• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究

    石雅静 刘汉彬 李军杰 张佳 金贵善 韩娟 张建锋 石晓 张万峰 石佳

    石雅静, 刘汉彬, 李军杰, 张佳, 金贵善, 韩娟, 张建锋, 石晓, 张万峰, 石佳, 2025. 西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究. 地球科学, 50(1): 88-96. doi: 10.3799/dqkx.2024.066
    引用本文: 石雅静, 刘汉彬, 李军杰, 张佳, 金贵善, 韩娟, 张建锋, 石晓, 张万峰, 石佳, 2025. 西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究. 地球科学, 50(1): 88-96. doi: 10.3799/dqkx.2024.066
    Shi Yajing, Liu Hanbin, Li Junjie, Zhang Jia, Jin Guishan, Han Juan, Zhang Jianfeng, Shi Xiao, Zhang Wanfeng, Shi Jia, 2025. Research of Xi'an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample. Earth Science, 50(1): 88-96. doi: 10.3799/dqkx.2024.066
    Citation: Shi Yajing, Liu Hanbin, Li Junjie, Zhang Jia, Jin Guishan, Han Juan, Zhang Jianfeng, Shi Xiao, Zhang Wanfeng, Shi Jia, 2025. Research of Xi'an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample. Earth Science, 50(1): 88-96. doi: 10.3799/dqkx.2024.066

    西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究

    doi: 10.3799/dqkx.2024.066
    基金项目: 

    核能开发项目 测H2301-2-7

    国家自然科学基金面上项目 41973051

    详细信息
      作者简介:

      石雅静(1994-), 女, 博士研究生, 从事同位素地球化学研究. ORCID:0009-0007-0040-1364. E-mail:1273430613@qq.com

      通讯作者:

      刘汉彬, E-mail: hanbinliu@sina.com

    • 中图分类号: P597

    Research of Xi'an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample

    • 摘要: 国内样品辐照资源有限, 可供选择的反应堆数量少, 反应堆开启频率低, 缺乏对反应堆辐照样品参数的系统研究, 在不同程度上制约了40Ar/39Ar定年科研进展, 需要开拓新的辐照资源.首次研究西安脉冲堆(XAPR)用于40Ar/39Ar定年样品的辐照条件, 通过黑云母标准物质ZBH-25确定中子通量的径向梯度和轴向梯度变化情况, 并通过钾盐和钙盐获得反应堆的副反应校正因子.结果表明辐照孔道径向J值变化幅度较小, 仅为0.49%, 且包含中子通量的峰值, 表明样品处于反应堆中心位置进行辐照.辐照孔道轴向中子通量梯度为0.54%/cm, XAPR辐照孔道内的校正因子(40Ar/39Ar)K =0.002 082 6、(39Ar/37Ar)Ca =0.000 776 92、(36Ar/37Ar)Ca =0.000 299 98.对标准物质ZBH-25黑云母进行年龄测定, 证明此反应堆满足40Ar/39Ar定年样品的辐照条件, 可以作为一个新的辐照源.

       

    • 图  1  西安脉冲反应堆堆芯

      a.反应堆稳定模式;b.反应堆脉冲模式

      Fig.  1.  Schematic diagram of the core of Xi'an Pulse Reactor

      图  2  石英管内样品位置示意图

      Fig.  2.  Sample position diagram in quartz tube

      图  3  不同径向位置的轴向辐照参数J值变化

      Fig.  3.  Neutron flux gradient curves along with the vertical gradients at different radial positions

      图  4  ZBH-25黑云母标准物质坪年龄谱图

      Fig.  4.  ZBH-25 biotite standard material plateau age spectrum

      图  5  国内外不同反应堆副反应校正因子对比

      Fig.  5.  Comparison of correction factors for side reactions in different reactors

      表  1  国内外反应堆快热中子比对比

      Table  1.   Comparison of fast/thermal neutron ratio in domestic and foreign reactors

      反应堆 XAPR HFETR McMaster HIFAR JMTR
      快/热中子比值 > 100 10 0.053 ~0.02 0.083
      参考文献 本文 李军杰等, 2019 Bottomley and York, 1976; Clark 1998 McDougall, 1985 Ishizuka, 1998
      下载: 导出CSV

      表  2  XAPR辐照参数J值测试数据

      Table  2.   Result of J value in difference position irradiated by XAPR

      1管 2管
      距底部距离(mm) J 距底部距离(mm) J
      0.5 0.006 373 0.5 0.006 117
      8 0.006 412 7.5 0.006 160
      16 0.006 447 16 0.006 194
      26.5 0.006 483 27 0.006 210
      35 0.006 502 38.5 0.006 210
      37.5 0.006 505 46.5 0.006 194
      44 0.006 511 56.5 0.006 191
      52.5 0.006 510 58 0.006 173
      61.5 0.006 496 66 0.006 151
      71 0.006 468 71 0.006 124
      80.5 0.006 423 77.5 0.006 088
      下载: 导出CSV

      表  3  标准物质黑云母ZBH-25年龄测试数据

      Table  3.   Standard material biotite ZBH-25 age test data

      温度(℃) 40Ar39Arm 36Ar39Arm 37Ar39Arm 40Ar*39Ar 39ArK(%) 视年龄(Ma, 2σ)
      800 5.702 543 0.000 31 0.019 91 5.797 84 7.38 130.20±0.36
      850 5.804 583 0.000 10 0.006 92 5.838 02 14.36 132.45±0.37
      900 5.809 839 0.000 09 0.008 42 5.840 35 10.28 132.57±0.36
      950 5.823 259 0.000 13 0.014 71 5.864 74 5.60 132.86±0.37
      1 000 5.816 016 0.000 21 0.020 38 5.879 62 5.74 132.70±0.37
      1 050 5.824 823 0.000 14 0.015 98 5.869 29 9.29 132.90±0.36
      1 100 5.802 389 0.000 07 0.039 46 5.823 66 13.59 132.40±0.36
      1 150 5.799 937 0.000 06 0.042 62 5.817 33 22.03 132.35±0.37
      1 200 5.807 431 0.000 07 0.125 96 5.822 05 7.88 132.51±0.37
      下载: 导出CSV
    • Borst, A. M., Waight, T. E., Finch, A. A., et al., 2019. Dating Agpaitic Rocks: A Multi-System (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) Isotopic Study of Layered Nepheline Syenites from the Ilímaussaq Complex, Greenland. Lithos, 324: 74-88. https://doi.org/10.1016/j.lithos.2018.10.037
      Bottomley, R. J., York, D., 1976. 40Ar-39Ar Age Determinations on the Owyhee Basalt of the Columbia Plateau. Earth and Planetary Science Letters, 31(1): 75-84. https://doi.org/10.1016/0012-821X(76)90098-4
      Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427-433. https://doi.org/10.1016/0012-821X(70)90146-9
      Chen, W., Jiang, X. B, Chen, L. X., et al., 2018. Physical and Safety Analysis of Uranium-Zirconium Hydride Pulse Reactor. Science Press, Beijing, 1-10 (in Chinese).
      Clark, A. H., Archibald, D. A., Lee, A. W., et al., 1998. Laser Probe 40Ar/39Ar Ages of Early- and Late-Stage Alteration Assemblages, Rosario Porphyry Copper- Molybdenum Deposit, Collahuasi District, I Region, Chile. Economic Geology, 93(3): 326-337. https://doi.org/10.2113/gsecongeo.93.3.326
      Coble, M. A., Grove, M., Calvert, A. T., 2011. Calibration of Nu-Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas. Chemical Geology, 290(1-2): 75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003
      Dalrymple, G. B., Duffield, W. A., 1988. High Precision 40Ar/39Ar Dating of Oligocene Rhyolites from the Mogollon-Datil Volcanic Field Using a Continuous Laser System. Geophysical Research Letters, 15(5): 463-466. https://doi.org/10.1029/gl015i005p00463
      Dalrymple, G. B., Lanphere, M. A., 1971. 40Ar/39Ar Technique of K-Ar Dating: A Comparison with the Conventional Technique. Earth and Planetary Science Letters, 12(3): 300-308. https://doi.org/10.1016/0012-821X(71)90214-7
      Dalrymple, G. B., Lanphere, M. A., 1974. 40Ar/39Ar Age Spectra of Some Undisturbed Terrestrial Samples. Geochimica et Cosmochimica Acta, 38(5): 715-738. https://doi.org/10.1016/0016-7037(74)90146-X
      Foland, K. A., Chen, J. F., Linder, J. S., et al., 1989. High-Resolution 40Ar/39Ar Chronology of Multiple Intrusion Igneous Complexes. Contributions to Mineralogy and Petrology, 102(2): 127-137. https://doi.org/10.1007/BF00375335
      Ishizuka, O., 1998. Vertical and Horizontal Variations of the Fast Neutron Flux in a Single Irradiation Capsule and Their Significance in the Laser-Heating 40Ar/39Ar Analysis: Case Study for the Hydraulic Rabbit Facility of the JMTR Reactor, Japan. Geochemical Journal, 32(4): 243-252. https://doi.org/10.2343/geochemj.32.243
      Jiang, D. Y., Jiang, X. B., Xu, P., et al., 2021. Study on the Simulation Method of Equivalent Surface Source of Radial Duct 1 in Xi'an Pulse Reactor. Progress Report on Nuclear Science and Technology in China (Vol. 7)- Volume 5 of Proceedings of the 2021 Annual Academic Conference of the Chinese Nuclear Society, 447-452 (in Chinese with English abstract).
      Jiang, X. B., Chen, D., Xie, Z. S., et al., 2001. Monte Carlo Method for Reactor Duct Shielding Calculation. Chinese Journal of Computational Physics, 18(3): 285-288 (in Chinese with English abstract).
      Kellett, D., Joyce, N., 2014. Analytical Details of Single- and Multi-Collection 40Ar/39Ar Measurements for Conventional Step-Heating and Total-Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada. Geological Survey of Canada, Technical Note 8, 1-27. https://doi.org/10.4095/293465
      Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/S0098- 3004(01)00095-4 doi: 10.1016/S0098-3004(01)00095-4
      Li, D., Zhang, W. S., Jiang, X. B., et al., 2014. Parameter Measurement for Radiation Field of Large Space Neutron Irradiation Platform in Xi 'an Pulsed Reactor. Atomic Energy Science and Technology, 48(7): 1243-1249 (in Chinese with English abstract).
      Li, J. J., Liu, H. B., Zhang, J., et al., 2019. Primary Research of High Flux Engineering Test Reactor (HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737 (in Chinese with English abstract).
      Li, X. H., Li, Y., Li, Q. L., et al., 2022. Progress and Prospects of Radiometric Geochronology. Acta Geologica Sinica, 96(1): 104-122 (in Chinese with English abstract).
      McDougall, I., 1985. K-Ar and 40Ar/39Ar Dating of the Hominid-Bearing Pliocene-Pleistocene Sequence at Koobi Fora, Lake Turkana, Northern Kenya. Geological Society of America Bulletin, 96(2): 159-175. https://doi.org/10.1130/0016-7606(1985)96159: kaadot>2.0.co;2 doi: 10.1130/0016-7606(1985)96159:kaadot>2.0.co;2
      Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852-2857. https://doi.org/10.1029/jz071i011p02852
      Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781-790. https://doi.org/10.1016/0016-7037(68)90012-4
      Renne, P. R., Knight, K. B., Nomade, S., et al., 2005. Application of Deuteron-Deuteron (D-D) Fusion Neutrons to 40Ar/39Ar Geochronology. Applied Radiation and Isotopes, 62(1): 25-32. https://doi.org/10.1016/j.apradiso.2004.06.004
      Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279
      Reynolds, J. H., Turner, G., 1964. Rare Gases in the Chondrite Renazzo. Journal of Geophysical Research, 69(15): 3263-3281. https://doi.org/10.1029/jz069i015p03263
      Rutte, D., Pfänder, J. A., Koleška, M., et al., 2015. Radial Fast-Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards. Geochemistry, Geophysics, Geosystems, 16(1): 336-345. https://doi.org/10.1002/2014gc005611
      Sang, H. Q., Wang, F., He, H. Y., et al., 2006. Intercalibration of ZBH-25 Biotite Reference Material Untilized for K-Ar and 40Ar-39Ar Age Determination. Acta Petrologica Sinica, 22(12): 3059-3078 (in Chinese with English abstract).
      Schaeffer, O. A., Müeller, H. W., Grove, T. L., 1977. Laser 39Ar-40Ar Study of Apollo 17 Basalts. Proc. Lunar Sci. Conf. 8th, 1489-1499.
      Schwarz, W. H., Trieloff, M., 2007. Intercalibration of 40Ar-39Ar Age Standards NL-25, HB3gr Hornblende, GA1550, SB-3, HD-B1 Biotite and BMus/2 Muscovite. Chemical Geology, 242(1-2): 218-231. https://doi.org/10.1016/j.chemgeo.2007.03.016
      Stacey, J. S., Sherrill, N. D., Dalrymple, G. B., et al., 1981. A Five-Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer. International Journal of Mass Spectrometry and Ion Physics, 39(2): 167-180. https://doi.org/10.1016/0020-7381(81)80031-9
      Vermeesch, P., 2015. Revised Error Propagation of 40Ar/39Ar Data, Including Covariances. Geochimica et Cosmochimica Acta, 171: 325-337. https://doi.org/10.1016/j.gca.2015.09.008
      Wang, F., Zheng, X. S., Lee, J. I. K., et al., 2009. An 40Ar/39Ar Geochronology on a Mid-Eocene Igneous Event on the Barton and Weaver Peninsulas: Implications for the Dynamic Setting of the Antarctic Peninsula. Geochemistry, Geophysics, Geosystems, 10(12): 1-29. https://doi.org/10.1029/2009gc002874
      Wang, L. Z., Wang, L. Y., Li, J., et al., 2022. Statistics Analysis of Illite 40Ar-39Ar Ages and Petroleum Accumulation Period. Earth Science, 47(2): 479-489 (in Chinese with English abstract).
      Wu, L. Y., 2019. Advances of Noble Gas Isotope Geochemistry Application in the Study of Ore Deposits. Acta Petrologica Sinica, 35(1): 215-232 (in Chinese with English abstract).
      Xu, X. B., Deng, F., Wang, D., et al., 2022. Advances in Composition and Dating Methods of Fault Gouge and Weakening Mechanisms of Earthquake Faults in Bedrock Area. Bulletin of Geological Science and Technology, 41(5): 122-131 (in Chinese with English abstract).
      Yang, Q., Pu, Y. X., Li, D. Z, et al., 2002. Xi' an Pulsed Reactor. Nuclear Power Engineering, 23(6): 1-7 (in Chinese with English abstract).
      Zhou, Z. J., Chen, Z. L., Zhang, W. G., et al., 2022. Geology, C-H-O Isotopes, and Muscovite 40Ar-39Ar Dating of the Qingbaishan Gold Deposit: Implications for Tectonism and Metallogenesis of Early Devonian Gold Deposits in the Beishan Orogen, NW China. Ore Geology Reviews, 145: 1-13. https://doi.org/10.1016/j.oregeorev.2022.104895
      陈伟, 江新标, 陈立新, 等, 2018. 铀氢锆脉冲反应堆物理与安全分析. 北京: 科学出版社, 1-10.
      姜夺玉, 江新标, 许鹏, 等, 2021. 西安脉冲堆1#径向孔道等效平面源模拟方法研究. 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第5册, 447-452.
      江新标, 陈达, 谢仲生, 等, 2001. 反应堆孔道屏蔽计算的蒙特卡罗方法. 计算物理, 18(3): 285-288.
      李达, 张文首, 江新标, 等, 2014. 西安脉冲堆大空间中子辐照实验平台辐射场参数测量. 原子能科学技术, 48(7): 1243-1249.
      李军杰, 刘汉彬, 张佳, 等, 2019. 高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探. 地球科学, 44(3): 727-737. doi: 10.3799/DQKX.2019.006
      李献华, 李扬, 李秋立, 等, 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104-122.
      桑海清, 王非, 贺怀宇, 等, 2006. K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制. 岩石学报, 22(12): 3059-3078.
      王龙樟, 王立云, 李季, 等, 2022. 伊利石40Ar-39Ar年龄的统计分析与成藏期. 地球科学, 47(2): 479-489. doi: 10.3799/dqkx.2021.071
      武丽艳, 2019. 稀有气体同位素地球化学在矿床学研究中的应用进展. 岩石学报, 35(1): 215-232.
      徐先兵, 邓飞, 王墩, 等, 2022. 基岩区断层泥的物质组成、定年方法与地震断层弱化机制研究进展. 地质科技通报, 41(5): 122-131.
      杨岐, 卜永熙, 李达忠, 等, 2002. 西安脉冲反应堆. 核动力工程, 23(6): 1-7.
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  170
    • HTML全文浏览量:  111
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-06
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回