• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    长江流域洞庭湖区出入湖磷通量模拟及水质预测:机器学习与传统水文模型耦合方法

    刘杰 陈前 许妍 查悉妮 张美一 辛小康 唐文忠 张洪

    刘杰, 陈前, 许妍, 查悉妮, 张美一, 辛小康, 唐文忠, 张洪, 2024. 长江流域洞庭湖区出入湖磷通量模拟及水质预测:机器学习与传统水文模型耦合方法. 地球科学, 49(11): 3995-4007. doi: 10.3799/dqkx.2024.061
    引用本文: 刘杰, 陈前, 许妍, 查悉妮, 张美一, 辛小康, 唐文忠, 张洪, 2024. 长江流域洞庭湖区出入湖磷通量模拟及水质预测:机器学习与传统水文模型耦合方法. 地球科学, 49(11): 3995-4007. doi: 10.3799/dqkx.2024.061
    Liu Jie, Chen Qian, Xu Yan, Zha Xini, Zhang Meiyi, Xin Xiaokang, Tang Wenzhong, Zhang Hong, 2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science, 49(11): 3995-4007. doi: 10.3799/dqkx.2024.061
    Citation: Liu Jie, Chen Qian, Xu Yan, Zha Xini, Zhang Meiyi, Xin Xiaokang, Tang Wenzhong, Zhang Hong, 2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science, 49(11): 3995-4007. doi: 10.3799/dqkx.2024.061

    长江流域洞庭湖区出入湖磷通量模拟及水质预测:机器学习与传统水文模型耦合方法

    doi: 10.3799/dqkx.2024.061
    基金项目: 

    国家重点研发计划项目 2023YFC3205600

    国家自然科学基金资助项目 52270202

    详细信息
      作者简介:

      刘杰(1999-),男,硕士研究生,主要研究方向为流域物质循环与调控. ORCID:0009-0006-9027-9608. E-mail:220224663@seu.edu.cn

      通讯作者:

      许妍, E-mail: xuxucalmm@seu.edu.cn

      唐文忠, E-mail: wztang@rcees.ac.cn

    • 中图分类号: P64

    Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling

    • 摘要: 磷通量的波动对出入湖河流生态系统的稳定有直接影响.在水质波动显著的洞庭湖区,使用SWAT模型模拟该区域的出入湖磷通量,并分析各水系区间的磷滞留情况.基于水文物理过程搭建耦合模型,再利用SWAT模型的模拟结果进行训练,并利用该模型对湖区近期水质进行情景预测.结果表明:洞庭湖区出入湖磷通量均呈明显的季节变化,其中无机磷是主要的磷形态.2012—2021年洞庭湖区平均TP入湖通量为2.94×104 t/a,平均出湖TP通量为3.34×104 t/a,平均出湖TP浓度为0.13 mg/L.其中,三口区间作为入湖磷通量贡献最大的区间,其TP输出浓度也最高,是污染治理的关键区域.洞庭湖区TP滞留率较低,使其成为长江下游重要的TP来源.耦合模型对于洞庭湖区的出入磷通量的输出过程模拟效果良好,NSE值均 > 0.8,在RPE值处于10%水平下的RMSE值均较低,实现了LSTM网络替代大型分布式物理模型的仿真建模.基于上述模型根据《洞庭湖水环境综合治理规划》对洞庭湖近期TP输出浓度进行了预测,在各区间入湖TP浓度控制在0.1 mg/L的情景下,能够实现湖区水环境规划目标.

       

    • 图  1  研究区域概况

      Fig.  1.  The overview of study area

      图  2  LSTM模型基本原理

      Fig.  2.  The basic principle of LSTM model

      图  3  耦合模型基本搭建过程和子流域尺度验证结果

      Fig.  3.  Basic construction process of the coupled model and sub-basin scale validation results

      图  4  洞庭湖区出入湖磷通量及组分的年际变化与回归分析

      Fig.  4.  Inter-annual variation and regression analysis of phosphorus fluxes and fractions in Dongting Lake area

      图  5  洞庭湖区出入湖磷通量年内变化及其特征

      Fig.  5.  Inter-annual variation of TP outflow concentration and linear regression analysis of phosphorus fluxes in Dongting Lake area

      图  6  洞庭湖区入湖磷通量及其浓度的空间特征

      Fig.  6.  Spatial characteristics of phosphorus flux and TP concentrations into the lake in Dongting Lake area

      图  7  耦合模型对三口区间流量、泥沙输出量和TP入湖量的预测结果

      Fig.  7.  The prediction results of the coupling model for the flow, sediment output and TP inflow in the Sankou area

      图  8  耦合模型对洞庭湖区TP出湖量的预测结果

      Fig.  8.  The prediction results of the coupling model on the amount of TP outflow in the Dongting Lake area

      图  9  综合治理目标下洞庭湖出口TP输出浓度的年内变化

      Fig.  9.  Intra-annual variation of TP output concentrations at the outlet of Dongting Lake under comprehensive treatment target

      表  1  洞庭湖区SWAT模型的率定结果

      Table  1.   Calibration and validation results of SWAT model in Dongting Lake area

      流量率定结果 泥沙率定结果 水质率定结果
      水文站点 R2 NSE 水文站点 R2 NSE 水文站点 R2 NSE
      伍市 0.84 0.80 伍市 0.80 0.74 小河咀 0.91 0.57
      南县 0.92 0.67 南县 0.70 0.59 八仙桥 0.80 0.58
      南咀 0.93 0.66 南咀 0.93 0.66
      小河咀 0.96 0.87 小河咀 0.77 0.74
      城陵矶 0.92 0.90 城陵矶 0.58 0.13
      下载: 导出CSV

      表  2  洞庭湖区河道磷通量的滞留情况

      Table  2.   Retention of river phosphorus fluxes in the Dongting Lake area

      水系区间 面积(km2 TP入河量(104t) TP滞留量(104t) TP滞留率(%)
      三口区间 10 146.83 1.87 1.20 54.6
      澧水区间 787.00 0.22 0.04 14.9
      沅江区间 2 513.83 0.32 0.11 19.1
      资水区间 2 200.40 0.38 0.08 15.2
      湘江区间 538.14 0.10 0.06 14.2
      汨罗江流域 5 236.27 0.41 0.25 60.3
      新墙河流域 2597.23 0.36 0.21 57.5
      洞庭湖区间 2 951.85 3.89 1.67 33.3
      下载: 导出CSV

      表  3  洞庭湖区入湖磷通量耦合模拟的效果评价

      Table  3.   Evaluation of the effectiveness of coupled modeling of phosphorus fluxes into lakes in Dongting Lake area

      水系区间 径流输出量 泥沙输出量 入湖磷通量
      RMSE RPE(%) NSE RMSE RPE(%) NSE RMSE RPE(%) NSE
      三口区间 1.49 1.8 0.99 1.46 2.8 0.99 0.33 5.5 0.92
      澧水区间 0.68 3.4 0.95 1.03 4.5 0.89 0.16 5.3 0.92
      沅江区间 0.08 1.1 0.99 0.26 1.9 0.99 0.98 5.9 0.87
      资水区间 0.05 2.9 0.98 0.05 3.4 0.97 0.73 7.3 0.86
      湘江区间 0.17 2.2 0.98 0.58 5.3 0.90 0.91 6.6 0.84
      汨罗江流域 0.20 5.4 0.94 0.15 5.6 0.91 1.00 10.2 0.92
      新墙河流域 0.11 6.2 0.92 0.10 6.2 0.84 0.36 6.5 0.92
      下载: 导出CSV
    • Adu, J., Kumarasamy, M. V., 2018. Assessing Non-Point Source Pollution Models: A Review. Polish Journal of Environmental Studies, 27(5): 1913-1922. https://doi.org/10.15244/pjoes/76497
      Billen, G., Garnier, J., 1997. The Phison River Plume: Coastal Eutrophication in Response to Changes in Land Use and Water Management in the Watershed. Aquatic Microbial Ecology, 13: 3-17. https://doi.org/10.3354/ame013003
      Brown, L. C., Barnwell, T. O., 1987. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS Documentation and User Manual. Environmental Protection Agency, GA, Athens.
      Chen, C., Zhang, H., Shi, W. X., et al., 2023a. A Novel Paradigm for Integrating Physics-Based Numerical and Machine Learning Models: A Case Study of Eco- Hydrological Model. Environmental Modelling & Software, 163: 105669. https://doi.org/10.1016/j.envsoft.2023.105669
      Chen, S. Y., Huang, J. L., Huang, J. C., 2023b. Improving Daily Streamflow Simulations for Data-Scarce Watersheds Using the Coupled SWAT-LSTM Approach. Journal of Hydrology, 622: 129734. https://doi.org/10.1016/j.jhydrol.2023.129734
      Elsbury, K. E., Paytan, A., Ostrom, N. E., et al., 2009. Using Oxygen Isotopes of Phosphate to Trace Phosphorus Sources and Cycling in Lake Erie. Environmental Science & Technology, 43(9): 3108-3114. https://doi.org/10.1021/es8034126
      Fergus, C. E., Brooks, J. R., Kaufmann, P. R., et al., 2020. Lake Water Levels and Associated Hydrologic Characteristics in the Conterminous U. S., Journal of the American Water Resources Association, 56(3): 450-471. https://doi.org/10.1111/1752-1688.12817
      Geng, M. M., Li, F., Gao, Y., et al., 2021a. Wetland Area Change from 1986-2016 in the Dongting Lake Watershed at the Sub-Watershed Scale. Polish Journal of Environmental Studies, 30(2): 1611-1620. https://doi.org/10.15244/pjoes/127268
      Geng, M. M., Wang, K. L., Yang, N., et al., 2021b. Spatiotemporal Water Quality Variations and Their Relationship with Hydrological Conditions in Dongting Lake after the Operation of the Three Gorges Dam, China. Journal of Cleaner Production, 283: 124644. https://doi.org/10.1016/j.jclepro.2020.124644
      Geng, M. M., Wang, K. L., Qian, Z., et al., 2023. Is Water Resources Management at the Expense of Deteriorating Water Quality in a Large River-Connected Lake after the Construction of a Lake Sluice?. Ecological Engineering, 197: 107124. https://doi.org/10.1016/j.ecoleng.2023.107124
      He, Q. H., Yu, D. Q., Yu, S. C., et al., 2021. Changes of Water Resources Amount in Dongting Lake before and after the Operation of the Three Gorges Reservoir. Earth Science, 46(1): 293-307 (in Chinese with English abstract).
      Hong, B., Swaney, D. P., McCrackin, M., et al., 2017. Advances in NANI and NAPI Accounting for the Baltic Drainage Basin: Spatial and Temporal Trends and Relationships to Watershed TN and TP Fluxes. Biogeochemistry, 133(3): 245-261. https://doi.org/10.1007/s10533-017-0330-0
      Hu, G. W., Liang, Y. W., Zhuang, S. Q., et al., 2023. Spatial-Temporal Variation of Agricultural Non-Point Source Pollution Emission in Dongting Lake Basin. Environmental Ecology, 5(3): 59-65 (in Chinese with English abstract).
      Hu, T. F., Mao, J. Q., Pan, S. Q., et al., 2018. Water Level Management of Lakes Connected to Regulated Rivers: An Integrated Modeling and Analytical Methodology. Journal of Hydrology, 562: 796-808. https://doi.org/10.1016/j.jhydrol.2018.05.038
      Huang, R. X., Ma, C. X., Ma, J., et al., 2021. Machine Learning in Natural and Engineered Water Systems. Water Research, 205: 117666. https://doi.org/10.1016/j.watres.2021.117666
      Huo, S. L., Ma, C. Z., Li, W. P., et al., 2023. Spatiotemporal Differences in Riverine Nitrogen and Phosphorus Fluxes and Associated Drivers across China from 1980 to 2018. Chemosphere, 310: 136827. https://doi.org/10.1016/j.chemosphere.2022.136827
      Karpatne, A., Ebert-Uphoff, I., Ravela, S., et al., 2019. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Transactions on Knowledge and Data Engineering, 31(8): 1544-1554. https://doi.org/10.1109/TKDE.2018.2861006
      Kratzert, F., Klotz, D., Shalev, G., et al., 2019. Towards Learning Universal, Regional, and Local Hydrological Behaviors Via Machine Learning Applied to Large-Sample Datasets. Hydrology and Earth System Sciences, 23(12): 5089-5110. https://doi.org/10.5194/hess-23-5089-2019
      Lindemann, B., Müller, T., Vietz, H., et al., 2021. A Survey on Long Short-Term Memory Networks for Time Series Prediction. Procedia CIRP, 99: 650-655. https://doi.org/10.1016/j.procir.2021.03.088
      Liu, J. J., Yuan, X., Zeng, J. H., et al., 2022a. Ensemble Streamflow Forecasting over a Cascade Reservoir Catchment with Integrated Hydrometeorological Modeling and Machine Learning. Hydrology and Earth System Sciences, 26(2): 265-278. https://doi.org/10.5194/hess-26-265-2022
      Liu, X., Lu, D. W., Zhang, A. Q., et al., 2022b. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environmental Science & Technology, 56(4): 2124-2133. https://doi.org/10.1021/acs.est.1c06157
      Liu, X. P., Lu, M. Z., Chai, Y. Z., et al., 2021. A Comprehensive Framework for HSPF Hydrological Parameter Sensitivity, Optimization and Uncertainty Evaluation Based on SVM Surrogate Model: A Case Study in Qinglong River Watershed, China. Environmental Modelling & Software, 143: 105126. https://doi.org/10.1016/j.envsoft.2021.105126
      Long, X., Lin, H., An, X., et al., 2022. Evaluation and Analysis of Ecosystem Service Value Based on Land use/Cover Change in Dongting Lake Wetland. Ecological Indicators, 136: 108619. https://doi.org/10.1016/j.ecolind.2022.108619
      Nasr, A., Bruen, M., Jordan, P., et al., 2007. A Comparison of SWAT, HSPF and SHETRAN/GOPC for Modelling Phosphorus Export from Three Catchments in Ireland. Water Research, 41(5): 1065-1073. https://doi.org/10.1016/j.watres.2006.11.026
      Nie, L. J., Zeng, L. H., Ji, J., et al., 2022. Centurial Changes in Sedimentary Phosphorus Forms and Trace Elements in Response to Damming and Anthropogenic Pollution in a Floodplain Lake, Central China. Environmental Science and Pollution Research, 29(19): 28446-28457. https://doi.org/10.1007/s11356-021-18476-1
      People's Government of Hunan Province, 2019. Hunan Provincial People's Government on the Issuance of the Implementation Program of Hunan Province Dongting Lake Water Environment Comprehensive Management Plan (2018-2025). Gazette of the People's Government of Hunan Province, (21): 2-22 (in Chinese).
      Powers, S. M., Bruulsema, T. W., Burt, T. P., et al., 2016. Long-Term Accumulation and Transport of Anthropogenic Phosphorus in Three River Basins. Nature Geoscience, 9: 353-356. https://doi.org/10.1038/ngeo2693
      Rezaeianzadeh, M., Stein, A., Tabari, H., et al., 2013. Assessment of a Conceptual Hydrological Model and Artificial Neural Networks for Daily Outflows Forecasting. International Journal of Environmental Science and Technology, 10(6): 1181-1192. https://doi.org/10.1007/s13762-013-0209-0
      Sharpley, A. N., Williams, J. R., 1990. EPIC-Erosion/ Productivity Impact Calculator: 1. Model Documentation. US Department of Agriculture, Washington D. C. .
      Singh, V. P., Frevert, D. K., 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications, Highlands Ranch, Colo.
      Sutton, M. A., Mason, K. E., Bleeker, A., et al., 2020. Global Nitrogen and Phosphorus Pollution. Springer International Publishing AG, Switzerland, 421-431.
      Tan, Y., Chen, M., Zhang, L. L., et al., 2022. Flux and Spatial Pattern of Phosphorus in the Shigatse Section of the Yarlung Zangbo River, China. Ecological Indicators, 135: 108552. https://doi.org/10.1016/j.ecolind.2022.108552
      Wang, D. Y., Han, J. C., Li, R., et al., 2023. Nutritional Characteristics in the Waterbody of Lake Dongting Area Nutrient Condition and Associated Improvement Measures under the Extreme Drought in 2022. Journal of Lake Sciences, 35(6): 1970-1978 (in Chinese with English abstract).
      Wang, H. Y., Ti, C. P., Wang, L. J., et al., 2022. SpatioTemporal Distribution Characteristics and Key Sources of Nitrogen Pollution in a Typical Agricultural Watershed Based on SWAT Model. Journal of Lake Sciences, 34(2): 517-527 (in Chinese with English abstract). doi: 10.18307/2022.0213
      Wang, Y. D., Ouyang, W., Zhang, Y. H., et al., 2021. Quantify Phosphorus Transport Distinction of Different Reaches to Estuary under Long-Term Anthropogenic Perturbation. Science of the Total Environment, 780: 146647. https://doi.org/10.1016/j.scitotenv.2021.146647
      Wang, Y. S., Xie, X., Liu, C., et al., 2020. Variation of Net Anthropogenic Phosphorus Inputs (NAPI) and Riverine Phosphorus Fluxes in Seven Major River Basins in China. Science of the Total Environment, 742: 140514. https://doi.org/10.1016/j.scitotenv.2020.140514
      Xu, B., Li, Y., Han, F., et al., 2020. The Transborder Flux of Phosphorus in the Lancang-Mekong River Basin: Magnitude, Patterns and Impacts from the Cascade Hydropower Dams in China. Journal of Hydrology, 590: 125201. https://doi.org/10.1016/j.jhydrol.2020.125201
      Wei, K., Ouyang, C. J., Duan, H. T., et al., 2020. Reflections on the Catastrophic 2020 Yangtze River Basin Flooding in Southern China. Innovation (Cambridge (Mass)), 1(2): 100038. https://doi.org/10.1016/j.xinn.2020.100038
      Wu, X. C., Ma, T., Du, Y., et al., 2021. Phosphorus Cycling in Freshwater Lake Sediments: Influence of Seasonal Water Level Fluctuations. Science of the Total Environment, 792: 148383. https://doi.org/10.1016/j.scitotenv.2021.148383
      Zhang, X. Q., Zhao, D., Wang, T., et al., 2022. A Novel Rainfall Prediction Model Based on CEEMDAN-PSO-ELM Coupled Model. Water Supply, 22(4): 4531-4543. https://doi.org/10.2166/ws.2022.115
      Zhao, A. Z., Zhao, Y. L., Liu, X. F., et al., 2016. Impact of Human Activities and Climate Variability on Green and Blue Water Resources in the Weihe River Basin of Northwest China. Scientia Geographica Sinica, 36(4): 571-579 (in Chinese with English abstract).
      Zhao, G., Merder, J., Ballard, T. C., et al., 2023. Warming may Offset Impact of Precipitation Changes on Riverine Nitrogen Loading. Proceedings of the National Academy of Sciences of the United States of America, 120(33): e2220616120. https://doi.org/10.1073/pnas.2220616120
      贺秋华, 余德清, 余姝辰, 等, 2021. 三峡水库运行前后洞庭湖水资源量变化. 地球科学, 46(1): 293-307.
      胡光伟, 梁业伟, 庄少奇, 等, 2023. 洞庭湖流域农业面源污染时空分异特征与防治建议. 环境生态学, 5(3): 59-65.
      湖南省人民政府, 2019. 湖南省人民政府关于印发《湖南省洞庭湖水环境综合治理规划实施方案(2018—2025年)》的通知. 湖南省人民政府公报, (21): 2-22.
      王丹阳, 韩锦诚, 黎睿, 等, 2023. 2022年极端干旱下洞庭湖区水体营养状态变化及改善对策. 湖泊科学, 35(6): 1970-1980.
      王慧勇, 遆超普, 王良杰, 等, 2022. 基于SWAT模型的典型农业小流域氮污染时空分布特征及关键源解析. 湖泊科学, 34(2): 517-527.
      赵安周, 赵玉玲, 刘宪锋, 等, 2016. 气候变化和人类活动对渭河流域蓝水绿水影响研究. 地理科学, 36(4): 571-579.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  344
    • HTML全文浏览量:  128
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-06-03
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回