• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地外有机物种类与分布及其天体生物学启示

    邱梦凡 薛皓中 胡森

    邱梦凡, 薛皓中, 胡森, 2024. 地外有机物种类与分布及其天体生物学启示. 地球科学, 49(11): 4184-4203. doi: 10.3799/dqkx.2024.067
    引用本文: 邱梦凡, 薛皓中, 胡森, 2024. 地外有机物种类与分布及其天体生物学启示. 地球科学, 49(11): 4184-4203. doi: 10.3799/dqkx.2024.067
    Qiu Mengfan, Xue Haozhong, Hu Sen, 2024. Species and Distribution of Extraterrestrial Organic Matter and Its Astrobiological Significance. Earth Science, 49(11): 4184-4203. doi: 10.3799/dqkx.2024.067
    Citation: Qiu Mengfan, Xue Haozhong, Hu Sen, 2024. Species and Distribution of Extraterrestrial Organic Matter and Its Astrobiological Significance. Earth Science, 49(11): 4184-4203. doi: 10.3799/dqkx.2024.067

    地外有机物种类与分布及其天体生物学启示

    doi: 10.3799/dqkx.2024.067
    基金项目: 

    中国科学院战略性先导科技专项 XDB41000000

    详细信息
      作者简介:

      邱梦凡(2000—),硕士研究生,行星化学专业,主要从事比较行星学研究. ORCID:0009-0005-4171-5269. E-mail:qiumengfan@mail.iggcas.ac.cn

      通讯作者:

      胡森, E-mail: husen@mail.iggcas.ac.cn

    • 中图分类号: P691

    Species and Distribution of Extraterrestrial Organic Matter and Its Astrobiological Significance

    • 摘要: 回顾了地外有机物的探测历程和地外样品中有机物的研究进展,探讨了星际介质和地外天体与地外样品中有机物的种类、结构、化学成分、同位素组成等特征,旨在梳理地外有机物的成因及其相关的科学问题,并探究其天体生物学的启示.星际介质普遍存在有机分子,指示宇宙空间中的有机物具有普遍性,并非地球或太阳系独有.碳质球粒陨石中发现羧酸、氨基酸、醇醛酮等有机物种类.随着深空探测技术的发展,火星大气中检测到甲烷的波动,土卫六表面广泛覆盖的液态碳氢化合物,彗星上探测到甘氨酸,小行星返回样品中发现存在氨基酸,这些研究指示太阳系可能广泛分布着有机物,为探寻地外生命和揭示生命起源提供了重要线索.

       

    • 图  1  球粒陨石群IOM的N和H相对含量元素及其同位素组成特征

      a.球粒陨石群中IOM的氢同位素组成与氢含量(N/C atomic)b.球粒陨石群中IOM的氮同位素组成与氮含量(H/C atomic).CI、CM、CR、CV、CO是依据化学成分和矿物组成划分出的不同的碳质球粒陨石群;Bells是异常的CM2;EH、EL是顽火辉石无球粒陨石.δD=((D/H)sample/(D/H)SMOW‒1)×1 000‰,SMOW是标准平均海洋水(Standard Mean Ocean Water,SMOW);δ15N=((15N/14N)sample/(15N/14N)大气氮‒1)× 1 000‰.数据来自:Alexander et al.(200720102017)

      Fig.  1.  The relative abundance of H and N and their isotopic compositions of IOM from various chondrites

      图  2  好奇号样本分析仪(SAM)探测到了大气中甲烷浓度的季节性波动

      图改自:NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

      Fig.  2.  The Curiosity Sample Analyzer (SAM) detects seasonal variations of methane in Martian atmosphere

      图  3  从星际介质到太阳系内的小行星,简单分子演化为复杂有机化合物的过程

      据Glavin et al.(2018)修改

      Fig.  3.  Formation and evolution of simple molecules to more complex organic compounds from the interstellar medium to small bodies in the Solar System

      表  1  星际介质中气相分子统计

      Table  1.   Summary of gas-phase molecules in interstellar media

      原子个数
      2 3 4 5 6 7 8 9 10 11 12 13
      AlF AlNC C2H2 C5 l-H2C4 c-C2H4O CH2CHCHO (CH3)2O (CH3)2CO HC8CN CH3OC2H5 HC11N
      AlCl C3 c-C3H C4H c- H2C3O CH2CHCN CH2CCHCN CH3CHCH2 CH3CH2CHO CH3C6H C6H6 c-C6H5CN
      C2 C2H l-C3H C4Si CH2CNH CH2CHOH CH2OHCHO CH3CH2CN CH3C5N
      CH C2O C3N l-C3H2 CH3NC CH3C2H CH3C3N CH3CH2OH NH2CH2COOH?
      CH+ C2S C3O c-C3H2 CH3CN CH3CHO CH3COOH CH3C4H
      CF+ C2P C3S CH2CN CH3OH C6H C7H CH3CONH2
      CN CO2 CH2D+? CH4 CH3SH HC5N HCOOCH3 C8H
      CO H3+ HCCN HCOOH C2H4 H3CNH2 H2C6 HC7N
      CO+ H2O HCNH+ HC3N C5H NH2CH2CN
      CP H2S HNCO HC2NC C5N
      CS H2C HNCS H2COH+ HC2CHO
      CSi HCN HOCO+ H2CHN HC3NH+
      H2 HCP H2CO H2C2O HC4N
      HCl HCO H2CN H2NCN NH2CHO
      HF HCO+ H2CS HNC3
      HO HCS+ H3O+ SiH4
      HS HOC+ NH3 SiC4
      SH+ HNC SiC3
      KCl HN2+
      N2 HNO
      NH KCN
      NO MgCN
      NS MgNC
      NaCl NH2
      O2 N2H+
      OH N2O
      PN NaCN
      PO OCS
      SO SO2
      SO+ c-SiC2
      SiC SiCN
      SiN SiNC
      SiO
      SiS
      FeO
      注:据文献Keller et al.(2004)修改.
      下载: 导出CSV

      表  2  Murchison碳质球粒陨石中主要非生物成因有机质类型与丰度

      Table  2.   Abiogenic organic matter identified in the Murchison carbonaceous chondrite and its abundances

      有机物类型 含量(10-6)
      (1)碳氢化合物(Hydrocarbons)
      脂肪族(Aliphatic) 12~35
      甲烷(Methane) 0.14
      芳香族(Aromatic) 15~28
      (2)酸类(Acids)
      一元酸(Monocarboxylic) 332
      二元酸(Dicarboxylic) 25.7
      α-羟基羧酸(α-hydroxycarboxylic) 14.6
      氨基酸(Amino acids) 60
      二氨基酸(Diamino acids) 0.04
      磺酸(Sulphonic acids) 67
      膦酸(Phosphonic acids) 1.5
      (3)醇类、醛类、酮类、糖类
      醛类(Aldehydes) 11
      酮类(Ketones) 16
      醇类(Alcohols) 11
      糖及相关化合物(多元醇polyols) ~24
      (4)胺类和酰胺类
      胺类(Amines) 8
      尿素(Urea) 25
      (5)杂环类
      碱性氮杂环化合物(Basic N-heterocycles) 0.05~0.5
      嘧啶(Pyrimidines) 0.06
      嘌呤(Purines) 1.2
      注:据文献Sephton(2002); Sephton and Botta(2008); Pizzarello and Shock(2010)修改.
      下载: 导出CSV
    • Abbey, W. J., Bhartia, R., Beegle, L. W., et al., 2017. Deep UV Raman Spectroscopy for Planetary Exploration: The Search for in Situ Organics. Icarus, 290: 201-214. https://doi.org/10.1016/j.icarus.2017.01.039
      Alexander, C. M. O., Cody, G. D., de Gregorio, B. T., et al., 2017. The Nature, Origin and Modification of Insoluble Organic Matter in Chondrites, the Major Source of Earth's C and N. Geochemistry, 77(2): 227-256. https://doi.org/10.1016/j.chemer.2017.01.007
      Alexander, C. M. O., Cody, G. D., Kebukawa, Y., et al., 2014. Elemental, Isotopic, and Structural Changes in Tagish Lake Insoluble Organic Matter Produced by Parent Body Processes. Meteoritics & Planetary Science, 49(4): 503-525. https://doi.org/10.1111/maps.12282
      Alexander, C. M. O., Fogel, M., Yabuta, H., et al., 2007. The Origin and Evolution of Chondrites Recorded in the Elemental and Isotopic Compositions of Their Macromolecular Organic Matter. Geochimica et Cosmochimica Acta, 71(17): 4380-4403. https://doi.org/10.1016/j.gca.2007.06.052
      Alexander, C. M. O., Newsome, S. D., Fogel, M. L., et al., 2010. Deuterium Enrichments in Chondritic Macromolecular Material—Implications for the Origin and Evolution of Organics, Water and Asteroids. Geochimica et Cosmochimica Acta, 74(15): 4417-4437. https://doi.org/10.1016/j.gca.2010.05.005
      Alexander, C. M. O., Nilges, M. J., Cody, G. D., et al., 2022. Are Radicals Responsible for the Variable Deuterium Enrichments in Chondritic Insoluble Organic Material? Geochimica et Cosmochimica Acta, 316: 135-149. https://doi.org/10.1016/j.gca.2021.10.007
      Altwegg, K., Balsiger, H., Bar-Nun, A., et al., 2016. Prebiotic Chemicals-Amino Acid and Phosphorus-In the Coma of Comet 67P/Churyumov-Gerasimenko. Science Advances, 2(5): e1600285. https://doi.org/10.1126/sciadv.1600285
      Ansari, A. H., 2023. Detection of Organic Matter on Mars, Results from Various Mars Missions, Challenges, and Future Strategy: A Review. Frontiers in Astronomy and Space Sciences, 10: 1075052. https://doi.org/10.3389/fspas.2023.1075052
      Aponte, J. C., Dworkin, J. P., Elsila, J. E., 2014. Assessing the Origins of Aliphatic Amines in the Murchison Meteorite from Their Compound-Specific Carbon Isotopic Ratios and Enantiomeric Composition. Geochimica et Cosmochimica Acta, 141: 331-345. https://doi.org/10.1016/j.gca.2014.06.035
      Bada, J. L., 2004. How Life Began on Earth: A Status Report. Earth and Planetary Science Letters, 226(1/2): 1-15. https://doi.org/10.1016/j.epsl.2004.07.036
      Bardyn, A., Baklouti, D., Cottin, H., et al., 2017. Carbon-Rich Dust in Comet 67P/Churyumov-Gerasimenko Measured by COSIMA/Rosetta. Monthly Notices of the Royal Astronomical Society, 469(Suppl_2): S712-S722. https://doi.org/10.1093/mnras/stx2640
      Bell, M. B., Feldman, P. A., Watson, J. K. G., et al., 1999. Observations of Long CnH Molecules in the Dust Cloud TMC-1. The Astrophysical Journal, 518(2): 740-747. https://doi.org/10.1086/307303
      Bernal, J. D., 1961. Significance of Carbonaceous Meteorites in Theories on the Origin of Life. Nature, 190: 129-131. https://doi.org/10.1038/190129a0
      Berzelius, J. J., 1834. Ueber Meteorsteine. Annalen der Physik, 109(8/9/10/11/12/13/14/15/16): 113-148. https://doi.org/10.1002/andp.18341090802
      Bhartia, R., Beegle, L. W., DeFlores, L., et al., 2021. Perseverance's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Science Reviews, 217(4): 58. https://doi.org/10.1007/s11214-021-00812-z
      Bockelée-Morvan, D., Filacchione, G., Altwegg, K., et al., 2019. AMBITION: Comet Nucleus Cryogenic Sample Return (White Paper for ESA's Voyage 2050 Programme). Experimental Astronomy, 2022: 1-52. https://arxiv.org/abs/1907.11081v1
      Boston, P. J., Ivanov, M. V., McKay, C. P., 1992. On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars. Icarus, 95(2): 300-308. https://doi.org/10.1016/0019-1035(92)90045-9
      Brearley, A. J., 2021. Nanophase Iron Carbides in Fine-Grained Rims in CM2 Carbonaceous Chondrites: Formation of Organic Material by Fischer-Tropsch Catalysis in the Solar Nebula. Meteoritics & Planetary Science, 56(1): 108-126. https://doi.org/10.1111/maps.13537
      Brown, P. G., Hildebrand, A. R., Zolensky, M. E., et al., 2000. The Fall, Recovery, Orbit, and Composition of the Tagish Lake Meteorite: A New Type of Carbonaceous Chondrite. Science, 290(5490): 320-325. https://doi.org/10.1126/science.290.5490.320
      Busemann, H., Young, A. F., et al., 2006. Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites. Science, 312(5774): 727-730. https://doi.org/10.1126/science.1123878
      Callahan, M. P., Smith, K. E., Cleaves, H. J., et al., 2011. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 108(34): 13995-13998. https://doi.org/10.1073/pnas.1106493108
      Campins, H., Hargrove, K., Pinilla-Alonso, N., et al., 2010. Water Ice and Organics on the Surface of the Asteroid 24 Themis. Nature, 464: 1320-1321. https://doi.org/10.1038/nature09029
      Capaccioni, F., Coradini, A., Filacchione, G., et al., 2015. The Organic-Rich Surface of Comet 67P/Churyumov-Gerasimenko as Seen by VIRTIS/Rosetta. Science, 347(6220): 389.
      Caselli, P., Ceccarelli, C., 2012. Our Astrochemical Heritage. The Astronomy and Astrophysics Review, 20(1): 56. https://doi.org/10.1007/s00159-012-0056-x
      Chan, Q. H. S., Stephant, A., Franchi, I. A., et al., 2021. Organic Matter and Water from Asteroid Itokawa. Scientific Reports, 11(1): 5125. https://doi.org/10.1038/s41598-021-84517-x
      Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., et al., 2018. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals. Science Advances, 4(1): eaao3521. https://doi.org/10.1126/sciadv.aao3521
      Chyba, C., Sagan, C., 1992. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life. Nature, 355: 125-132. https://doi.org/10.1038/355125a0
      Clark, R. N., Brown, R. H., Jaumann, R., et al., 2005. Compositional Maps of Saturn's Moon Phoebe from Imaging Spectroscopy. Nature, 435(7038): 66-69. https://doi.org/10.1038/nature03558
      Clemett, S. J., Sandford, S. A., Nakamura-Messenger, K., et al., 2010. Complex Aromatic Hydrocarbons in Stardust Samples Collected from Comet 81P/Wild 2. Meteoritics & Planetary Science, 45(5): 701-722. https://doi.org/10.1111/j.1945-5100.2010.01062.x
      Cloutis, E., Hudon, P., Hiroi, T., et al., 2012. Spectral Reflectance Properties of Carbonaceous Chondrites: 3. CR Chondrites. Icarus, 217(2): 389-407.
      Cody, G. D., Alexander, C. M. O., David Kilcoyne, A. L., et al., 2008. Unraveling the Chemical History of the Solar System as Recorded in Extraterrestrial Organic Matter. Proceedings of the International Astronomical Union, 4(S251): 277-284. https://doi.org/10.1017/s1743921308021741
      Cody, G. D., Alexander, C. M. O., Tera, F., 2002. Solid-State (1H and 13C) Nuclear Magnetic Resonance Spectroscopy of Insoluble Organic Residue in the Murchison Meteorite: A Self-Consistent Quantitative Analysis. Geochimica et Cosmochimica Acta, 66(10): 1851-1865. https://doi.org/10.1016/S0016-7037(01)00888-2
      Cooper, G. W., Onwo, W. M., Cronin, J. R., 1992. Alkyl Phosphonic Acids and Sulfonic Acids in the Murchison Meteorite. Geochimica et Cosmochimica Acta, 56(11): 4109-4115. https://doi.org/10.1016/0016-7037(92)90023-C
      Cooper, G. W., Thiemens, M. H., Jackson, T. L., et al., 1997. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids. Science, 277(5329): 1072-1074. https://doi.org/10.1126/science.277.5329.1072
      Coustenis, A., Salama, A., Schulz, B., et al., 2003. Titan's Atmosphere from ISO Mid-Infrared Spectroscopy. Icarus, 161(2): 383-403. https://doi.org/10.1016/S0019-1035(02)00028-3
      Coustenis, A., Taylor, F., 1999. Titan: The Earth-Like Moon. World Scientific, Singapore.
      Cronin, J. R., Cooper, G. W., Pizzarello, S., 1995. Characteristics and Formation of Amino Acids and Hydroxy Acids of the Murchison Meteorite. Advances in Space Research, 15(3): 91-97. https://doi.org/10.1016/S0273-1177(99)80068-4
      Cronin, J. R., Gandy, W. E., Pizzarello, S., 1981. Amino Acids of the Murchison Meteorite. Geochimica et Cosmochimica Acta, 50(11): 2419-2427.
      Cronin, J. R., Pizzarello, S., 1986. Amino Acids of the Murchison Meteorite. Ⅲ. Seven Carbon Acyclic Primary Α-Amino Alkanoic Acids1. Geochimica et Cosmochimica Acta, 50(11): 2419-2427. https://doi.org/10.1016/0016-7037(86)90024-4
      Cronin, J. R., Pizzarello, S., Frye, J. S., 1987. 13C NMR Spectroscopy of the Insoluble Carbon of Carbonaceous Chondrites. Geochimica et Cosmochimica Acta, 51: 299-303. https://doi.org/10.1016/0016-7037(87)90242-0
      Cronin, J. R., Pizzarello, S., Yuen, G. U., 1985. Amino Acids of the Murchison Meteorite: Ⅱ. Five Carbon Acyclic Primary Β-, Γ-, and Δ-Amino Alkanoic Acids. Geochimica et Cosmochimica Acta, 49(11): 2259-2265. https://doi.org/10.1016/0016-7037(85)90226-1
      Cruikshank, D. P., Brown, R. H., 1987. Organic Matter on Asteroid 130 Elektra. Science, 238(4824): 183-184. https://doi.org/10.1126/science.238.4824.183
      Cruikshank, D. P., Grundy, W. M., DeMeo, F. E., et al., 2015. The Surface Compositions of Pluto and Charon. Icarus, 246: 82-92. https://doi.org/10.1016/j.icarus.2014.05.023.
      Cruikshank, D. P., Materese, C. K., Pendleton, Y. J., et al., 2019. Prebiotic Chemistry of Pluto. Astrobiology, 19(7): 831-848. doi: 10.1089/ast.2018.1927
      Cruikshank, D. P., Wegryn, E., Dalle Ore, C. M., et al., 2008. Hydrocarbons on Saturn's Satellites Iapetus and Phoebe. Icarus, 193(2): 334-343. https://doi.org/10.1016/j.icarus.2007.04.036
      Dartois, E., Engrand, C., Brunetto, R., et al., 2013. Ultra Carbonaceous Antarctic Micrometeorites, Probing the Solar System beyond the Nitrogen Snow-Line. Icarus, 224(1): 243-252. https://doi.org/10.1016/j.icarus.2013.03.002
      Dartois, E., Engrand, C., Duprat, J., et al., 2018. Dome C Ultracarbonaceous Antarctic Micrometeorites. Infrared and Raman Fingerprints. Astronomy & Astrophysics, 609: A65. https://doi.org/10.1051/0004-6361/201731322
      de Gregorio, B. T., Stroud, R. M., Nittler, L. R., et al., 2010. Isotopic and Chemical Variation of Organic Nanoglobules in Primitive Meteorites. Lunar Planet. Sci., 41.
      de Gregorio, B. T., Stroud, R. M., Nittler, L. R., et al., 2013. Isotopic and Chemical Variation of Organic Nanoglobules in Primitive Meteorites. Meteoritics & Planetary Science, 48(5): 904-928. https://doi.org/10.1111/maps.12109
      de Sanctis, M. C., Ammannito, E., Raponi, A., et al., 2015. Ammoniated Phyllosilicates with a Likely Outer Solar System Origin on (1) Ceres. Nature, 528: 241-244. https://doi.org/10.1038/nature16172
      Dominguez, G., McLeod, A. S., Gainsforth, Z., et al., 2014. Nanoscale Infrared Spectroscopy as a Non- Destructive Probe of Extraterrestrial Samples. Nature Communications, 5: 5445. https://doi.org/10.1038/ncomms6445
      Duprat, J., Dobrică, E., Engrand, C., et al., 2010. Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow. Science, 328(5979): 742-745. https://doi.org/10.1126/science.1184832
      Ehrenfreund, P., Charnley, S. B., 2000. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annual Review of Astronomy and Astrophysics, 38: 427-483. https://doi.org/10.1146/annurev.astro.38.1.427
      Eigenbrode, J. L., Summons, R. E., Steele, A., et al., 2018. Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars. Science, 360(6393): 1096-1101. https://doi.org/10.1126/science.aas9185
      Elsila, J. E., Aponte, J. C., McLain, H. L., et al., 2024. Soluble Organic Compounds and Cyanide in Apollo 17 Lunar Samples: Origins and Curation Effects. Journal of Geophysical Research: Planets, 129(4): e2023JE008133. https://doi.org/10.1029/2023je008133
      Elsila, J. E., Glavin, D. P., Dworkin, J. P., 2009. Cometary Glycine Detected in Samples Returned by Stardust. Meteoritics & Planetary Science, 44(9): 1323-1330. https://doi.org/10.1111/j.1945-5100.2009.tb01224.x
      Farley, K. A., Williford, K. H., Stack, K. M., et al., 2020. Mars 2020 Mission Overview. Space Science Reviews, 216(8): 142. https://doi.org/10.1007/s11214-020-00762-y
      Flynn, G. J., Keller, L. P., Feser, M., et al., 2003. The Origin of Organic Matter in the Solar System: Evidence from the Interplanetary Dust Particles. Geochimica et Cosmochimica Acta, 67(24): 4791-4806. https://doi.org/10.1016/j.gca.2003.09.001
      Formisano, V., Atreya, S., Encrenaz, T., et al., 2004. Detection of Methane in the Atmosphere of Mars. Science, 306(5702): 1758-1761. https://doi.org/10.1126/science.1101732
      Fray, N., Bardyn, A., Cottin, H., et al., 2016. High- Molecular-Weight Organic Matter in the Particles of Comet 67P/Churyumov-Gerasimenko. Nature, 538: 72-74. https://doi.org/10.1038/nature19320
      Freissinet, C., Glavin, D. P., Mahaffy, P. R., et al., 2015. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research Planets, 120(3): 495-514. https://doi.org/10.1002/2014JE004737
      Garvie, L. A. J., Baumgardner, G., Buseck, P. R., 2008. Scanning Electron Microscopical and Cross Sectional Analysis of Extraterrestrial Carbonaceous Nanoglobules. Meteoritics & Planetary Science, 43(5): 899-903. https://doi.org/10.1111/j.1945-5100.2008.tb01088.x
      Gilmour, I., 2003. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites. Treatise on Geochemistry. Elsevier, Amsterdam, 269-290. https://doi.org/10.1016/b0-08-043751-6/01146-4
      Glavin, D. P., Alexander, C. M. O., Aponte, J. C., et al., 2018. The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies. Primitive Meteorites and Asteroids. Elsevier, Amsterdam, 205-271. https://doi.org/10.1016/b978-0-12-813325-5.00003-3
      Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al., 2015. Cometary Science. Organic Compounds on Comet 67P/Churyumov-Gerasimenko Revealed by COSAC Mass Spectrometry. Science, 349(6247): aab0689. https://doi.org/10.1126/science.aab0689
      Golden, D. C., Ming, D. W., Schwandt, C. S., et al., 2001. A Simple Inorganic Process for Formation of Carbonates, Magnetite, and Sulfides in Martian Meteorite ALH84001. American Mineralogist, 86(3): 370-375. https://doi.org/10.2138/am-2001-2-321
      Hansen, C. S., Peeters, E., Cami, J., et al., 2022. Open Questions on Carbon-Based Molecules in Space. Communications Chemistry, 5: 94. https://doi.org/10.1038/s42004-022-00714-3
      Hao, J. H., Glein, C. R., Huang, F., et al., 2022. Abundant Phosphorus Expected for Possible Life in Enceladus's Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(39): e2201388119. https://doi.org/10.1073/pnas.2201388119
      Hayatsu, R., Studier, M. H., Anders, E., 1971. Origin of Organic Matter in Early Solar System—Ⅳ. Amino Acids: Confirmation of Catalytic Synthesis by Mass Spectrometry. Geochimica et Cosmochimica Acta, 35(9): 939-951. https://doi.org/10.1016/0016-7037(71)90007-X
      Heger, M. L., 1922. The Spectra of Certain Class B Stars in the Regions 5630A‒6680A and 3280A‒3380A. Revista de Saúde Pública, 38(6): 780-786.
      Imanaka, H., Khare, B. N., Elsila, J. E., et al., 2004. Laboratory Experiments of Titan Tholin Formed in Cold Plasma at Various Pressures: Implications for Nitrogen-Containing Polycyclic Aromatic Compounds in Titan Haze. Icarus, 168(2): 344-366. https://doi.org/10.1016/j.icarus.2003.12.014
      Jaumann, R., Schmitz, N., Ho, T. M., et al., 2019. Images from the Surface of Asteroid Ryugu Show Rocks Similar to Carbonaceous Chondrite Meteorites. Science, 365(6455): 817-820. https://doi.org/10.1126/science.aaw8627
      Jungclaus, G. A., Yuen, G. U., Moore, C. B., et al., 1976. Evidence for the Presence of Low Molecular Weight Alcohols and Carbonyl Compounds in the Murchison Meteorite. Meteoritics, 11(3): 231-237. https://doi.org/10.1111/j.1945-5100.1976.tb00324.x
      Kebukawa, Y., Yesiltas, M., Glotch, T. D., 2024. Analytical Techniques for Identification and Characterization of Extraterrestrial Organic Matter. Elements, 20(1): 38-44. https://doi.org/10.2138/gselements.20.1.38
      Keller, L. P., Messenger, S., Flynn, G. J., et al., 2004. The Nature of Molecular Cloud Material in Interplanetary Dust. Geochimica et Cosmochimica Acta, 68(11): 2577-2589. https://doi.org/10.1016/j.gca.2003.10.044
      Kerridge, J. F., 1985. Carbon, Hydrogen and Nitrogen in Carbonaceous Chondrites: Abundances and Isotopic Compositions in Bulk Samples. Geochimica et Cosmochimica Acta, 49(8): 1707-1714. https://doi.org/10.1016/0016-7037(85)90141-3
      Kitazato, K., Milliken, R. E., Iwata, T., et al., 2019. The Surface Composition of Asteroid 162173 Ryugu from Hayabusa2 Near-Infrared Spectroscopy. Science, 364(6437): 272-275. https://doi.org/10.1126/science.aav7432
      Klima, R. L., Denevi, B. W., Ernst, C. M., et al., 2018. Global Distribution and Spectral Properties of Low- Reflectance Material on Mercury. Geophysical Research Letters, 45(7): 2945-2953. https://doi.org/10.1002/2018gl077544
      Kress, M. E., McKay, C. P., 2004. Formation of Methane in Comet Impacts: Implications for Earth, Mars, and Titan. Icarus, 168(2): 475-483. https://doi.org/10.1016/j.icarus.2003.10.013
      Kvenvolden, K., Lawless, J., Pering, K., et al., 1970. Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in the Murchison Meteorite. Nature, 228(5275): 923-926. https://doi.org/10.1038/228923a0
      Kwok, S., 2011. Organic Compounds in the Solar System. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9783527637034
      Kwok, S., 2016. Complex Organics in Space from Solar System to Distant Galaxies. The Astronomy and Astrophysics Review, 24(1): 8. https://doi.org/10.1007/s00159-016-0093-y
      Kwok, S., 2019. Organics in the Solar System. Research in Astronomy and Astrophysics, 19(4): 49. https://doi.org/10.1088/1674-4527/19/4/49
      Kwok, S., 2022. The Mystery of Unidentified Infrared Emission Bands. Astrophysics and Space Science, 367(2): 16. https://doi.org/10.1007/s10509-022-04045-6
      Lauretta, D. S., Balram-Knutson, S. S., Beshore, E., et al., 2017. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Science Reviews, 212(1): 925-984. https://doi.org/10.1007/s11214-017-0405-1
      Le Gall, A., Malaska, M. J., Lorenz, R. D., et al., 2016. Composition, Seasonal Change, and Bathymetry of Ligeia Mare, Titan, Derived from Its Microwave Thermal Emission. Journal of Geophysical Research (Planets), 121(2): 233-251. https://doi.org/10.1002/2015JE004920
      Licandro, J., Campins, H., Kelley, M., et al., 2011. (65) Cybele: Detection of Small Silicate Grains, Water-Ice, and Organics. Astronomy & Astrophysics, 525: A34. https://doi.org/10.1051/0004-6361/201015339
      Lin, W., Li, Y. L., Wang, G. H., et al., 2019. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
      Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
      Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. NanoSIMS Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic-Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201-2218. https://doi.org/10.1111/maps.12389
      Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591(2): 1220-1247. https://doi.org/10.1086/375492
      Lorenz, R. D., Kraal, E., Asphaug, E., et al., 2003. The Seas of Titan. EOS, Transactions American Geophysical Union, 84(14): 125-132.
      Lorenz, R. D., Mitchell, K. L., Kirk, R. L., et al., 2008. Titan's Inventory of Organic Surface Materials. Geophysical Research Letters, 35(2): L02206. https://doi.org/10.1029/2007gl032118
      Love, S. G., Brownlee, D. E., 1993. A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust. Science, 262(5133): 550-553. https://doi.org/10.1126/science.262.5133.550
      Margulis, L., Mazur, P., Barghoorn, E. S., et al., 1979. The Viking Mission: Implications for Life on Mars. Journal of Molecular Evolution, 14(1/2/3): 223-232. https://doi.org/10.1007/BF01732380
      Martins, Z., Chan, Q. H. S., Bonal, L., et al., 2020. Organic Matter in the Solar System—Implications for Future On-Site and Sample Return Missions. Space Science Reviews, 216: 54. doi: 10.1007/s11214-020-00679-6
      Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al., 2014. Ice Chemistry on Outer Solar System Bodies: Carboxylic Acids, Nitriles, and Urea Detected in Refractory Residues Produced from the UV Photolysis of N2: CH4: CO Containing Ices. Astrophys, 788(2): 111. https://doi.org/10.1088/0004-637X/788/2/111
      Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al., 2015. Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and Co-Containing Ices. The Astrophysical Journal, 812(2): 10. https://doi.org/10.1088/0004-637X/812/2/150
      Matrajt, G., Messenger, S., Brownlee, D., et al., 2012. Diverse Forms of Primordial Organic Matter Identified in Interplanetary Dust Particles. Meteoritics & Planetary Science, 47(4): 525-549. https://doi.org/10.1111/j.1945-5100.2011.01310.x
      Max, M. D., Clifford, S. M., 2000. The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust. Journal of Geophysical Research: Planets, 105(E2): 4165-4171. https://doi.org/10.1029/1999je001119
      McGuire, B. A., Burkhardt, A. M., Kalenskii, S., et al., 2018. Detection of the Aromatic Molecule Benzonitrile (c-C6H5CN) in the Interstellar Medium. Science, 359(6372): 202-205. https://doi.org/10.1126/science.aao4890
      McKay, C. P., Smith, H. D., 2005. Possibilities for Methanogenic Life in Liquid Methane on the Surface of Titan. Icarus, 178(1): 274-276. https://doi.org/10.1016/j.icarus.2005.05.018
      McKay, D. S., 1997. No 'Nanofossils' in Martian Meteorite. Nature, 390(6659): 455-456. https://doi.org/10.1038/37257-c1
      McKay, D. S., Gibson, E. K. Jr, Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924
      Messenger, S., 2000. Identification of Molecular-Cloud Material in Interplanetary Dust Particles. Nature, 404: 968-971. https://doi.org/10.1038/35010053
      Messenger, S., Nakamura-Messenger, K., 2015. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust. Proceedings of the International Astronomical Union, 11(A29B): 426. https://doi.org/10.1017/s1743921316005718
      Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al., 1996. Evidence for Life on Earth before 3, 800 Million Years Ago. Nature, 384(6604): 55-59. https://doi.org/10.1038/384055a0
      Mumma, M. J., Charnley, S. B., 2011. The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage. Annual Review of Astronomy and Astrophysics, 49: 471-524. https://doi.org/10.1146/annurev-astro-081309-130811
      Nagy, B., Meinschein, W. G., Hennessy, D. J., 1961. Mass Spectroscopic Analysis of the Orgueil Meteorite: Evidence for Biogenic Hydrocarbons. Annals of the New York Academy of Sciences, 93(2): 27-35. https://doi.org/10.1111/j.1749-6632.1961.tb30508.x
      Nakamura, T., Noguchi, T., Tanaka, M., et al., 2011. Itokawa Dust Particles: A Direct Link between S-Type Asteroids and Ordinary Chondrites. Science, 333(6046): 1113-1116. https://doi.org/10.1126/science.1207758
      Naraoka, H., Takano, Y., Dworkin, J. P., et al., 2023. Soluble Organic Molecules in Samples of the Carbonaceous Asteroid (162173) Ryugu. Science, 379(6634): eabn9033. https://doi.org/10.1126/science.abn9033
      Oba, Y., Koga, T., Takano, Y., et al., 2023. Uracil in the Carbonaceous Asteroid (162173) Ryugu. Nature Communications, 14(1): 1292. https://doi.org/10.1038/s41467-023-36904-3
      Öberg, K. I., Guzmán, V. V., Furuya, K., et al., 2015. The Comet-Like Composition of a Protoplanetary Disk as Revealed by Complex Cyanides. Nature, 520(7546): 198-201. https://doi.org/10.1038/nature14276
      Okazaki, R., Marty, B., Busemann, H., et al., 2023. Noble Gases and Nitrogen in Samples of Asteroid Ryugu Record Its Volatile Sources and Recent Surface Evolution. Science, 379(6634): eabo0431. https://doi.org/10.1126/science.abo0431
      Okazaki, R., Sawada, H., Yamanouchi, S., et al., 2017. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu. Space Science Reviews, 208(1): 107-124. https://doi.org/10.1007/s11214-016-0289-5
      Ouyang, Z. Y., 1994. Astrochemistry. Advance in Earth Sciences, 9(2): 70 (in Chinese).
      Ouyang, Z. Y., Xiao, F. G., 2011. Major Scientific Issues Involved in Mars Exploration. Spacecraft Environment Engineering, 28(3): 205-217 (in Chinese with English abstract).
      Parker, E. T., Chan, Q. H. S., Glavin, D. P., et al., 2022. Non-Protein Amino Acids Identified in Carbon-Rich Hayabusa Particles. Meteoritics & Planetary Science, 57(4): 776-793. https://doi.org/10.1111/maps.13794
      Peplowski, P. N., Lawrence, D. J., Evans, L. G., et al., 2015. Constraints on the Abundance of Carbon in Near-Surface Materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 108: 98-107. https://doi.org/10.1016/j.pss.2015.01.008
      Pierazzo, E., Chyba, C. F., 1999. Amino Acid Survival in Large Cometary Impacts. Meteoritics & Planetary Science, 34(6): 909-918. https://doi.org/10.1111/j.1945-5100.1999.tb01409.x
      Pierazzo, E., Chyba, C. F., 2002. Cometary Delivery of Biogenic Elements to Europa. Icarus, 157(1): 120-127. https://doi.org/10.1006/icar.2001.6812
      Pizzarello, S., Cronin, J. R., 2000. Non-Racemic Amino Acids in the Murray and Murchison Meteorites. Geochimica et Cosmochimica Acta, 64(2): 329-338. https://doi.org/10.1016/S0016-7037(99)00280-X
      Pizzarello, S., Shock, E., 2010. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story ahead of Biochemistry. Cold Spring Harbor Perspectives in Biology, 2(3): a002105. https://doi.org/10.1101/cshperspect.a002105
      Pizzarello, S., Zolensky, M., Turk, K. A., 2003. Nonracemic Isovaline in the Murchison Meteorite: Chiral Distribution and Mineral Association. Geochimica et Cosmochimica Acta, 67(8): 1589-1595. https://doi.org/10.1016/S0016-7037(02)01283-8
      Pollock, G. E., Cheng, C. N., Cronin, S. E., et al., 1975. Stereoisomers of Isovaline in the Murchison Meteorite. Geochimica et Cosmochimica Acta, 39(11): 1571-1573. https://doi.org/10.1016/0016-7037(75)90159-3
      Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558: 564-568. https://doi.org/10.1038/s41586-018-0246-4
      Postberg, F., Sekine, Y., Klenner, F., et al., 2023. Detection of Phosphates Originating from Enceladus's Ocean. Nature, 618(7965): 489-493. https://doi.org/10.1038/s41586-023-05987-9
      Rivkin, A. S., Emery, J. P., 2010. Detection of Ice and Organics on an Asteroidal Surface. Nature, 464(7293): 1322-1323. https://doi.org/10.1038/nature09028
      Rojas, J., Duprat, J., Engrand, C., et al., 2021. The Micrometeorite Flux at Dome C (Antarctica), Monitoring the Accretion of Extraterrestrial Dust on Earth. Earth and Planetary Science Letters, 560: 116794. https://doi.org/10.1016/j.epsl.2021.116794
      Russell, R. W., Soifer, B. T., Willner, S. P., 1977. The 4 to 8 Micron Spectrum of NGC 7027. The Astrophysical Journal, 217: L149. https://doi.org/10.1086/182559
      Safi, E., Telling, J., Parnell, J., et al., 2019. Aeolian Abrasion of Rocks as a Mechanism to Produce Methane in the Martian Atmosphere. Scientific Reports, 9(1): 8229. https://doi.org/10.1038/s41598-019-44616-2
      Sagan, C., Khare, B. N., 1979. Tholins: Organic Chemistry of Interstellar Grains and Gas. Nature, 277: 102-107. https://doi.org/10.1038/277102a0
      Sakai, N., Yamamoto, S., 2013. Warm Carbon-Chain Chemistry. Chemical Reviews, 113(12): 8981-9015. doi: 10.1021/cr4001308
      Sandford, S. A., Aléon, J., et al., 2006. Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft. Science, 314(5806): 1720-1724. https://doi.org/10.1126/science.1135841
      Scheller, E. L., Hollis, J. R., Cardarelli, E. L., et al., 2022. Aqueous Alteration Processes in Jezero Crater, Mars-Implications for Organic Geochemistry. Science, 378(6624): 1105-1110. https://doi.org/10.1126/science.abo5204
      Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R. D., et al., 2010. High Molecular Diversity of Extraterrestrial Organic Matter in Murchison Meteorite Revealed 40 Years after Its Fall. Proceedings of the National Academy of Sciences of the United States of America, 107(7): 2763-2768. https://doi.org/10.1073/pnas.0912157107
      Schmitt-Kopplin, P., Matzka, M., Ruf, A., et al., 2023. Complex Carbonaceous Matter in Tissint Martian Meteorites Give Insights into the Diversity of Organic Geochemistry on Mars. Science Advances, 9(2): eadd6439. https://doi.org/10.1126/sciadv.add6439
      Sephton, M. A., 2002. Organic Compounds in Carbonaceous Meteorites. Natural Product Reports, 19(3): 292-311. https://doi.org/10.1039/B103775G.
      Sephton, M. A., Botta, O., 2008. Extraterrestrial Organic Matter and the Detection of Life. Space Science Reviews, 135(1): 25-35. https://doi.org/10.1007/ s11214-007-9171-9 doi: 10.1007/s11214-007-9171-9
      Sephton, M. A., Love, G. D., Watson, J. S., et al., 2004. Hydropyrolysis of Insoluble Carbonaceous Matter in the Murchison Meteorite: New Insights into Its Macromolecular Structure. Geochimica et Cosmochimica Acta, 68(6): 1385-1393. https://doi.org/10.1016/j.gca.2003.08.019.
      Sephton, M. A., Wright, I. P., Gilmour, I., et al., 2002. High Molecular Weight Organic Matter in Martian Meteorites. Planetary and Space Science, 50(7/8): 711-716. https://doi.org/10.1016/S0032-0633(02)00053-3
      Simkus, D. N., Aponte, J. C., Elsila, J. E., et al., 2019. Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life, 9(2): 47. https://doi.org/10.3390/life9020047
      Starkey, N. A., Franchi, I. A., Alexander, C. M. O., 2013. A Raman Spectroscopic Study of Organic Matter in Interplanetary Dust Particles and Meteorites Using Multiple Wavelength Laser Excitation. Meteoritics & Planetary Science, 48(10): 1800-1822. https://doi.org/10.1111/maps.12196
      Steele, A., Fries, M. D., Amundsen, H. E. F., et al., 2007. Comprehensive Imaging and Raman Spectroscopy of Carbonate Globules from Martian Meteorite ALH 84001 and a Terrestrial Analogue from Svalbard. Meteoritics & Planetary Science, 42(9): 1549-1566. https://doi.org/10.1111/j.1945-5100.2007.tb00590.x
      Steele, A., McCubbin, F. M., Fries, M., et al., 2012. A Reduced Organic Carbon Component in Martian Basalts. Science, 337(6091): 212-215. https://doi.org/10.1126/science.1220715
      Steele, A., McCubbin, F. M., Fries, M. D., 2016. The Provenance, Formation, and Implications of Reduced Carbon Phases in Martian Meteorites. Meteoritics & Planetary Science, 51(11): 2203-2225. https://doi.org/10.1111/maps.12670
      Stofan, E. R., Elachi, C., Lunine, J. I., et al., 2007. The Lakes of Titan. Nature, 445(7123): 61-64. https://doi.org/10.1038/nature05438
      Tachibana, S., Sawada, H., Okazaki, R., et al., 2022. Pebbles and Sand on Asteroid (162173) Ryugu: In Situ Observation and Particles Returned to Earth. Science, 375(6584): 1011-1016. doi: 10.1126/science.abj8624
      Takir, D., Hibbitts, C. A., Miller, K., 2023. Spectral Characterization of Organics and Carbonates in Carbonaceous Chondrites: Implications for Bennu Returned Samples. Lunar and Planetary Science Conference, 20230018328
      Tang, X., Li, J. H., 2021. Transmission Electron Microscopy: New Advances and Applications for Earth and Planetary Sciences. Earth Science, 46(4): 1374-1415 (in Chinese with English abstract).
      Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., et al., 2000. Elongated Prismatic Magnetite Crystals in ALH84001 Carbonate Globules: Potential Martian Magnetofossils. Geochimica et Cosmochimica Acta, 64(23): 4049-4081. https://doi.org/10.1016/S0016-7037(00)00481-6
      Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., et al., 2002. Magnetofossils from Ancient Mars: A Robust Biosignature in the Martian Meteorite ALH84001. Applied and Environmental Microbiology, 68(8): 3663-3672. https://doi.org/10.1128/aem.68.8.3663-3672.2002
      Thomas-Keprta, K. L., Clemett, S. J., Messenger, S., et al., 2014. Organic Matter on the Earth's Moon. Geochimica et Cosmochimica Acta, 134: 1-15. https://doi.org/10.1016/j.gca.2014.02.047
      Townes, C. H., 1957.16. Microwave and Radio-Frequency Resonance Lines of Interest to Radio Astronomy. Symposium-International Astronomical Union, 4: 92-103. https://doi.org/10.1017/s0074180900048919
      Trigo-Rodríguez, J., 2005. Comets Ⅱ. Meteoritics & Planetary Science, 40: 1749-1750. https://doi.org/10.1111/J.1945-5100.2005.TB00142.X
      Tsuda, Y., Yoshikawa, M., Abe, M., et al., 2013. System Design of the Hayabusa 2—Asteroid Sample Return Mission to 1999 JU3. Acta Astronautica, 91: 356-362. https://doi.org/10.1016/j.actaastro.2013.06.028
      van Schmus, W. R., Wood, J. A., 1967. A Chemical- Petrologic Classification for the Chondritic Meteorites. Geochimica et Cosmochimica Acta, 31(5): 747-765. https://doi.org/10.1016/S0016-7037(67)80030-9
      Waite, J. H. Jr, Combi, M. R., Ip, W. H., et al., 2006. Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science, 311(5766): 1419-1422. https://doi.org/10.1126/science.1121290
      Waite, J. H. Jr, Young, D. T., Cravens, T. E., et al., 2007. The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 316(5826): 870-875. https://doi.org/10.1126/science.1139727
      Watanabe, S. I., Tsuda, Y., Yoshikawa, M., et al., 2017. Hayabusa2 Mission Overview. Space Science Reviews, 208(1): 3-16. https://doi.org/10.1007/s11214-017-0377-1
      Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al., 2015. Mars Methane Detection and Variability at Gale Crater. Science, 347(6220): 415-417. https://doi.org/10.1126/science.1261713
      Weinreb, S., Barrett, A. H., Meeks, M. L., et al., 1963. Radio Observations of OH in the Interstellar Medium. Nature, 200: 829-831. https://doi.org/10.1038/200829a0
      Weiss, B. P., Yung, Y. L., Nealson, K. H., 2000. Atmospheric Energy for Subsurface Life on Mars? Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1395-1399. https://doi.org/10.1073/pnas.030538097
      Williams, D. M., Gaidos, E., 2008. Detecting the Glint of Starlight on the Oceans of Distant Planets. Icarus, 195(2): 927-937. https://doi.org/10.1016/j.icarus.2008.01.002
      Wong, A. S., Atreya, S. K., Encrenaz, T., 2003. Chemical Markers of Possible Hot Spots on Mars. Journal of Geophysical Research: Planets, 108(E4): 148-227. https://doi.org/10.1029/2002je002003
      Xiao, L., 2022. What Geological Habitability Evolution did Mars Undergo?. Earth Science, 47(10): 3792-3793 (in Chinese).
      Xu, R., Xiao, Z. Y., Wang, Y. C., et al., 2024. Less than One Weight Percent of Graphite on the Surface of Mercury. Nature Astronomy, 8: 280-289. https://doi.org/10.1038/s41550-023-02169-5
      Yabuta, H., Noguchi, T., Itoh, S., et al., 2017. Formation of an Ultracarbonaceous Antarctic Micrometeorite through Minimal Aqueous Alteration in a Small Porous Icy Body. Geochimica et Cosmochimica Acta, 214: 172-190. https://doi.org/10.1016/j.gca.2017.06.047
      Yada, T., Abe, M., Okada, T., et al., 2022. Preliminary Analysis of the Hayabusa2 Samples Returned from C-Type Asteroid Ryugu. Nature Astronomy, 6: 214-220. https://doi.org/10.1038/s41550-021-01550-6
      Yang, Y. L., Green, J., Pontoppidan, K., et al., 2022. CORINOS. I. JWST/MIRI Spectroscopy and Imaging of a Class 0 Protostar IRAS 15398-3359. The Astrophysical Journal Letters, 941(1): L13.
      Yoshimura, Y., Satoh, T., Enya, K., et al., 2021. Development of the Life-Signature Detection Microscope (LDM) for in Situ Imaging of Organic Compounds Including Living Cells on Mars. 43rd COSPAR Scientific Assembly, 43: 1956.
      Yokoyama, T., Nagashima, K., Nakai, I., et al., 2022. Samples Returned from the Asteroid Ryugu are Similar to Ivuna-Type Carbonaceous Meteorites. Science, 379(6634): eabn7850. https://doi.org/10.1126/science.abn7850
      Yuen, G. U., Kvenvolden, K. A., 1973. Monocarboxylic Acids in Murray and Murchison Carbonaceous Meteorites. Nature, 246: 301-303. https://doi.org/10.1038/246301a0
      Zhang, J. A., Paige, D. A., 2009. Cold-Trapped Organic Compounds at the Poles of the Moon and Mercury: Implications for Origins. Geophysical Research Letters, 36(16): L16203. https://doi.org/10.1029/2009gl038614
      Zolensky, M. E., Gooding, J. L., 1986. Aqueous Alteration on Carbonaceous-Chondrite Parent Bodies as Inferred from Weathering of Meteorites in Antarctica. Lpi Contributions, 21(4): 39.
      林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391.
      林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11) : 4108-4113. doi: 10.3799/dqkx.2022.883
      欧阳自远, 1994. 天体化学. 地球科学进展, 9(2): 70.
      欧阳自远, 肖福根, 2011. 火星探测的主要科学问题. 航天器环境工程, 28(3) : 205-217.
      唐旭, 李金华, 2021. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用. 地球科学, 46(4): 1374-1415. doi: 10.3799/dqkx.2020.387
      肖龙, 2022. 火星的地质环境及宜居性演变历史如何?. 地球科学, 47(10): 3792-3793. doi: 10.3799/dqkx.2022.811
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  467
    • HTML全文浏览量:  129
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-06-17
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回