slope of the Dongying Depression, China. Energy Exploration & Exploitation, 30(6): 941-956. https://doi.org/10.1260/0144-5987.30.6.941
      Liu, Z., He, X. F., Zhou, C. Y., 2019. Influence Mechanism of Different Flow Patterns on the Softening of Red-Bed Soft Rock. Journal of Marine Science and Engineering, 7(5): 155. https://doi.org/10.3390/jmse7050155.
      Liu, Z., Zhou, C. Y., Lu, Y. Q., et al., 2018. Application of FRP Bolts in Monitoring the Internal Force of the Rocks Surrounding a Mine-Shield Tunnel. Sensors, 18(9): 2763. https://doi.org/10.3390/s18092763
      Luo, G. S., Peng, H., Yan, L. B., et al., 2016. Tourism Development Value of 'Red Beds Desert'in South China. Scientia Geographica Sinica, 36(4): 555-563 (in Chinese with English abstract).
      Lyu, X., Liu, Z. F., 2017. Distribution, Compositions and Significance of Oceanic Red Beds. Advances in Earth Science, 32(12): 1307-1318 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2017.12.1307
      Mader, D., 1985. Aspects of Fluvial Sedimentation in the Lower Triassic Buntsandstein of Europe. HeidelbergSpringer-Verlag, Berlin. https://doi.org/10.1007/bfb0010512
      Meng, J., Gilder, S. A., Li, Y. L., et al., 2022. Remagnetization Age and Mechanism of Cretaceous Sediments in Relation to Dyke Intrusion, Hainan Island: Tectonic Implications for South China and the Red River Fault. Journal of Geophysical Research (Solid Earth), 127(1): e2021JB023474. https://doi.org/10.1029/2021JB023474
      Meng, J. H., Liu, L. F., Jiang, Z. X., et al., 2011. Geochemical Characteristics of Crude Oil and Oil-Source Correlation of the Paleogene "Red Bed" in the South Slope of the Dongying Depression, Bohai Bay Basin, China. Energy Exploration & Exploitation, 29(4): 397-413. https://doi.org/10.1260/0144-5987.29.4.397
      Migoń, P., 2020. Geomorphology of Conglomerate Terrains-Global Overview. Earth-Science Reviews, 208: 103302. https://doi.org/10.1016/j.earscirev.2020.103302
      Miščević, P., Vlastelica, G., 2019. Estimation of Embankment Settlement Caused by Deterioration of Soft Rock Grains. Bulletin of Engineering Geology and the Environment, 78(3): 1843-1853. https://doi.org/10.1007/s10064-017-1203-4
      Morton, A. C., Hallsworth, C. R., 1999. Processes Controlling the Composition of Heavy Mineral Assemblages in Sandstones. Sedimentary Geology, 124(1-4): 3-29. https://doi.org/10.1016/S0037-0738(98)00118-3
      Moses, D. V., Griffith, J. H., 1925. Improved Tube for Determination of Decolorizing Value of Soils. Industrial & Engineering Chemistry, 17(9): 901-901.
      Moufti, A. M., Mesaed, A. A., 2015. Origin and Geochemistry of the Late Proterozoic Intra-Arc Rift-Related Volcaniclastic Red and Green Beds of Tayibit El Esm Area, Ablah District, South Central Arabian Shield, Saudi Arabia. Arabian Journal of Geosciences, 8(9): 7515-7536. https://doi.org/10.1007/s12517-014-1675-5.
      Mu, W. P., Wang, K., Qian, C., et al., 2016. Study of Formation Mechanism of Giant Red Bed Old Landslide in Shangwan of Qinghai Province. Rock and Soil Mechanics, 37(3): 802-812 (in Chinese with English abstract).
      Nakano, M., Sakai, T., 2016. Interpretation of Slaking of a Mudstone Embankment Using Soil Skeleton Structure Model Concept and Reproduction of Embankment Failure by Seismic Analysis. Japanese Geotechnical Society Special Publication, 2(5): 282-287. https://doi.org/10.3208/jgssp.jpn-124
      Nance, H. S., 1988. Interfingering of Evaporites and Red Beds: An Example from the Queen/Grayburg Formation, Texas. Sedimentary Geology, 56(1/2/3/4): 357-381. https://doi.org/10.1016/0037-0738(88)90061-9
      Niu, S. W., Li, J. Y., 2014. Multiple Diagenetic Environments and Evolutionary Patterns of the Eocene Red Beds in the Eastern Dongying Sag. Oil & Gas Geology, 35(5): 661-669 (in Chinese with English abstract).
      Pan, Z. X., Peng, H., 2015. Comparative Study on the Global Distribution and Geomorphic Development of Red Beds. Scientia Geographica Sinica, 35(12): 1575-1584 (in Chinese with English abstract).
      Peng, H., 2011. Perspectives on the Red Beds Landforms in Humid Area of Southern China and Some Related Problems. Geographical Research, 30(10): 1739-1752 (in Chinese with English abstract).
      Pinti, D. L., 2015. Red Beds. In: Amils, R., Gargaud, M., Cernicharo Quintanilla, J., et al., eds., Encyclopedia of Astrobiology. Springer, Berlin Heidelberg, 2157. https://doi.org/10.1007/978-3-662-44185-5_1352
      Rainoldi, A. L., Beaufort, D., Franchini, M. B., et al., 2024. Vanadium Mineralization at Los Chihuidos Sediment-Hosted Cu-V Deposit, Neuquén Basin, Argentina: An Approach to Vanadium Ore Forming Processes. Geoscience Frontiers, 15(1): 101724. https://doi.org/10.1016/j.gsf.2023.101724
      Richardson, G. B., 1903. The Upper Red Beds of the Black Hills. The Journal of Geology, 11(4): 365-393. https://doi.org/10.1086/621083
      Rose, C. B., 1835. A Sketch of the Geology of West Norfolk. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7(39): 171-182. https://doi.org/10.1080/14786443508648691
      Schöner, R., Gaupp, R., 2005. Contrasting Red Bed Diagenesis: The Southern and Northern Margin of the Central European Basin. International Journal of Earth Sciences, 94(5): 897-916. https://doi.org/10.1007/s00531-005-0004-3
      Schwennesen, A. T., Meinzer, O. E., 1914. Ground Water for Irrigation in the Vicinity of Enid, Oklahoma. US Government Printing Office, Washington, D.C. .
      Shao, R., Yang, Z. P., Han, F., et al., 2011. Assessment of Geodiversity Values and Protection Zoning of Tomur Natural Heritage Site. Arid Land Geography, 34(3): 525-531 (in Chinese with English abstract).
      Sheng, S. F., Chang, R. Q., Cai, S. Y., et al., 1962. The Problem of the Age and Correlation of the Red Beds and the Coal Series of Yunnan and Szechuan. Acta Geologica Sinica, 36(1): 31-56, 110-113 (in Chinese with English abstract).
      Shi, H., Yang, Z. P., Han, F., et al., 2013. Assessment and Analysis of Eco-Environment Vulnerability in Tomur Region of Natural Heritage Site. Arid Land Geography, 36(2): 318-328 (in Chinese with English abstract).
      Sillitoe, R. H., Rodríguez, G., 2023. Exhalative Red-Bed Copper Mineralization in Travertine, Puna Plateau, Northwest Argentina. Mineralium Deposita, 58(2): 243-261. https://doi.org/10.1007/s00126-022-01134-y
      Simms, M. J., Ruffell, A. H., 1990. Climatic and Biotic Change in the Late Triassic. Journal of the Geological Society, 147(2): 321-327. https://doi.org/10.1144/gsjgs.147.2.0321
      Song, Y. G., Fang, X. M., Li, J. J., et al., 2001. Preliminary Study on the Uplift Process of Liupanshan Mountain in Late Cenozoic. Scientia Sinica (Terrae), 31(S1): 142-148 (in Chinese).
      Squire, R. J., Keays, R. R., 2024. The Role of Supermountain Belts and Climatic Controls on the Genesis of Copper Deposits in the Kupferschiefer and the Central African Copperbelt. Mineralium Deposita, 59(4): 717-732. https://doi.org/10.1007/s00126-023-01227-2
      Stein, N., Grotzinger, J. P., Schieber, J., et al., 2018. Desiccation Cracks Provide Evidence of Lake Drying on Mars, Sutton Island Member, Murray Formation, Gale Crater: Reply. Geology, 46(8): e450. https://doi.org/10.1130/g45237y.1
      Sun, H., Liu, X. L., Ye, Z. N., et al., 2021. A New Proposed Method for Observing Fluid in Rock Fractures Using Enhanced X-Ray Images from Digital Radiography. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(1): 10. https://doi.org/10.1007/s40948-021-00310-0
      Tan, H., Xie, X. J., Sun, J. J., et al., 2023. A Multi-Scale Classification Method for Rocky Desertification Mapping in the Red-Bed Area of Northwestern, Jiangxi, China. Geocarto International, 38(1): https://doi.org/10.1080/10106049.2023.2190623
      Tan, X. D., Gilder, S., Kodama, K. P., et al., 2010. New Paleomagnetic Results from the Lhasa Block: Revised Estimation of Latitudinal Shortening across Tibet and Implications for Dating the India-Asia Collision. Earth and Planetary Science Letters, 293(3/4): 396-404.
      Tomlinson, C. W., 1916. The Origin of Red Beds: A Study of the Conditions of Origin of the Permo-Carboniferous and Triassic Red Beds of the Western United States. The Journal of Geology, 24(2): 153-179. doi: 10.1086/622316
      Turner, P., 1980. Continental Red Beds. Elsevier, London.
      Uno, K., Ohara, H., Furukawa, K., et al., 2023. Absence of Cretaceous Hairpin in the Apparent Polar Wander Path of Southwest Japan: Consistency in Paleomagnetic Pole Positions. Geoscience Letters, 10(1): 21. https://doi.org/10.1186/s40562-023-00275-w
      van Houten, F B., 1973. Origin of Red Beds: A Review-1961-1972. Annual Review of Earth and Planetary Science, 1: 39. doi: 10.1146/annurev.ea.01.050173.000351
      von Richthofen, F. F., 1868. The Natural System of Volcanic Rocks. Towne and Bacon Printers, Lovich.
      Walcott, C. D., 1896. The Cambrian Rocks of Pennsylvania. US Government Printing Office, Washington, D.C. .
      Wang, C. S., Hu, X. M., 2005. Cretaceous World and Oceanic Red Beds. Earth Science Frontiers, 12(2): 11-21 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.02.003
      Wang, H. M., Liu, Y. Y., Wang, Z. Y., 2001. Molecular Fossils as Indicators for Paleoenvironment and Paleo-Climate from Red Clastic Rocks of Middle Jurassic-Early Cretaceous in Jianmenguan, Sichuan Basin of China. Earth Science, 26(3): 229-234 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2001.03.002
      Wang, J., Cao, Y. C., Liu, K. Y., et al., 2016. Pore Fluid Evolution, Distribution and Water-Rock Interactions of Carbonate Cements in Red-Bed Sandstone Reservoirs in the Dongying Depression, China. Marine and Petroleum Geology, 72: 279-294. https://doi.org/10.1016/j.marpetgeo.2016.02.018
      Wang, J., Xiao, L., Reiss, D., et al., 2018. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research: Planets, 123(9): 2336-2364. https://doi.org/10.1029/2018je005719
      Wang, S. R., Li, C. Y., Yan, W. F., et al., 2017. Multiple Indicators Prediction Method of Rock Burst Based on Microseismic Monitoring Technology. Arabian Journal of Geosciences, 10(6): 132. doi: 10.1007/s12517-017-2946-8
      Ward, L. F., 1894. The Cretaceous Rim of the Black Hills. The Journal of Geology, 2(3): 250-266. https://doi.org/10.1086/606946
      Wei, Y. X., 2009. Experimental Study on the Technology for Filling the Subgrade of High-Speed Railway with Red Rock. Journal of Railway Engineering Society, 26(12): 39-43 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2009.12.010
      Williams, G. E., 1969. Characteristics and Origin of a Precambrian Pediment. Journal of Geology, 77(2): 183-207. https://doi.org/10.1086/627421
      Xia, C., Zhou, C. Y., Zhu, F. X., et al., 2021. The Critical Indicator of Red-Bed Soft Rocks in Deterioration Process Induced by Water Basing on Renormalization Group Theory. Applied Sciences, 11(17): 7968. https://doi.org/10.3390/app11177968
      Xiao, Y., Huang, Z. G., Ling, Y. L., et al., 2022. Effects of Forest Vegetation Restoration on Soil Organic Carbon and Its Labile Fractions in the Danxia Landform of China. Sustainability, 14(19): 12283. https://doi.org/10.3390/su141912283
      Xu, H., 1995. Study on Sediment Yield Evaluation Model of Red Bed Debris Flow Basin in Western Sichuan. Journal of Southwest Jiaotong University, 30(6): 620-626 (in Chinese with English abstract).
      Xu, P., Jiang, G. L., Ren, S. J., et al., 2019. Experimental Study of Dynamic Response of Subgrade with Red Mudstone and Improved Red Mudstone. Rock and Soil Mechanics, 40(2): 678-683, 692 (in Chinese with English abstract).
      Xu, Q., Tang, R., 2023. Study on Red Beds and Its Geological Hazards. Chinese Journal of Rock Mechanics and Engineering, 42(1): 28-50 (in Chinese with English abstract).
      Yan, L. B., Kasanin-Grubin, M., 2019. Land Degradation and Management of Red Beds in China: Two Case Studies. Journal of Mountain Science, 16(11): 2591-2604. https://doi.org/10.1007/s11629-019-5560-2
      Yan, L. B., Peng, H., Hu, Z., et al., 2016. Stone Pillar Rockfall in Danxia Landform Area, Mt. Langshan, Hunan Province, China. Physical Geography, 37(5): 327-343. https://doi.org/10.1080/02723646.2016.1218244
      Yan, Q. W., Li, X. P., He, S. M., et al., 2020. Experimental Study of Self-Healing of Slip Zone Soil in Typical Red Bed Landslide. Rock and Soil Mechanics, 41(9): 3041-3048 (in Chinese with English abstract).
      Yang, X., Zhou C. Y., Liu Z., et al. 2016. Model Tests for Failure Mechanism of Typical Soft Rock Slopes of Red Beds under Rainfall in South China. Chinese Journal of Rock Mechanics and Engineering, 35(3): 549-557 (in Chinese with English abstract).
      Yang, Y., 2022. Reservoir Characteristics and Controlling Factors of the Lower Paleogene Sandstones in the Southeast Part of Jiyang Sag, Bohai Bay Basin, China. Alexandria Engineering Journal, 61(12): 10277-10282. doi: 10.1016/j.aej.2022.03.073
      Yang, Z. C., Zhang, J. Y., Zhou, D. P., 2006. Study on Fast Weathering Characteristics of Red Bed Mudstone Slope. Chinese Journal of Rock Mechanics and Engineering, 25(2): 275-283 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.02.009
      Yao, D., Qian, G. P., Liu, J. W., et al., 2019. Application of Polymer Curing Agent in Ecological Protection Engineering of Weak Rock Slopes. Applied Sciences, 9(8): 1585. https://doi.org/10.3390/app9081585
      Young, C. C., Bien, M. N., Lee, Y. Y., 1938. "Red Beds" of Hunan. Bulletin of the Geological Society of China, 18(3-4): 259-300. doi: 10.1111/j.1755-6724.1938.mp183-4007.x
      Yu, L., Lai, H. Q., Zhou, C. Y., et al., 2022. Percolation Threshold of Red-Bed Soft Rock during Damage and Destruction. Applied Sciences, 12(15): 7615. https://doi.org/10.3390/app12157615
      Zeng, Z. X., Huang, S. M., 1980. Natural Geographical Features of China. Science Press, Beijing (in Chinese).
      Zhan, Q. J., Zheng, X. G., Du, J. P., et al., 2020. Coupling Instability Mechanism and Joint Control Technology of Soft-Rock Roadway with a Buried Depth of 1 336 m. Rock Mechanics and Rock Engineering, 53(5): 2233-2248. https://doi.org/10.1007/s00603-019-02027-9
      Zhang, H. J., Du, Q. Y., Yao, M., et al., 2016a. Evaluation and Clustering Maps of Groundwater Wells in the Red Beds of Chengdu, Sichuan, China. Sustainability, 8(1): 87. https://doi.org/10.3390/su8010087
      Zhang, L. M., Zhao, H. Y., Lu, L. F., et al., 2016b. Engineering Geologic Characteristics and Mechanical Property of Red-Bed Soft Rock in Water Diversion Project in Yunnan Province. Water Resour. Power (China), 34(8): 75-80.
      Zhang, H. Z., Liu, J. F., 2018. Microstructures, Mineral Compositions, and Mechanical Properties of Red-Layers in Southern China. Advances in Materials Science and Engineering, 2018(1): 1-9. https://doi.org/10.1155/2018/9601386
      Zhang, Q., Xu, Q., Li, J., et al., 2015. Study on Characteristics and Cause Mechanism of Grouping Inclined-Shallow Soil Mass Landslides on September 16, 2011 in Nanjiang. Journal of Natural Disasters, 24(3): 104-111 (in Chinese with English abstract).
      Zhang, Z. Y., 1958. The Genesis of the Upper Permian Red Bed in the Eastern Part of the Russian Platform and the Engineering Geological Properties of the Clay Rocks in This Formation. Geological Publishing House, Beijing (in Chinese).
      Zhang, Z. H., Jiang, Q. H., Zhou, C. B., et al., 2014. Strength and Failure Characteristics of Jurassic Red-Bed Sandstone under Cyclic Wetting-Drying Conditions. Geophysical Journal International, 198(2): 1034-1044. https://doi.org/10.1093/gji/ggu181
      Zhao, M. H., Liu, X. M., Su, Y. H., 2005. Experimental Studies on Engineering Properties of Red Bed Material Containing Slaking Rock. Chinese Journal of Geotechnical Engineering, 27(6): 667-671 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2005.06.012
      Zhong, Z. B., Li, A. H., Deng, R. G., et al., 2020. Study on Time-Dependent Upheaval Deformation Mechanisms of Red-Bed Soft Rock Subgrade of High-Speed Railways. Chinese Journal of Rock Mechanics and Engineering, 39(2): 327-340 (in Chinese with English abstract).
      Zhou, C. Y., 2000. Complexity Features of Slope Rock Mass and Some New Thought about Landslide Prognosis. Chinese Journal of Rock Mechanics and Engineering, 19(1): 34-38 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.01.007
      Zhou, C. Y., Huang, W., Qiu, S. Y., et al., 2021. A Quantitative Study on the Amount of Water-Retaining Agent Based on Adhesive-Modified Red Bed Weathered Soil. Bulletin of Engineering Geology and the Environment, 80(4): 3139-3150. https://doi.org/10.1007/s10064-021-02113-9.
      Zhou, C. Y., Liu, Z., Xue, Y. G., et al., 2023. Some Thoughts on Basic Research of Red Beds Disaster. Journal of Engineering Geology, 31(3): 689-705 (in Chinese with English abstract).
      Zhou, C. Y., Peng, Z. Y., Shang, W., et al., 2002. On the Key Problem of the Water-Rock Interaction in Geoengineering: Mechanical Variability of Special Weak Rocks and Some Development Trends. Rock and Soil Mechanics, 23(1): 124-128 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2002.01.028
      Zhou, C. Y., Su, D. L., Qiu, X. L., et al., 2019a. Experimental Study of Cracked Soft Rock with Hydro-Mechanical Coupling Effect. Acta Scientiarum Naturalium Universitatis Sunyatseni, 58(6): 35-44 (in Chinese with English abstract).
      Zhou, C. Y., Zhao, S. S., Yang, X., et al., 2019b. Improvement of Eco-Ester Materials on Sandy Soils and Engineering Slope Protection. Rock and Soil Mechanics, 40(12): 4828-4837 (in Chinese with English abstract).
      Zhou, C. Y., Yang, X., He, S. M., et al., 2018. Field Test and Monitoring a Rocky Slope Stabilization with New Materials in Bio-Engineering. Soil Engineering and Foundation, 32(3): 301-308 (in Chinese with English abstract).
      Zhou, C. Y., Yu, L., You, F. F., et al., 2020. Coupled Seepage and Stress Model and Experiment Verification for Creep Behavior of Soft Rock. International Journal of Geomechanics, 20(9): 04020146. https://doi.org/10.1061/(asce)gm.1943-5622.0001774
      Zhou, Y., Zhou, C., Liu, Z., et al., 2016. Model Test for Red-Bed Rock Slope with Weak Intercalation Affected by Rainfall and Its Instability Catastrophe Model. Electronic Journal of Geotechnical Engineering, 21(10): 3887-3903.
      Zhou, Y. Q., Cheng, Y. F., Zhu, Z. Q., et al., 2018. Preliminary Determination of Site Effect of Rock Slope in Different Topographic and Geologic Conditions. Advanced Engineering Sciences, 50(1): 51-61 (in Chinese with English abstract).
      陈国达, 刘辉泗, 1939. 江西贡水流域地质. 江西地质科技, (2): 1-64.
      段嘉瑞, 彭恩生, 魏州龄, 1978. 湖南茶永盆地白垩—第三系红层岩相研究. 大地构造与成矿学, 2(2): 13-41.
      段其发, 涂兵, 汤朝阳, 等, 2012. 青海曲麻莱盆地红层Schizaeoisporites(希指蕨孢)的发现及其意义. 地层学杂志, 36(1): 31-36.
      冯景兰, 朱翙声, 1928. 广东曲江仁化始兴南雄地质矿产. 两广地质调查所年报, (2): 38-42.
      冯忠居, 谢永利, 张宏光, 等, 2005. "滇西红层" 区大直径桥梁桩基承载力影响因素综合研究. 岩土工程学报, 27(5): 540-544. doi: 10.3321/j.issn:1000-4548.2005.05.011
      郭福祥, 1988. 云南中生代红层之沉积特点. 云南地质, 7(4): 311-316.
      郭进京, 韩文峰, 赵海涛, 等, 2014. 西秦岭中—新生代红层的构造层划分及其构造意义. 地质论评, 60(6): 1231-1244.
      韩丽芳, 王运生, 王晓欣, 等, 2009. 龙泉山地区中生代红层水岩作用时效性实验研究. 水文地质工程地质, 36(6): 59-61. doi: 10.3969/j.issn.1000-3665.2009.06.013
      何京丽, 邢恩德, 刘艳萍, 2007. 内蒙古克什克腾旗水利水保治理模式. 水土保持研究, 14(6): 148-150.
      胡修棉, 王成善, 李祥辉, 等, 2006. 藏南上白垩统大洋红层: 岩石类型、沉积环境与颜色成因. 中国科学(D辑: 地球科学), 36(9): 811-821.
      胡哲, 黄宝琦, 卢亚敏, 等, 2022. 渐新世至中新世南海北部IODP U1499站位年龄框架与沉积演化. 微体古生物学报, 39(2): 146-160.
      黄进, 陈致均, 2003. 丹霞地貌定义及分类中一些问题的探讨. 经济地理, 23: 6-12.
      简文星, 殷坤龙, 马昌前, 等, 2005. 万州侏罗纪红层软弱夹层特征. 岩土力学, 26(6): 901-905, 914. doi: 10.3969/j.issn.1000-7598.2005.06.015
      焦养泉, 吴立群, 陆永潮, 等, 2008. 准噶尔盆地腹部侏罗系顶部红层成岩作用过程中蕴藏的车莫古隆起演化信息. 地球科学, 33(2): 219-226. http://www.earth-science.net/article/id/1754
      居恢扬, 顾仁杰, 1983. 我国南方红层的地质特征及其工程地质问题. 上海地质, 4(3): 1-16.
      孔令华, 2019. 红层特性的基本元素组合规律及控制机制(硕士学位论文). 广州: 中山大学.
      李洪梁, 陈龙, 杨栋, 等, 2022. 藏东昌都觉学红层滑坡的地质成因分析. 沉积与特提斯地质, 42(4): 684-495.
      李明, 林宝玉, 2022. 北京西山寒武纪海相红层的分布与时代. 地质学报, 96(6): 1895-1921. doi: 10.3969/j.issn.0001-5717.2022.06.001
      李清波, 王贵军, 刘庆亮, 等, 2021. 红层坝基泥化夹层高压射流冲洗置换试验研究. 人民黄河, 43(5): 132-136.
      李四光, 赵亚曾, 1924. 峡东地质及长江历史. 中国地质学会志, 3(3-4): 382.
      刘俊新, 杨春和, 谢强, 等, 2015. 基于流变和固结理论的非饱和红层路堤沉降机制研究. 岩土力学, 36(5): 1295-1305.
      罗谷松, 彭华, 闫罗彬, 等, 2016. 南方"红层荒漠"旅游开发价值分析. 地理科学, 36(4): 555-563.
      吕璇, 刘志飞, 2017. 大洋红层的分布、组成及其科学研究意义综述. 地球科学进展, 32(12): 1307-1318. doi: 10.11867/j.issn.1001-8166.2017.12.1307
      穆文平, 王康, 钱程, 等, 2016. 青海上湾特大型红层老滑坡体形成机制研究. 岩土力学, 37(3): 802-812.
      牛栓文, 李继岩, 2014. 东营凹陷东段始新统红层储层多重成岩环境及演化模式. 石油与天然气地质, 35(5): 661-669.
      潘志新, 彭华, 2015. 国内外红层分布及其地貌发育的对比研究. 地理科学, 35(12): 1575-1584.
      彭华, 2011. 中国南方湿润区红层地貌及相关问题探讨. 地理研究, 30(10): 1739-1752.
      邵蕊, 杨兆萍, 韩芳, 等, 2011. 天山托木尔自然遗产地地理多样性价值评估与保护分区. 干旱区地理, 34(3): 525-531.
      盛莘夫, 常隆庆, 蔡绍英, 等, 1962. 川滇中生代红层与煤系的时代和对比. 地质学报, 36(1): 31-56, 110-113.
      时卉, 杨兆萍, 韩芳, 等, 2013. 自然遗产地生态脆弱性分析与评价——以托木尔区域为例. 干旱区地理, 36(2): 318-328.
      宋友桂, 方小敏, 李吉均, 等, 2001. 晚新生代六盘山隆升过程初探. 中国科学(D辑: 地球科学), 31(S1): 142-148.
      王成善, 胡修棉, 2005. 白垩纪世界与大洋红层. 地学前缘, 12(2): 11-21.
      王红梅, 刘育燕, 王志远, 2001. 四川剑门关侏罗: 白垩系红层分子化石的古环境和古气候意义. 地球科学, 26(3): 229-234. http://www.earth-science.net/article/id/1014
      魏永幸, 2009. 利用红层泥岩填筑高速铁路路基技术的试验研究. 铁道工程学报, 26(12): 39-43.
      徐弘, 1995. 川西红层泥石流流域产沙评价模型研究. 西南交通大学学报, 30(6): 620-626.
      徐鹏, 蒋关鲁, 任世杰, 等, 2019. 红层泥岩及其改良填料路基动力响应试验研究. 岩土力学, 40(2): 678-683, 692.
      许强, 唐然, 2023. 红层及其地质灾害研究. 岩石力学与工程学报, 42(1): 28-50.
      闫琦玮, 李新坡, 何思明, 等, 2020. 典型红层滑坡滑带土自愈合效应试验研究. 岩土力学, 41(9): 3041-3048.
      杨旭, 周翠英, 刘镇, 等. 2016. 华南典型巨厚层红层软岩边坡降雨失稳的模型试验研究. 岩石力学与工程学报, 35(3): 549-557.
      杨宗才, 张俊云, 周德培, 2006. 红层泥岩边坡快速风化特性研究. 岩石力学与工程学报, 25(2): 275-283.
      曾昭璇, 黄少敏, 1980. 中国自然地理: 地貌. 北京: 科学出版社.
      张群, 许强, 李江, 等, 2015. 南江"9·16" 群发性缓倾浅层土质滑坡特征与成因机制研究. 自然灾害学报, 24(3): 104-111.
      张忠胤, 1958. 俄罗斯地台东部上二叠纪红层的成因及刻地层粘土质岩石的工程地质性质. 北京: 地质出版社.
      赵明华, 刘晓明, 苏永华, 2005. 含崩解软岩红层材料路用工程特性试验研究. 岩土工程学报, 27(6): 667-671.
      钟志彬, 李安洪, 邓荣贵, 等, 2020. 高速铁路红层软岩路基时效上拱变形机制研究. 岩石力学与工程学报, 39(2): 327-340.
      周萃英, 2000. 斜坡岩体复杂性特征及其预测新认识. 岩石力学与工程学报, 19(1): 34-38.
      周翠英, 刘镇, 薛翊国, 等, 2023. 关于红层灾变基础研究的若干思考. 工程地质学报, 31(3): 689-705.
      周翠英, 彭泽英, 尚伟, 等, 2002. 论岩土工程中水‒岩相互作用研究的焦点问题: 特殊软岩的力学变异性. 岩土力学, 23(1): 124-128.
      周翠英, 苏定立, 邱晓莉, 等, 2019a. 红层裂纹软岩在水‒应力耦合作用下的变形破坏试验. 中山大学学报(自然科学版), 58(6): 35-44.
      周翠英, 赵珊珊, 杨旭, 等, 2019b. 生态酯类材料砂土改良及工程护坡应用. 岩土力学, 40(12): 4828-4837.
      周翠英, 杨旭, 何韶渺, 等, 2018. 新型功能材料生态护坡现场试验研究. 土工基础, 32(3): 301-308.
      周永强, 程永锋, 朱照清, 等, 2018. 不同地形地质条件下岩质边坡的场地效应初步确定. 工程科学与技术, 50(1): 51-61.
    • 加载中
    图(4)
    计量
    • 文章访问数:  575
    • HTML全文浏览量:  260
    • PDF下载量:  111
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-03
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回