• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多边形断层生长过程和机制

    王锦怡 孙启良

    王锦怡, 孙启良, 2024. 多边形断层生长过程和机制. 地球科学, 49(11): 4238-4248. doi: 10.3799/dqkx.2024.063
    引用本文: 王锦怡, 孙启良, 2024. 多边形断层生长过程和机制. 地球科学, 49(11): 4238-4248. doi: 10.3799/dqkx.2024.063
    Wang Jinyi, Sun Qiliang, 2024. Growth Processes and Mechanism of Polygonal Faults. Earth Science, 49(11): 4238-4248. doi: 10.3799/dqkx.2024.063
    Citation: Wang Jinyi, Sun Qiliang, 2024. Growth Processes and Mechanism of Polygonal Faults. Earth Science, 49(11): 4238-4248. doi: 10.3799/dqkx.2024.063

    多边形断层生长过程和机制

    doi: 10.3799/dqkx.2024.063
    基金项目: 

    国家自然科学基金优秀青年项目 42222607

    详细信息
      作者简介:

      王锦怡(2001-),女,博士研究生,主要从事海洋地质方面的研究.ORCID:0009-0005-9141-2143. E-mail:jywang410@cug.edu.cn

      通讯作者:

      孙启良, ORCID: 0000-0002-8335-5004. E-mail: sunqiliang@cug.edu.cn

    • 中图分类号: P736

    Growth Processes and Mechanism of Polygonal Faults

    • 摘要: 多边形断层广泛发育在大陆边缘沉积盆地中,但是目前对于多边形断层的生长过程和机制尚不清楚.本研究基于高精度三维地震资料,刻画了新西兰大南盆地中多边形断层系统的特征,剖析了其生长过程,并建立其生长模式.根据研究区多边形断层的几何特征,新西兰大南盆地中多边形断层可以划分为Tier1和Tier2两个层段.多边形断层落差剖面主要为“C”型、双“C”型和“B”型.结合断层的几何及生长特征,本研究提出了跨层段多边形断层的生长模式:多边形断层首先在下部层段的中心成核,并向各个方向生长;经过一段平静期后,多边形断层在新(上部)层段的中心成核;上覆层段中的多边形断层与下伏层段中的多边形断层逐渐联通,形成中继结构和跨层的“大断层”.本研究揭示了多边形断层的生长机制,明确了断层的成核、生长和停止生长等生长过程,相关研究成果能够服务于油气勘探开发及防灾减灾等.

       

    • 图  1  新西兰大南盆地沉积厚度及三维地震资料位置(据Cao et al.,2023b改)

      Fig.  1.  Sedimentary thickness and 3D seismic data location of the Great South basin, New Zealand (modified from Cao et al., 2023b)

      图  2  大南盆地地层柱状图(据Cao et al.,2023a改)

      Fig.  2.  Stratigraphic histogram of the Great South basin (modified from Cao et al., 2023a)

      图  3  研究区内多边形断层地震剖面特征(a)和层段划分(b)

      剖面位置见图 1,剖面垂直拉伸率为5

      Fig.  3.  Seismic profile (a) and its interpretation (b) of polygonal faults and horizons in the study area

      图  4  大南盆地多边形断层沿层(T10、H1、H2、H3、H4和T50)方差切片特征及其对应的走向玫瑰花图

      不同层位的方差切片显示多边形断层的连通性、密度和平面形态等均有较大的变化;走向玫瑰花图显示多边形断层无优势走向

      Fig.  4.  Variance slice characteristics of polygonal faults along horizons (T10, H1, H2, H3, H4 and T50) and corresponding rose plots of the polygonal faults strikes in the Great South basin

      图  5  多边形断层F1和F2在不同深度(双程走时单位为毫秒(ms))的方差切片特征

      a位置见图 1;b~d为断层F1的方差切片;e~g为断层F2的方差切片

      Fig.  5.  Variance slice characteristics of polygonal faults F1 and F2 at different depths (TWT unit is milliseconds (ms))

      图  6  多边形断层F1和F2的典型剖面

      a. F1-1~F1-4剖面为沿断层F1的SW-NE走向解释的典型剖面;b. F2-1~F2-4剖面为沿断层F2的SSW-NNE走向解释的典型剖面

      Fig.  6.  Typical seismic profiles of polygonal faults F1 and F2

      图  7  多边形断层落差分布及落差剖面特征

      a、b. 断层F1和F2的落差分布图;c. 沿断层F1的SW-NE走向逐线解释的落差剖面,并按解释的剖面顺序将其落差特征分类;d. 沿断层F2的SSW-NNE走向逐线解释的落差剖面,并按解释的剖面顺序将其落差特征分类.在同一断层面内,具有多个落差较大值,“C”型、“B”型和双“C”型落差剖面组合出现

      Fig.  7.  Polygonal faults throw distribution and throw-depth profile

      图  8  多边形断层生长发育模式

      红色线段代表断层,绿色虚线代表垂直于断层走向的剖面,T-D图代表垂直于断层走向的落差‒深度剖面图

      Fig.  8.  Polygonal faults growth and development pattern

    • Baudon, C., Cartwright, J., 2008. The Kinematics of Reactivation of Normal Faults Using High Resolution Throw Mapping. Journal of Structural Geology, 30(8): 1072-1084. https://doi.org/10.1016/j.jsg.2008.04.008
      Bertoni, C., Cartwright, J., Foschi, M., et al., 2018. Spectrum of Gas Migration Phenomena across Multilayered Sealing Sequences. AAPG Bulletin, 102(6): 1011-1034. https://doi.org/10.1306/0810171622617210
      Bertoni, C., Gan, Y., Paganoni, M., et al., 2019. Late Paleocene Pipe Swarm in the Great South-Canterbury Basin (New Zealand). Marine and Petroleum Geology, 107: 451-466. https://doi.org/10.1016/j.marpetgeo.2019.05.039
      Cao, L., Sun, Q. L., Magee, C., 2023a. Reutilization of Fluid Flow Pathways over 54 Million Years, Offshore New Zealand. Basin Research, 35(6): 2349-2363. https://doi.org/10.1111/bre.12801
      Cao, L., Sun, Q. L., Wang, J. Y., 2023b. Post-Rift Magma Plumbing System in the Northern Great South Basin, New Zealand. Tectonophysics, 864: 230030. https://doi.org/10.1016/j.tecto.2023.230030
      Cartwright, J. A., 1994. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 11(5): 587-607. https://doi.org/10.1016/0264-8172(94)90070-1
      Cartwright, J., 2011. Diagenetically Induced Shear Failure of Fine-Grained Sediments and the Development of Polygonal Fault Systems. Marine and Petroleum Geology, 28(9): 1593-1610. https://doi.org/10.1016/j.marpetgeo.2011.06.004
      Cartwright, J. A., Dewhurst, D. N., 1998. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 110(10): 1242-1257. https://doi.org/10.1130/0016-7606(1998)1101242: lbcfif>2.3.co;2 doi: 10.1130/0016-7606(1998)1101242:lbcfif>2.3.co;2
      Cartwright, J., James, D., Bolton, A., 2003. The Genesis of Polygonal Fault Systems: A Review. Geological Society, London, Special Publications, 216(1): 223-243. https://doi.org/10.1144/gsl.sp.2003.216.01.15
      Chen, Z. G., Jiang, T., Kuang, Z. G., et al., 2022. Accumulation Characteristics of Gas Hydrate-Shallow Gas Symbiotic System in Qiongdongnan Basin. Earth Science, 47(5): 1619-1634 (in Chinese with English astract).
      Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 16(8): 793-810. https://doi.org/10.1016/S0264-8172(99)00035-5
      Gay, A., Berndt, C., 2007. Cessation/Reactivation of Polygonal Faulting and Effects on Fluid Flow in the Vøring Basin, Norwegian Margin. Journal of the Geological Society, 164(1): 129-141. https://doi.org/10.1144/0016-76492005-178
      Hart, B. S., 1999. Definition of Subsurface Stratigraphy, Structure and Rock Properties from 3-D Seismic Data. Earth-Science Reviews, 47(3/4): 189-218. https://doi.org/10.1016/S0012-8252(99)00029-X
      Henriet, J. P., Batist, M., Verschuren, M., 1991. Early Fracturing of Paleogene Clays, Southernmost North Sea: Relevance to Mechanisms of Primary Hydrocarbon Migration. Generation, Accumulation, and Production of Europe's Hydrocarbons, 1: 217-227.
      Jiang, N., He, M., Liu, J., et al., 2017. Genetic Mechanism and Hydrocarbon Accumulation of Polygonal Fault System in Jinghai Sag of the Pearl River Mouth Basin. Oil & Gas Geology, 38(2): 363-370 (in Chinese with English astract).
      Jin, L., Yang, S. L., Ke, L., et al., 2015. Hydrocarbon Generation Potential in Great South Basin, New Zealand. Marine Origin Petroleum Geology, 20(3): 66-72 (in Chinese with English astract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201503014.htm
      King, J. J., Cartwright, J. A., 2020. Ultra-Slow Throw Rates of Polygonal Fault Systems. Geology, 48(5): 473-477. https://doi.org/10.1130/g47221.1
      Laurent, D., Gay, A., Baudon, C., et al., 2012. High-Resolution Architecture of a Polygonal Fault Interval Inferred from Geomodel Applied to 3D Seismic Data from the Gjallar Ridge, Vøring Basin, Offshore Norway. Marine Geology, 332: 134-151. https://doi.org/10.1016/j.margeo.2012.07.016
      Li, L., Wang, B., Sun, L. Y., et al., 2023. Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea. Earth Science, 48(12): 4628-4640 (in Chinese with English astract).
      Lonergan, L., Cartwright, J., Jolly, R., 1998. The Geometry of Polygonal Fault Systems in Tertiary Mudrocks of the North Sea. Journal of Structural Geology, 20(5): 529-548. https://doi.org/10.1016/S0191-8141(97)00113-2
      Morgan, D. A., 2016. The Growth and Evolution of Polygonal Fault Tiers (Dissertation). Cardiff University, Cardiff.
      Morley, C. K., Maczak, A., Rungprom, T., et al., 2017. New Style of Honeycomb Structures Revealed on 3D Seismic Data Indicate Widespread Diagenesis Offshore Great South Basin, New Zealand. Marine and Petroleum Geology, 86: 140-154. https://doi.org/10.1016/j.marpetgeo.2017.05.035
      Olakunle, O. K., Ajibola, L. M., Muhammad, I. H., et al., 2021. Massive Seafloor Mounds Depict Potential for Seafloor Mineral Deposits in the Great South Basin (GSB) Offshore New Zealand. Scientific Reports, 11: 9185. https://doi.org/10.1038/s41598-021-88620-x
      Quan, X. Y., Li, X. Q., Ren, J. Y., et al., 2015. Polygonal Faulting and Petroleum Geological Significance of Qn1 Formation in the Sanzhao Sag, Songliao Basin. Geotectonica et Metallogenia, 39(2): 260-272 (in Chinese with English astract).
      Sahoo, T., King, P., Bland, K., et al., 2014. Tectono-Sedimentary Evolution and Source Rock Distribution of the Mid to Late Cretaceous Succession in the Great South Basin, New Zealand. The APPEA Journal, 54(1): 259. https://doi.org/10.1071/aj13026
      Sahoo, T. R., Nicol, A., Browne, G. H., et al., 2020. Evolution of a Normal Fault System along Eastern Gondwana, New Zealand. Tectonics, 39(10): e2020TC006181. https://doi.org/10.1029/2020TC006181
      Sahoo, T. R., Strogen, D. P., Browne, G. H., et al., 2022. Evolution of Syn-to Early Post-Rift Facies in Rift Basins: Insights from the Cretaceous-Paleocene of the Great South Basin, New Zealand. Basin Research, 34(3): 1113-1142. https://doi.org/10.1111/bre.12652
      Shalaby, M. R., Osli, L. N., Kalaitzidis, S., et al., 2019. Thermal Maturity and Depositional Palaeoenvironments of the Cretaceous-Palaeocene Source Rock Taratu Formation, Great South Basin, New Zealand. Journal of Petroleum Science and Engineering, 181: 106156. https://doi.org/10.1016/j.petrol.2019.06.020
      Shin, H., Santamarina, J. C., Cartwright, J. A., 2008. Contraction-Driven Shear Failure in Compacting Uncemented Sediments. Geology, 36(12): 931. https://doi.org/10.1130/g24951a.1
      Stuevold, L. M., Faerseth, R. B., Arnesen, L., et al., 2003. Polygonal Faults in the Ormen Lange Field, Møre Basin, Offshore Mid Norway. Geological Society, London, Special Publications, 216(1): 263-281. https://doi.org/10.1144/gsl.sp.2003.216.01.17
      Sun, Q. L., Wu, S. G., Lü, F. L., et al., 2010. Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470-479. https://doi.org/10.1016/j.jseaes.2010.04.002
      Watterson, J., Walsh, J., Nicol, A., et al., 2000. Geometry and Origin of a Polygonal Fault System. Journal of the Geological Society, 157(1): 151-162. https://doi.org/10.1144/jgs.157.1.151
      Zhang, X., Luo, Z. Q., Cao, Z. Q., et al., 2015. Controlling Effect of Tectonic Evolution on Hydrocarbon Accumulation in Great South Basin, New Zealand. Global Geology, 34(2): 460-467 (in Chinese with English astract).
      陈子归, 姜涛, 匡增桂, 等, 2022. 琼东南盆地天然气水合物与浅层气共生体系成藏特征. 地球科学, 47(5): 1619-1634. doi: 10.3799/dqkx.2022.094
      江宁, 何敏, 刘军, 等, 2017. 珠江口盆地靖海凹陷多边形断层系统成因及油气成藏意义. 石油与天然气地质, 38(2): 363-370.
      金莉, 杨松岭, 柯岭, 等, 2015. "源热共控" 新西兰南大盆地生烃潜力. 海相油气地质, 20(3): 66-72.
      李林, 王彬, 孙鲁一, 等, 2023. 南海中建盆地天然气水合物富集特征与控制因素. 地球科学, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072
      全夏韵, 李祥权, 任建业, 等, 2015. 松辽盆地三肇凹陷青一段多边形断层的发育及其油气地质意义. 大地构造与成矿学, 39(2): 260-272.
      张鑫, 骆宗强, 曹自强, 等, 2015. 新西兰Great South盆地构造演化对油气的控制作用. 世界地质, 34(2): 460-467.
    • 加载中
    图(8)
    计量
    • 文章访问数:  389
    • HTML全文浏览量:  124
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-14
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回