Growth Processes and Mechanism of Polygonal Faults
-
摘要: 多边形断层广泛发育在大陆边缘沉积盆地中,但是目前对于多边形断层的生长过程和机制尚不清楚.本研究基于高精度三维地震资料,刻画了新西兰大南盆地中多边形断层系统的特征,剖析了其生长过程,并建立其生长模式.根据研究区多边形断层的几何特征,新西兰大南盆地中多边形断层可以划分为Tier1和Tier2两个层段.多边形断层落差剖面主要为“C”型、双“C”型和“B”型.结合断层的几何及生长特征,本研究提出了跨层段多边形断层的生长模式:多边形断层首先在下部层段的中心成核,并向各个方向生长;经过一段平静期后,多边形断层在新(上部)层段的中心成核;上覆层段中的多边形断层与下伏层段中的多边形断层逐渐联通,形成中继结构和跨层的“大断层”.本研究揭示了多边形断层的生长机制,明确了断层的成核、生长和停止生长等生长过程,相关研究成果能够服务于油气勘探开发及防灾减灾等.Abstract: Polygonal faults are widely developed in continental sedimentary basins. However, their growth processes and mechanism are still unclear. Based on high-resolution 3D seismic data in the Great South Basin of New Zealand, in this study it focuses on the characteristics, growth processes and growth pattern of polygonal faults. According to the geometric characteristics of polygonal faults, they are divided into two tiers (Tier1 and Tier2). The throw profiles of polygonal faults are "C" type, double "C" type and "B" type. According to the geometric and growth characteristics, it proposes the growth pattern of cross-layer polygonal faults. Polygonal faults initially nucleated at the center of the lower layer (Tier1) and grew in all directions. Following a period of quiescence, polygonal faults nucleated in the center of the new (upper) layer (Tier2). Polygonal faults in the overlying layer were gradually connected with those in the underlying layer, forming the relay zones and a cross-layer "large fault". This study reveals the growth processes of polygonal faults such as nucleation, growth and cessation. The related research results can contribute to the hydrocarbon exploration and development, disaster prevention and mitigation.
-
Key words:
- polygonal faults /
- geometric features /
- growth process /
- New Zealand /
- Great South basin /
- submarine geology /
- sedimentology
-
图 1 新西兰大南盆地沉积厚度及三维地震资料位置(据Cao et al.,2023b改)
Fig. 1. Sedimentary thickness and 3D seismic data location of the Great South basin, New Zealand (modified from Cao et al., 2023b)
图 2 大南盆地地层柱状图(据Cao et al.,2023a改)
Fig. 2. Stratigraphic histogram of the Great South basin (modified from Cao et al., 2023a)
图 3 研究区内多边形断层地震剖面特征(a)和层段划分(b)
剖面位置见图 1,剖面垂直拉伸率为5
Fig. 3. Seismic profile (a) and its interpretation (b) of polygonal faults and horizons in the study area
图 5 多边形断层F1和F2在不同深度(双程走时单位为毫秒(ms))的方差切片特征
a位置见图 1;b~d为断层F1的方差切片;e~g为断层F2的方差切片
Fig. 5. Variance slice characteristics of polygonal faults F1 and F2 at different depths (TWT unit is milliseconds (ms))
-
Baudon, C., Cartwright, J., 2008. The Kinematics of Reactivation of Normal Faults Using High Resolution Throw Mapping. Journal of Structural Geology, 30(8): 1072-1084. https://doi.org/10.1016/j.jsg.2008.04.008 Bertoni, C., Cartwright, J., Foschi, M., et al., 2018. Spectrum of Gas Migration Phenomena across Multilayered Sealing Sequences. AAPG Bulletin, 102(6): 1011-1034. https://doi.org/10.1306/0810171622617210 Bertoni, C., Gan, Y., Paganoni, M., et al., 2019. Late Paleocene Pipe Swarm in the Great South-Canterbury Basin (New Zealand). Marine and Petroleum Geology, 107: 451-466. https://doi.org/10.1016/j.marpetgeo.2019.05.039 Cao, L., Sun, Q. L., Magee, C., 2023a. Reutilization of Fluid Flow Pathways over 54 Million Years, Offshore New Zealand. Basin Research, 35(6): 2349-2363. https://doi.org/10.1111/bre.12801 Cao, L., Sun, Q. L., Wang, J. Y., 2023b. Post-Rift Magma Plumbing System in the Northern Great South Basin, New Zealand. Tectonophysics, 864: 230030. https://doi.org/10.1016/j.tecto.2023.230030 Cartwright, J. A., 1994. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 11(5): 587-607. https://doi.org/10.1016/0264-8172(94)90070-1 Cartwright, J., 2011. Diagenetically Induced Shear Failure of Fine-Grained Sediments and the Development of Polygonal Fault Systems. Marine and Petroleum Geology, 28(9): 1593-1610. https://doi.org/10.1016/j.marpetgeo.2011.06.004 Cartwright, J. A., Dewhurst, D. N., 1998. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 110(10): 1242-1257. https://doi.org/10.1130/0016-7606(1998)1101242: lbcfif>2.3.co;2 doi: 10.1130/0016-7606(1998)1101242:lbcfif>2.3.co;2 Cartwright, J., James, D., Bolton, A., 2003. The Genesis of Polygonal Fault Systems: A Review. Geological Society, London, Special Publications, 216(1): 223-243. https://doi.org/10.1144/gsl.sp.2003.216.01.15 Chen, Z. G., Jiang, T., Kuang, Z. G., et al., 2022. Accumulation Characteristics of Gas Hydrate-Shallow Gas Symbiotic System in Qiongdongnan Basin. Earth Science, 47(5): 1619-1634 (in Chinese with English astract). Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 16(8): 793-810. https://doi.org/10.1016/S0264-8172(99)00035-5 Gay, A., Berndt, C., 2007. Cessation/Reactivation of Polygonal Faulting and Effects on Fluid Flow in the Vøring Basin, Norwegian Margin. Journal of the Geological Society, 164(1): 129-141. https://doi.org/10.1144/0016-76492005-178 Hart, B. S., 1999. Definition of Subsurface Stratigraphy, Structure and Rock Properties from 3-D Seismic Data. Earth-Science Reviews, 47(3/4): 189-218. https://doi.org/10.1016/S0012-8252(99)00029-X Henriet, J. P., Batist, M., Verschuren, M., 1991. Early Fracturing of Paleogene Clays, Southernmost North Sea: Relevance to Mechanisms of Primary Hydrocarbon Migration. Generation, Accumulation, and Production of Europe's Hydrocarbons, 1: 217-227. Jiang, N., He, M., Liu, J., et al., 2017. Genetic Mechanism and Hydrocarbon Accumulation of Polygonal Fault System in Jinghai Sag of the Pearl River Mouth Basin. Oil & Gas Geology, 38(2): 363-370 (in Chinese with English astract). Jin, L., Yang, S. L., Ke, L., et al., 2015. Hydrocarbon Generation Potential in Great South Basin, New Zealand. Marine Origin Petroleum Geology, 20(3): 66-72 (in Chinese with English astract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201503014.htm King, J. J., Cartwright, J. A., 2020. Ultra-Slow Throw Rates of Polygonal Fault Systems. Geology, 48(5): 473-477. https://doi.org/10.1130/g47221.1 Laurent, D., Gay, A., Baudon, C., et al., 2012. High-Resolution Architecture of a Polygonal Fault Interval Inferred from Geomodel Applied to 3D Seismic Data from the Gjallar Ridge, Vøring Basin, Offshore Norway. Marine Geology, 332: 134-151. https://doi.org/10.1016/j.margeo.2012.07.016 Li, L., Wang, B., Sun, L. Y., et al., 2023. Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea. Earth Science, 48(12): 4628-4640 (in Chinese with English astract). Lonergan, L., Cartwright, J., Jolly, R., 1998. The Geometry of Polygonal Fault Systems in Tertiary Mudrocks of the North Sea. Journal of Structural Geology, 20(5): 529-548. https://doi.org/10.1016/S0191-8141(97)00113-2 Morgan, D. A., 2016. The Growth and Evolution of Polygonal Fault Tiers (Dissertation). Cardiff University, Cardiff. Morley, C. K., Maczak, A., Rungprom, T., et al., 2017. New Style of Honeycomb Structures Revealed on 3D Seismic Data Indicate Widespread Diagenesis Offshore Great South Basin, New Zealand. Marine and Petroleum Geology, 86: 140-154. https://doi.org/10.1016/j.marpetgeo.2017.05.035 Olakunle, O. K., Ajibola, L. M., Muhammad, I. H., et al., 2021. Massive Seafloor Mounds Depict Potential for Seafloor Mineral Deposits in the Great South Basin (GSB) Offshore New Zealand. Scientific Reports, 11: 9185. https://doi.org/10.1038/s41598-021-88620-x Quan, X. Y., Li, X. Q., Ren, J. Y., et al., 2015. Polygonal Faulting and Petroleum Geological Significance of Qn1 Formation in the Sanzhao Sag, Songliao Basin. Geotectonica et Metallogenia, 39(2): 260-272 (in Chinese with English astract). Sahoo, T., King, P., Bland, K., et al., 2014. Tectono-Sedimentary Evolution and Source Rock Distribution of the Mid to Late Cretaceous Succession in the Great South Basin, New Zealand. The APPEA Journal, 54(1): 259. https://doi.org/10.1071/aj13026 Sahoo, T. R., Nicol, A., Browne, G. H., et al., 2020. Evolution of a Normal Fault System along Eastern Gondwana, New Zealand. Tectonics, 39(10): e2020TC006181. https://doi.org/10.1029/2020TC006181 Sahoo, T. R., Strogen, D. P., Browne, G. H., et al., 2022. Evolution of Syn-to Early Post-Rift Facies in Rift Basins: Insights from the Cretaceous-Paleocene of the Great South Basin, New Zealand. Basin Research, 34(3): 1113-1142. https://doi.org/10.1111/bre.12652 Shalaby, M. R., Osli, L. N., Kalaitzidis, S., et al., 2019. Thermal Maturity and Depositional Palaeoenvironments of the Cretaceous-Palaeocene Source Rock Taratu Formation, Great South Basin, New Zealand. Journal of Petroleum Science and Engineering, 181: 106156. https://doi.org/10.1016/j.petrol.2019.06.020 Shin, H., Santamarina, J. C., Cartwright, J. A., 2008. Contraction-Driven Shear Failure in Compacting Uncemented Sediments. Geology, 36(12): 931. https://doi.org/10.1130/g24951a.1 Stuevold, L. M., Faerseth, R. B., Arnesen, L., et al., 2003. Polygonal Faults in the Ormen Lange Field, Møre Basin, Offshore Mid Norway. Geological Society, London, Special Publications, 216(1): 263-281. https://doi.org/10.1144/gsl.sp.2003.216.01.17 Sun, Q. L., Wu, S. G., Lü, F. L., et al., 2010. Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470-479. https://doi.org/10.1016/j.jseaes.2010.04.002 Watterson, J., Walsh, J., Nicol, A., et al., 2000. Geometry and Origin of a Polygonal Fault System. Journal of the Geological Society, 157(1): 151-162. https://doi.org/10.1144/jgs.157.1.151 Zhang, X., Luo, Z. Q., Cao, Z. Q., et al., 2015. Controlling Effect of Tectonic Evolution on Hydrocarbon Accumulation in Great South Basin, New Zealand. Global Geology, 34(2): 460-467 (in Chinese with English astract). 陈子归, 姜涛, 匡增桂, 等, 2022. 琼东南盆地天然气水合物与浅层气共生体系成藏特征. 地球科学, 47(5): 1619-1634. doi: 10.3799/dqkx.2022.094 江宁, 何敏, 刘军, 等, 2017. 珠江口盆地靖海凹陷多边形断层系统成因及油气成藏意义. 石油与天然气地质, 38(2): 363-370. 金莉, 杨松岭, 柯岭, 等, 2015. "源热共控" 新西兰南大盆地生烃潜力. 海相油气地质, 20(3): 66-72. 李林, 王彬, 孙鲁一, 等, 2023. 南海中建盆地天然气水合物富集特征与控制因素. 地球科学, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072 全夏韵, 李祥权, 任建业, 等, 2015. 松辽盆地三肇凹陷青一段多边形断层的发育及其油气地质意义. 大地构造与成矿学, 39(2): 260-272. 张鑫, 骆宗强, 曹自强, 等, 2015. 新西兰Great South盆地构造演化对油气的控制作用. 世界地质, 34(2): 460-467. -