• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湘中杏枫山金钨矿床成因: 热液磷灰石U-Pb定年和原位S同位素制约

    娄元林 刘贤红 曾昊 郑卓 刘德亮 马慧敏 马盈

    娄元林, 刘贤红, 曾昊, 郑卓, 刘德亮, 马慧敏, 马盈, 2024. 湘中杏枫山金钨矿床成因: 热液磷灰石U-Pb定年和原位S同位素制约. 地球科学, 49(12): 4265-4277. doi: 10.3799/dqkx.2024.059
    引用本文: 娄元林, 刘贤红, 曾昊, 郑卓, 刘德亮, 马慧敏, 马盈, 2024. 湘中杏枫山金钨矿床成因: 热液磷灰石U-Pb定年和原位S同位素制约. 地球科学, 49(12): 4265-4277. doi: 10.3799/dqkx.2024.059
    Lou Yuanlin, Liu Xianhong, Zeng Hao, Zheng Zhuo, Liu Deliang, Ma Huimin, Ma Ying, 2024. Genesis of Xingfengshan Au-W Deposit in Central Hunan Province: Constraints from Hydrothermal Apatite U-Pb Dating and In Situ S Isotopes. Earth Science, 49(12): 4265-4277. doi: 10.3799/dqkx.2024.059
    Citation: Lou Yuanlin, Liu Xianhong, Zeng Hao, Zheng Zhuo, Liu Deliang, Ma Huimin, Ma Ying, 2024. Genesis of Xingfengshan Au-W Deposit in Central Hunan Province: Constraints from Hydrothermal Apatite U-Pb Dating and In Situ S Isotopes. Earth Science, 49(12): 4265-4277. doi: 10.3799/dqkx.2024.059

    湘中杏枫山金钨矿床成因: 热液磷灰石U-Pb定年和原位S同位素制约

    doi: 10.3799/dqkx.2024.059
    基金项目: 

    中国地质调查局“湖南怀化-邵阳金矿重点调查区调查评价”项目 DD20230386

    国家自然科学基金项目 42302087

    博士后创新人才支持计划 BX20230335

    湖北省自然科学基金面上类项目 2021CFB499

    详细信息
      作者简介:

      娄元林(1988-),男,高级工程师,主要从事矿产地质调查及矿产勘查工作.ORCID:0009-0005-1196-6198.E-mail:420418599@qq.com

      通讯作者:

      马盈, E-mail:maying@cug.edu.cn

    • 中图分类号: P611

    Genesis of Xingfengshan Au-W Deposit in Central Hunan Province: Constraints from Hydrothermal Apatite U-Pb Dating and In Situ S Isotopes

    • 摘要: 杏枫山是湘中成矿带的一个代表性的金钨矿床,其金成矿时代、成矿物质来源与矿床成因尚存较大争议.在详细岩相学观察的基础上,借助LA⁃(MC)⁃ICP⁃MS分析手段,对该矿床席状含金石英细脉中的热液磷灰石开展原位U⁃Pb测年和载金毒砂的原位S同位素分析,以限定金矿化时代、示踪成矿物质来源,深化对矿床成因的认识.含金石英脉中热液磷灰石的U⁃Pb年龄为215.1±7.5 Ma,与白马山复式岩体的侵位时代一致.毒砂的δ34S值集中分布在-9.2‰~-7.7‰,表明成矿物质来自岩浆热液和围岩地层的混合.研究表明,杏枫山矿床W矿化和Au矿化均发生于晚三叠世,二者可能与白马山岩体具有密切的成因联系,杏枫山矿床应该属于与侵入岩有关的金矿床.

       

    • 图  1  湘中Au⁃Sb⁃W矿集区地质图(据 Li et al., 2021)

      Fig.  1.  Regional geological map of the Xiangzhong Au⁃Sb⁃W ore district (after Li et al., 2021)

      图  2  杏枫山地区区域地质图(a)和杏枫山金钨矿床地质简图(b)(据肖静芸等,2020)

      Fig.  2.  Geological map of the Xingfengshan area (a) and geological sketch map of the Xingfengshan Au⁃W deposit (b) (after Xiao et al., 2020)

      图  3  杏枫山矿床的矿化特征

      a.740中段席状含金石英脉;b.含金石英脉;c.浸染状金矿石;d.围岩板岩中层状磁黄铁矿;e.自形毒砂呈浸染状分布于含金石英细脉中;f.毒砂与石英和绿泥石紧密共生.矿物缩写:Apy.毒砂;Chl.绿泥石;Po.磁黄铁矿;Qz.石英

      Fig.  3.  Photographs showing the mineralization and ore textures of the Xingfengshan deposit

      图  4  杏枫山矿床金矿石TIMA图像揭示磷灰石与含金毒砂等矿物的共生关系

      Ap.磷灰石;Apy.毒砂;Chl.绿泥石;Fl.萤石;Qz.石英;Pl.斜长石;Ab.钠长石;Bio.黑云母

      Fig.  4.  TIMA mineral phase maps showing relationships between apatite and auriferous arsenopyrite in the gold ores from the Xingfengshan deposit

      图  5  杏枫山矿床石英脉中磷灰石的结构特征

      a.石英脉中半自形磷灰石集合体;b. 他形磷灰石颗粒与绿泥石密切共生;c. 半自形-他形磷灰石与毒砂紧密共生;d. 他形磷灰石与毒砂、萤石共生.矿物缩写:Ap.磷灰石;Apy.毒砂;Chl.绿泥石;Fl.萤石;Qz.石英

      Fig.  5.  Backscattered⁃electron images showing textural features of different apatites in the auriferous quartz veins of the Xingfengshan deposit

      图  6  杏枫山金矿脉中磷灰石稀土元素球粒陨石标准配分图(a, McDonough and Sun (1995),热液磷灰石组成引自Ma et al. (2022))和热液成因判别图解(b, 底图据O’Sullivan et al. (2020))

      Fig.  6.  Chondrite⁃normalized (a, McDonough and Sun, 1995) apatite rare earth element (REE) plot from the Xingfengshan deposit, the data of hydrotehrmal apatite are from Ma et al. (2022) and hydrothermal classification of apatite from the Xingfengshan deposit (b) based on the classification scheme of O'Sullivan et al.(2020)

      图  7  杏枫山矿床热液磷灰石U⁃Pb同位素Tera⁃Wasserburg图解

      Fig.  7.  Tera⁃Wasserburg U⁃Pb plot for hydrothermal apatite from the Xingfengshan deposit

      图  8  湘中地区典型三叠纪金矿床硫同位素频数直方图

      数据引自骆学全(1996);Li et al.20182021);Zhang et al.2022

      Fig.  8.  Histograms showing the distribution of δ34S values for typical Triassic gold deposits in the central Hunan Province

      图  9  湘中地区早中生代成岩-成矿年代学格架图

      数据来源:白马山岩体(Fu et al.,2015王川等,2021),包金山(王永磊等,2012),杏枫山(本文;吕沅峻等,2021),龙山(Zhang et al.,2019b),古台山(Li et al.,2018),铲子坪和大坪(李华芹等,2008),渣滓溪(彭建堂等,2021

      Fig.  9.  Timelines illustrating the age of Au⁃Sb⁃W mineralization and igneous activity in the Xiangzhong area

    • Bai, D. Y., Li, B., Zhou, C., et al., 2021. Gold Mineralization Events of the Jiangnan Orogen in Hunan and Their Tectonic Settings. Acta Petrologica et Mineralogica, 40(5): 897-922(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2021.05.004
      Chen, M. H., Bagas, L., Liao, X., et al., 2019. Hydrothermal Apatite SIMS Th-Pb Dating: Constraints on the Timing of Low-Temperature Hydrothermal Au Deposits in Nibao, SW China. Lithos, 324-325: 418-428. https://doi.org/10.1016/j.lithos.2018.11.018
      Chen, W. 2013. Research on Metallogenic Regularity and Predictgion of Gold Deposits of Jinshanli Area in Longhui County, Hunan Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chen, W., Zhang, S. T., Lun, S. P., 2013. Geological Characteristics and Metallogenic Model of Xingfengshan Gold Deposit in Longhui County, Hunan Province. Gold, 34(2): 16-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJZZ201302006.htm
      Chew, D. M., Petrus, J. A., Kamber, B. S., 2014. U-Pb LA-ICPMS Dating Using Accessory Mineral Standards with Variable Common Pb. Chemical Geology, 363: 185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006
      Fu, S. L., Hu, R. Z., Bi, X. W., et al., 2015. Origin of Triassic Granites in Central Hunan Province, South China: Constraints from Zircon U-Pb Ages and Hf and O Isotopes. International Geology Reviews, 57(2): 97-111. https://doi.org/10.1080/00206814.2014.996258
      Gao, L. Z., Chen, J., Ding, X. Z., et al., 2011. Zircon SHRIMP U-Pb Dating of the Tuff Bed of Lengjiaxi and Banxi Groups, Northeastern Hunan: Constraints on the Wuling Movement. Geological Bulletin of China, 30(7): 1001-1008(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2011.07.001
      Jiang, S. Y., Ma, Y., Liu, D. L., et al., 2023. Orogenic Gold Deposits: Mineralization Mechanism and Research Perspectives. Journal of Earth Science, 34(6): 1758-1761. https://doi.org/10.1007/s12583-023-2005-1
      Kirkland, C. L., Yakymchuk, C., Szilas, K., et al., 2018. Apatite: A U-Pb Thermochronometer or Geochronometer? Lithos, (318-319): 143-157. https://doi.org/10.1016/j.lithos.2018.08.007
      Lei, J. Z., Zhang, Y., Shi, C. H., et al., 2023. Geochemical Characteristics of Scheelite from Xingfengshan Au-W Deposit in Xiangzhong Metallogenic Belt: Implications on Ore Genesis. Mineral Deposits, 42(3): 618-638(in Chinese with English abstract).
      Li, B., Xu, D. R., Bai, D. Y., et al., 2022. Structural Deformation, Metallogenic Epoch and Genetic Mechanism of the Woxi Au-Sb-W Deposit, Western Hunan Province, South China. Science China Earth Sciences, 52(12): 2479-2505(in Chinese).
      Li, H. Q., Wang, D. H., Chen, F. W., et al., 2008. Study on Chronology of the Chanziping and Daping Gold Deposit in Xuefeng Mountains, Hunan Province. Acta Geologica Sinica, 82(7): 900-905(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.07.006
      Li, W., 2019. Nature and Genesis of the Gutaishan and Yuhengtang Au-Sb Deposits, Xiangzhong District, China (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Li, W., Cook, N. J., Xie, G. Q., et al., 2021. Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit, South China. Economic Geology, 116(8): 1825-1848. https://doi.org/10.5382/econgeo.4847
      Li, W., Xie, G. Q., Mao, J. W., et al., 2018. Muscovite 40Ar/39Ar and In Situ Sulfur Isotope Analyses of the Slate-Hosted Gutaishan Au-Sb Deposit, South China: Implications for Possible Late Triassic Magmatic-Hydrothermal Mineralization. Ore Geology Reviews, 101: 839-853. https://doi.org/10.1016/j.oregeorev.2018.08.006
      Li, W., Xie, G. Q., Mao, J. W., et al., 2023. Precise Age Constraints for the Woxi Au-Sb-W Deposit, South China. Economic Geology, 118(2): 509-518. https://doi.org/10.5382/econgeo.4971
      Liu, J., Liu, S., Ai, G. L., et al., 2018. Mineralogical Study of Arsenopyrite in Xingfengshan Gold Deposit, Hunan. Mineral Exploration, 9(11): 2122-2133(in Chinese with English abstract).
      Lu, Y. L., Peng, J. T., Yang, J. H., et al., 2017. Petrogenesis of the Ziyunshan Pluton in Central Hunan, South China: Constraints from Zircon U-Pb Dating, Element Geochemistry and Hf-O Isotopes. Acta Petrologica Sinica, 33(6): 1705-1728(in Chinese with English abstract).
      Luo, X. Q. 1996. Mineralization and Prospecting Guide of Chanziping Gold Deposit in Hunan. Hunan Geology, 15(1): 33-38(in Chinese).
      Lü, Y. J., Peng, J. T., Cai, Y. F., 2021. Geochemical Characteristics, U-Pb Dating of Hydrothermal Titanite from the Xingfengshan Tungsten Deposit in Hunan Province and Their Geological Significance. Acta Petrologica Sinica, 37(3): 830-846(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.12
      Ma, D. S., Pan, J. Y., Xie, Q. L., et al., 2002. Ore Source of Sb(Au) Deposits in Central Hunan: I. Evidences of Trace Elements and Experimental Geochemistry. Mineral Deposits, 21(4): 366-376(in Chinese with English abstract).
      Ma, Y., Jiang, S. Y., 2022. How did the Orogenic Gold Deposits Form? Earth Science, 47(10): 3894-3896(in Chinese with English abstract).
      Ma, Y., Jiang, S. Y., Frimmel, H. E., et al., 2022. Age and Fluid Source of the Sub-Volcanic Zhaiping Ag-Pb-Zn Deposit in the Eastern Cathaysia Block (Fujian Province, Southeastern China). Mineralium Deposita, 57(3): 439-454. https://doi.org/10.1007/s00126-021-01073-0
      Ma, Y., Jiang, S. Y., Frimmel, H. E., 2023. Apatite Records Metamorphic and Hydrothermal Fluid Evolution at the Large Shuangqishan Orogenic Gold Deposit, SE China. Geological Society of America Bulletin, 135(11-12): 3005-3023. https://doi.org/10.1130/b36642.1
      Mao, M., Rukhlov, A. S., Rowins, S. M., et al., 2016. Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration. Economic Geology, 111(5): 1187-1222. https://doi.org/10.2113/econgeo.111.5.1187
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., One Hundredth Anniversary Volume. Society of Economic Geologists, U. S. A. . https://doi.org/10.5382/av100.11
      Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551
      O'Sullivan, G., Chew, D., Kenny, G., et al., 2020. The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies. Earth-Science Reviews, 201: 103044. https://doi.org/10.1016/j.earscirev.2019.103044
      Peng, J. T., Hu, R. Z., Zhao, J. H., et al., 2003. Scheelite Sm-Nd Dating and Quartz Ar-Ar Dating for Woxi Au-Sb-W Deposit, Western Hunan. Chinese Science Bulletin, 48(18): 1976-1981 (in Chinese). doi: 10.3321/j.issn:0023-074X.2003.18.015
      Peng, J. T., Wang, C., Li, Y. K., et al., 2021. Geochemical Characteristics and Sm-Nd Geochronology of Scheelite in the Baojinshan Ore District, Central Hunan. Acta Petrologica Sinica, 37(3): 665-682(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.02
      Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. https://doi.org/10.1016/s0016-7037(99)00210-0
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.cqvip.com/QK/95894A/20127/42680096.html
      Wang, C., Peng, J. T., Xu, J. B., et al., 2021. Petrogenesis and Metallogenic Effect of the Baimashan Granitic Complex in Central Hunan, South China. Acta Petrologica Sinica, 37(3): 805-829(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.11
      Wang, Y. L., Chen, Y. C., Wang, D. H., et al., 2012. Scheelite Sm-Nd Dating of the Zhazixi W-Sb Deposit in Hunan and Its Geological Significance. Geology in China, 39(5): 1339-1344(in Chinese with English abstract).
      Xiao, J. Y., Peng, J. T., Hu, A. X., et al., 2020. Characteristics of Fluid Inclusions of the Xingfengshan Gold Deposit, Central Hunan, and Its Genetic Implications. Geological Review, 66(5): 1376-1392(in Chinese with English abstract).
      Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      Yu, H. C., Qiu, K. F., Nassif, M. T., et al., 2020. Early Orogenic Gold Mineralization Event in the West Qinling Related to Closure of the Paleo-Tethys Ocean-Constraints from the Ludousou Gold Deposit, Central China. Ore Geology Reviews, 117: 103217. https://doi.org/10.1016/j.oregeorev.2019.103217
      Zhang, L., Yang, L. Q., Groves, D. I., et al., 2019a. An Overview of Timing and Structural Geometry of Gold, Gold-Antimony and Antimony Mineralization in the Jiangnan Orogen, Southern China. Ore Geology Reviews, 115: 103173. https://doi.org/10.1016/j.oregeorev.2019.103173
      Zhang, Z. Y., Xie, G. Q., Mao, J. W., et al., 2019b. Sm-Nd Dating and In-Situ LA-ICP-MS Trace Element Analyses of Scheelite from the Longshan Sb-Au Deposit, Xiangzhong Metallogenic Province, South China. Minerals, 9(2): 87. https://doi.org/10.3390/min9020087
      Zhang, Z. Y., Xie, G. Q., Olin, P., 2022. Texture, In-Situ Geochemical, and S Isotopic Analyses of Pyrite and Arsenopyrite from the Longshan Sb-Au Deposit, Southern China: Implications for the Genesis of Intrusion-Related Sb-Au Deposit. Ore Geology Reviews, 143: 104781. https://doi.org/10.1016/j.oregeorev.2022.104781
      Zhao, S. R., Li, J. W., McFarlane, C. R. M., et al., 2023. Recognition of Late Paleoproterozoic Gold Mineralization in the North China Craton: Evidence from Multi-Mineral U-Pb Geochronology and Stable Isotopes of the Shanggong Deposit. Geological Society of America Bulletin, 135(1/2): 211-232. https://doi.org/10.1130/b36281.1
      Zhao, Z. X., Xu, Z. W., Miao, B. H., et al., 2015. Diagenetic Age and Material Source of the Guandimiao Granitic Batholith, Hengyang City, Hunan Province. Acta Geologica Sinica, 89(7): 1219-1230(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201507006&dbcode=CJFD&year=2015&dflag=pdfdown
      Zheng, J., Shen, P., Feng, W., 2022. Hydrothermal Apatite Record of Ore-Forming Processes in the Hatu Orogenic Gold Deposit, West Junggar, Northwest China. Contributions to Mineralogy and Petrology, 177: 27. https://doi.org/10.1007/s00410-022-01893-wzx doi: 10.1007/s00410-022-01893-x
      柏道远, 李彬, 周超, 等, 2021. 江南造山带湖南段金矿成矿事件及其构造背景. 岩石矿物学杂志, 40(5): 897-922.
      陈武, 2013. 湖南省隆回县金山里地区金矿成矿规律与找矿预测研究(硕士学位论文). 北京: 中国地质大学.
      陈武, 张寿庭, 伦生平, 2013. 湖南省隆回县杏枫山金矿床地质特征及成矿模式探讨. 黄金, 34(2): 16-20.
      高林志, 陈峻, 丁孝忠, 等, 2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄: 对武陵运动的制约. 地质通报, 30(7): 1001-1008.
      雷金泽, 张宇, 时承华, 等, 2023. 湘中成矿带杏枫山Au-W矿床白钨矿特征及地质意义. 矿床地质, 42(3): 618-638.
      李彬, 许德如, 柏道远, 等, 2022. 湘西沃溪金-锑-钨矿床构造变形、成矿时代及成因机制. 中国科学: 地球科学, 52(12): 2479-2505.
      李华芹, 王登红, 陈富文, 等, 2008. 湖南雪峰山地区铲子坪和大坪金矿成矿作用年代学研究. 地质学报, 82(7): 900-905.
      李伟, 2019. 湘中地区古台山和玉横塘Au-Sb矿床成矿机制研究(博士学位论文). 武汉: 中国地质大学.
      刘佳, 刘莎, 艾国梁, 等, 2018. 湘中杏枫山金矿床毒砂的矿物学研究. 矿产勘查, 9(11): 2122-2133.
      鲁玉龙, 彭建堂, 阳杰华, 等, 2017. 湘中紫云山岩体的成因: 锆石U-Pb年代学、元素地球化学及Hf-O同位素制约. 岩石学报, 33(6): 1705-1728.
      骆学全, 1996. 湖南铲子坪金矿的成矿规律及找矿标志. 湖南地质, 15(1): 33-38.
      吕沅峻, 彭建堂, 蔡亚飞, 2021. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义. 岩石学报, 37(3): 830-846.
      马东升, 潘家永, 解庆林, 等, 2002. 湘中锑(金)矿床成矿物质来源: Ⅰ. 微量元素及其实验地球化学证据. 矿床地质, 21(4): 366-376.
      马盈,蒋少涌,2022.造山型金矿是如何形成的? 地球科学,47(10):3894-3896.
      彭建堂, 胡瑞忠, 赵军红, 等, 2003. 湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年. 科学通报, 48(18): 1976-1981.
      彭建堂, 王川, 李玉坤, 等, 2021. 湖南包金山矿区白钨矿的地球化学特征及Sm-Nd同位素年代学. 岩石学报, 37(3): 665-682.
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053.
      王川, 彭建堂, 徐接标, 等, 2021. 湘中白马山复式岩体成因及其成矿效应. 岩石学报, 37(3): 805-829.
      王永磊, 陈毓川, 王登红, 等, 2012. 湖南渣滓溪W-Sb矿床白钨矿Sm-Nd测年及其地质意义. 中国地质, 39(5): 1339-1344.
      肖静芸, 彭建堂, 胡阿香, 等, 2020. 湘中杏枫山金矿床流体包裹体特征及其对矿床成因的指示. 地质论评, 66(5): 1376-1392.
      赵增霞, 徐兆文, 缪柏虎, 等, 2015. 湖南衡阳关帝庙花岗岩岩基形成时代及物质来源探讨. 地质学报, 89(7): 1219-1230.
    • dqkxzx-49-12-4265-附表1.xlsx
      dqkxzx-49-12-4265-附表3.xlsx
      dqkxzx-49-12-4265-附表2.xlsx
    • 加载中
    图(9)
    计量
    • 文章访问数:  576
    • HTML全文浏览量:  178
    • PDF下载量:  239
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-07
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回