• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    马面硫铁矿矿区水体水化学和同位素特征及环境指示意义

    邓杏彬 黄深 任坤 黄南锐 何光 黄惠及 曾洁 程瑞瑞 潘晓东

    邓杏彬, 黄深, 任坤, 黄南锐, 何光, 黄惠及, 曾洁, 程瑞瑞, 潘晓东, 2025. 马面硫铁矿矿区水体水化学和同位素特征及环境指示意义. 地球科学, 50(4): 1531-1544. doi: 10.3799/dqkx.2024.064
    引用本文: 邓杏彬, 黄深, 任坤, 黄南锐, 何光, 黄惠及, 曾洁, 程瑞瑞, 潘晓东, 2025. 马面硫铁矿矿区水体水化学和同位素特征及环境指示意义. 地球科学, 50(4): 1531-1544. doi: 10.3799/dqkx.2024.064
    Deng Xingbin, Huang Shen, Ren Kun, Huang Nanrui, He Guang, Huang Huiji, Zeng Jie, Cheng Ruirui, Pan Xiaodong, 2025. Hydrochemical and Isotopic Characteristics of Water in Mamian Pyrite Mining Area and Their Environmental Indication Significance. Earth Science, 50(4): 1531-1544. doi: 10.3799/dqkx.2024.064
    Citation: Deng Xingbin, Huang Shen, Ren Kun, Huang Nanrui, He Guang, Huang Huiji, Zeng Jie, Cheng Ruirui, Pan Xiaodong, 2025. Hydrochemical and Isotopic Characteristics of Water in Mamian Pyrite Mining Area and Their Environmental Indication Significance. Earth Science, 50(4): 1531-1544. doi: 10.3799/dqkx.2024.064

    马面硫铁矿矿区水体水化学和同位素特征及环境指示意义

    doi: 10.3799/dqkx.2024.064
    基金项目: 

    广西自然科学基金 2021JJA150041

    广西自然科学基金 2023JJD150024

    广西重点研发专项 GuikeAB21196026

    广西重点研发专项 2023AB26039

    中国地质科学院基本科研业务费 2022005

    中国地质科学院基本科研业务费 2023018

    中国地质调查局地质调查项目 DD20242733

    国家自然科学基金项目 41702278

    详细信息
      作者简介:

      邓杏彬(1971-),男,高级工程师,主要从事矿产地质、矿山水文地质研究. ORCID:0009-0006-7893-5094. E-mail:767898846@qq.com

      通讯作者:

      任坤(1988-), 男, 博士研究生, 副研究员, 主要从事岩溶水文地质研究. ORCID: 0000-0003-0321-172X. E-mail: rkhblhk@163.com

    • 中图分类号: P641

    Hydrochemical and Isotopic Characteristics of Water in Mamian Pyrite Mining Area and Their Environmental Indication Significance

    • 摘要: 酸性矿坑水(acid mine drainage,AMD)会导致受纳水体水质恶化,加速碳酸盐岩溶解而释放CO2,危害甚广.结合水文地质条件,采用水化学和同位素手段,探讨桂林马面矿区地表水和地下水中污染物来源及迁移机制.流域水体化学组分主要来源于碳酸盐岩和硅酸盐岩的风化以及硫化物的氧化,水化学类型以Ca-HCO3为主,部分采样点受人类活动影响转为Ca-HCO3·SO4和Ca·(K+Na)-HCO3型.硫氧同位素揭示硫化物氧化、雨水和污水是流域地表水和地下水SO42-的主要来源.从水化学和同位素组成变化表明,AMD对地表水和地下水的影响沿流程增加而逐渐降低,分别影响至下游约13.5 km和1.5 km.此研究不仅揭示了AMD和人类活动对研究区水体的负面影响,为马面矿区水资源保护治理提供了基础数据;同时证实了同位素和水化学相结合是研究矿区污染物迁移转化的有效手段,为其他矿区污染物的研究提供了新思路.

       

    • 图  1  研究区(a)地理位置,(b)水文地质概况和采样点分布和(c)A-A'水文地质剖面

      Fig.  1.  Location of the study watershed (a), details of the hydrogeology and sampling sites (b) and hydrological cross-section (c)(line A-A')

      图  2  研究区不同水体水化学Piper图

      Fig.  2.  Piper diagram for the different waters within the study area

      图  3  研究区不同水体Gibbs图

      Fig.  3.  Gibbs diagram for the different waters within the study area

      图  4  研究区不同水体Ca2+/Na+与Mg2+/Na+(a), Ca2++Mg2+与HCO3-(b), Ca2++Mg2+与HCO3-+SO42-(c), 和Mg2+/Ca2+与SO42-的关系(d)

      Fig.  4.  Plots of Ca2+/Na+ vs. Mg2+/Na+ (a), Ca2++Mg2+ vs. HCO3- (b), Ca2++Mg2+ vs. HCO3-+SO42- (c), and Mg2+/Ca2+ vs. SO42- (d) for the different waters within the study area

      图  5  研究区不同水体Cl-与TIN的关系图

      图中对应范围修改自Panno et al.(2006a2006b),Zhang et al.(2014)Ren et al.(2022)

      Fig.  5.  Cl- vs. TIN plot for the different waters within the study area

      图  6  研究区不同水体(a)1/SO42-δ18O-SO4和(b)δ34S-SO4δ18O-SO4的关系

      图6b中边界斜率0.26和0.48来源于Gammons et al.(2013)

      Fig.  6.  Plots of 1/SO42- vs. δ18O-SO4 (a) and δ34S-SO4 vs. δ18O-SO4 (b) for the different waters within the study area

      图  7  研究区不同水体δ18O-H2O与δ18O-SO4关系

      Fig.  7.  The δ18O-H2O vs. δ18O-SO4 plot for the different waters within the study area

      图  8  采样点中SO42-(a)和δ34S-SO4δ18O-SO4(b)沿流程变化

      Fig.  8.  Changes in SO42- concentration (a) and δ34S-SO4 and δ18O-SO4 values (b) at sampling points along the water flow path

      图  9  各输入端贡献比例沿流程变化(a)和Cl-δ34S-SO4的关系(b)

      Fig.  9.  Changes in contribution ratios of each input along the flow path (a) and the relationship between Cl- and δ34S-SO4 (b)

      表  1  研究区不同水体理化性质、化学成分和同位素组成变化范围

      Table  1.   Ranges of physicochemical, chemical parameters and stable isotope ratios for the different waters within the study area

      水体 时间/范围 pH EC DO Ca2+ Mg2+ K+ Na+ TFe Cl- SO42- HCO3- NO3- NO2- NH4+ δ18O-H2O δ34S-SO4 δ18O-SO4
      (μS/cm) (mg/L) (‰)
      老窑水(n=3) 2023年9月 4.4 7 030 5.4 439 810.0 2.4 0.5 638.90 2.8 6 263 0 0.4 bdl 11.38 -5.9 -10.5 1.3
      2023年2月 3.8 12 060 6.0 432 2 164.4 3.3 2.6 1 532.50 4.6 12 038 0 2.9 bdl 246.25 -5.8
      2022年7月 5.5 4 630 5.7 498 450.7 4.4 1.0 342.40 2.7 3 680 6 0.9 bdl 40.21 -6.8 -13.2 3.1
      地表水(n=7) 最小值 7.4 350 3.3 39 5.8 1.0 1.0 0.44 2.9 15.4 58 0.7 bdl bdl -6.6 -11.6 3.7
      最大值 9.0 779 12.0 110 37.7 13.7 4.1 1.29 9.1 199 249 10.6 0.52 bdl -5.0 5.5 9.2
      平均值 7.8 446 7.3 69 11.5 4.1 3.0 0.70 6.6 60.2 189 5.4 0.36 -5.7 -1.9 7.1
      标准偏差 0.6 152 3.0 22 11.6 4.3 1.1 0.29 2.0 68.1 62 3.9 0.26 0.6 6.8 1.9
      地下水(n=15) 最小值 6.9 298 3.4 53 4.6 0.3 0.4 0.40 1.1 11.2 165 0.1 bdl bdl -6.3 -13.2 3.1
      最大值 7.7 2, 170 11.8 381 120.6 44.4 9.8 3.99 14.4 1 184 299 54.3 8.85 0.75 -5.2 4.2 8.0
      平均值 7.2 676 5.7 112 20.4 7.4 2.1 1.13 5.9 147.9 256 14.1 1.39 0.45 -5.8 -5.3 5.4
      标准偏差 0.2 463 2.5 80 31.6 13.5 2.5 0.85 4.0 307.3 36 17.7 2.87 0.38 0.3 4.4 1.7
      污水(n=4) 2023年2月 38.14 48.37
      26.56 25.93
      2022年7月 7.69 23.16
      6.62 11.79
      注:dbl为低于仪器检测限.
      下载: 导出CSV
    • Bottrell, S., Tellam, J., Bartlett, R., et al., 2008. Isotopic Composition of Sulfate as a Tracer of Natural and Anthropogenic Influences on Groundwater Geochemistry in an Urban Sandstone Aquifer, Birmingham, UK. Applied Geochemistry, 23(8): 2382-2394. https://doi.org/10.1016/j.apgeochem.2008.03.012
      Cao, H. L., Li, W., Su, C. L., et al., 2023. Indication of Hydrochemistry and δ34S-SO42- on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443(in Chinese with English abstract).
      Chen, H., Cui, Y. H., Wang, H. M., et al., 2024. Advances in Mines Ecological Restoration and Carbon Sequestration Potential. Earth Science, 49(12): 4594-4607(in Chinese with English abstract).
      Cidu, R., Dadea, C., Desogus, P., et al., 2012. Assessment of Environmental Hazards at Abandoned Mining Sites: A Case Study in Sardinia, Italy. Applied Geochemistry, 27(9): 1795-1806. https://doi.org/10.1016/j.apgeochem.2012.02.014
      Feng, J., Zhou, C. L., Yang, Q., et al., 2023. Performance and Mechanisms of PropS-SH/Ce(dbp)3 Coatings in the Inhibition of Pyrite Oxidationtion for Acid Mine Drainage Control. Environmental Pollution, 322: 121162. https://doi.org/10.1016/j.envpol.2023.121162
      Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1-4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
      Gammons, C. H., Brown, A., Poulson, S. R., et al., 2013. Using Stable Isotopes (S, O) of Sulfate to Track Local Contamination of the Madison Karst Aquifer, Montana, from Abandoned Coal Mine Drainage. Applied Geochemistry, 31: 228-238. https://doi.org/10.1016/j.apgeochem.2013.01.008
      Gammons, C. H., Duaime, T. E., Parker, S. R., et al., 2010. Geochemistry and Stable Isotope Investigation of Acid Mine Drainage Associated with Abandoned Coal Mines in Central Montana, USA. Chemical Geology, 269(1/2): 100-112. https://doi.org/10.1016/j.chemgeo.2009.05.026
      Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088
      Guo, Y. S., Yu, S., Li, Y. S., et al., 2016. Chemical Characteristics and Source of Acid Precipitation in Guilin. Environmental Science, 37(8): 2897-2905(in Chinese with English abstract).
      Hakkou, R., Benzaazoua, M., Bussière, B., 2008. Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 1. Environmental Characterization. Mine Water and the Environment, 27(3): 145-159. https://doi.org/10.1007/s10230-008-0036-6
      Horibe, Y., Shigehara, K., Takakuwa, Y., 1973. Isotope Separation Factor of Carbon Dioxide-Water System and Isotopic Composition of Atmospheric Oxygen. Journal of Geophysical Research, 78(15): 2625-2629. https://doi.org/10.1029/JC078i015p02625
      Huang, Q. B., Zou, S. Z., Qin, X. Q., et al., 2023. Study on Characteristics and Regulation Technology of Water Resources of Karst Wetland in Huixian, Guilin. Carsologica Sinica, 42(4): 722-732, 762(in Chinese with English abstract).
      Jeong, C. H., 2001. Effect of Land Use and Urbanization on Hydrochemistry and Contamination of Groundwater from Taejon Area, Korea. Journal of Hydrology, 253(1-4): 194-210. https://doi.org/10.1016/S0022-1694(01)00481-4
      Jia, X. C., Zhou, J. W., Zhu, H. H., et al., 2020. Characteristics of Sulfur Isotope in Water Bodies near the Zhaoyuan Gold Mine Area and Its Indicative Function of Pollution Sources. Hydrogeology & Engineering Geology, 47(5): 179-188(in Chinese with English abstract).
      Jiao, Y. N., Zhang, C. H., Su, P. D., et al., 2023. A Review of Acid Mine Drainage: Formation Mechanism, Treatment Technology, Typical Engineering Cases and Resource Utilization. Process Safety and Environmental Protection, 170: 1240-1260. https://doi.org/10.1016/j.psep.2022.12.083
      Li, X. Q., Zhou A. G., Gan, Y. Q., et al., 2011. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3/4): 312-322(in Chinese).
      Li, Y., Cao, M. D., Jin, M. G., et al., 2020. Hydrochemical Characteristics and Tracing of Nitrate Sources in Quanshui River Catchment, Hubei Province. Earth Science, 45(3): 1061-1070(in Chinese with English abstract).
      Li, Y. Y., Luo, Z. J., Qi, S. H., 2024. Characteristics and Genesis of Acid Drainage Contamination from a Rock Tunneling Project Site. Journal of Earth Science, 35(1): 190-200. https://doi.org/10.1007/s12583-021-1551-7
      Liu, C. Q., Lang, Y. C., Satake, H., et al., 2008. Identification of Anthropogenic and Natural Inputs of Sulfate and Chloride into the Karstic Ground Water of Guiyang, SW China: Combined δ37Cl and δ34S Approach. Environmental Science & Technology, 42(15): 5421-5427. https://doi.org/10.1021/es800380w
      Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., 2019. Extreme Enrichment of Arsenic and Rare Earth Elements in Acid Mine Drainage: Case Study of Wiśniówka Mining Area (South-Central Poland). Environmental Pollution, 244: 898-906. https://doi.org/10.1016/j.envpol.2018.10.106
      Panno, S. V., Hackley, K. C., Hwang, H. H., et al., 2006a. Characterization and Identification of Na-Cl Sources in Ground Water. Groundwater, 44(2): 176-187. https://doi.org/10.1111/j.1745-6584.2005.00127.x
      Panno, S. V., Kelly, W. R., Martinsek, A. T., et al., 2006b. Estimating Background and Threshold Nitrate Concentrations Using Probability Graphs. Groundwater, 44(5): 697-709. https://doi.org/10.1111/j.1745-6584.2006.00240.x
      Phillips, D. L., 2001. Mixing Models in Analyses of Diet Using Multiple Stable Isotopes: A Critique. Oecologia, 127(2): 166-170. https://doi.org/10.1007/s004420000571
      Pu, T., He, Y. Q., Zhang, T., et al., 2013. Isotopic and Geochemical Evolution of Ground and River Waters in a Karst Dominated Geological Setting: A Case Study from Lijiang Basin, South-Asia Monsoon Region. Applied Geochemistry, 33: 199-212. https://doi.org/10.1016/j.apgeochem.2013.02.013
      Ren, K., Pan, X. D., Yuan, D. X., et al., 2022. Nitrate Sources and Nitrogen Dynamics in a Karst Aquifer with Mixed Nitrogen Inputs (Southwest China): Revealed by Multiple Stable Isotopic and Hydro-Chemical Proxies. Water Research, 210: 118000. https://doi.org/10.1016/j.watres.2021.118000
      Ren, K., Zeng, J., Liang, J. P., et al., 2021. Impacts of Acid Mine Drainage on Karst Aquifers: Evidence from Hydrogeochemistry, Stable Sulfur and Oxygen Isotopes. Science of the Total Environment, 761: 143223. https://doi.org/10.1016/j.scitotenv.2020.143223
      Ren, M. M., Huang, F., Hu, X. N., et al., 2020. Characteristics and Sources of Dissolved Inorganic Carbon and Nitrate in Lijiang River Basin. Earth Science, 45(5): 1830-1843(in Chinese with English abstract).
      Shi, W. Z., Zhao, C. H., Liang, Y. P., et al., 2022. Genetic Mechanism Analysis of Low Ca/Mg Value of Acid Goaf Water in Coal Mine Drainage. Carsologica Sinica, 41(4): 511-521(in Chinese with English abstract).
      Singh, K. P., Gupta, S., Mohan, D., 2014. Evaluating Influences of Seasonal Variations and Anthropogenic Activities on Alluvial Groundwater Hydrochemistry Using Ensemble Learning Approaches. Journal of Hydrology, 511: 254-266. https://doi.org/10.1016/j.jhydrol.2014.01.004
      Skousen, J., Zipper, C. E., Rose, A., et al., 2017. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water and the Environment, 36(1): 133-153. https://doi.org/10.1007/s10230-016-0417-1
      Sun, J., Kobayashi, T., Strosnider, W. H. J., et al., 2017. Stable Sulfur and Oxygen Isotopes as Geochemical Tracers of Sulfate in Karst Waters. Journal of Hydrology, 551: 245-252. https://doi.org/10.1016/j.jhydrol.2017.06.006
      Tabelin, C. B., Silwamba, M., Paglinawan, F. C., et al., 2020. Solid-Phase Partitioning and Release-Retention Mechanisms of Copper, Lead, Zinc and Arsenic in Soils Impacted by Artisanal and Small-Scale Gold Mining (ASGM) Activities. Chemosphere, 260: 127574. https://doi.org/10.1016/j.chemosphere.2020.127574
      Taylor, B. E., Wheeler, M. C., 1993. Sulfur- and Oxygen-Isotope Geochemistry of Acid Mine Drainage in the Western United States: Field and Experimental Studies Revisited. ACS Symposium Series. Washington, DC: American Chemical Society: 481-514. https://doi.org/10.1021/bk-1994-0550.ch030
      Zhang, Y., Kelly, W. R., Panno, S. V., et al., 2014. Tracing Fecal Pollution Sources in Karst Groundwater by Bacteroidales Genetic Biomarkers, Bacterial Indicators, and Environmental Variables. Science of the Total Environment, 490: 1082-1090. https://doi.org/10.1016/j.scitotenv.2014.05.086
      Zhao, Y., Zou, S. Z., Shen, H. Y., et al., 2021. Dynamic Characteristics and Equilibrium of Water Level of the Karst Groundwater System beneath the Huixian Wetland. Carsologica Sinica, 40(2): 325-333 (in Chinese with English abstract).
      曹慧丽, 李伟, 苏春利, 等, 2023. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示. 地球科学, 48(9): 3432-3443. doi: 10.3799/dqkx.2022.119
      陈珲, 崔一涵, 汪海明, 等, 2024. 矿山生态修复及其固碳潜力研究进展. 地球科学, 49(12): 4594-4607. doi: 10.3799/dqkx.2024.081
      郭雅思, 于奭, 黎泳珊, 等, 2016. 桂林市酸雨变化特征及来源分析. 环境科学, 37(8): 2897-2905.
      黄奇波, 邹胜章, 覃小群, 等, 2023. 桂林市会仙岩溶湿地水资源特征及有效调控. 中国岩溶, 42(4): 722-732, 762.
      贾晓岑, 周建伟, 朱恒华, 等, 2020. 招远金矿区水体中硫同位素特征及其对污染来源的指示. 水文地质工程地质, 47(5): 179-188.
      李严, 曹明达, 靳孟贵, 等, 2020. 湖北泉水河流域水化学特征和硝酸盐来源示踪. 地球科学, 45(3): 1061-1070. doi: 10.3799/dqkx.2019.060
      任梦梦, 黄芬, 胡晓农, 等, 2020. 漓江流域碳氮同位素组成特征及其来源初探. 地球科学, 45(5): 1830-1843. doi: 10.3799/dqkx.2019.206
      石维芝, 赵春红, 梁永平, 等, 2022. 煤矿酸性"老窑水"低Ca/Mg成因机制. 中国岩溶, 41(4): 511-521.
      赵一, 邹胜章, 申豪勇, 等, 2021. 会仙湿地岩溶地下水系统水位动态特征与均衡分析. 中国岩溶, 40(2): 325-333.
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  17
    • HTML全文浏览量:  3
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-06
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回