• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地厚山高:来自岩浆岩地球化学信息的启示

    李昊轩 丁林 王超

    李昊轩, 丁林, 王超, 2024. 地厚山高:来自岩浆岩地球化学信息的启示. 地球科学, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072
    引用本文: 李昊轩, 丁林, 王超, 2024. 地厚山高:来自岩浆岩地球化学信息的启示. 地球科学, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072
    Li Haoxuan, Ding Lin, Wang Chao, 2024. Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks. Earth Science, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072
    Citation: Li Haoxuan, Ding Lin, Wang Chao, 2024. Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks. Earth Science, 49(12): 4404-4417. doi: 10.3799/dqkx.2024.072

    地厚山高:来自岩浆岩地球化学信息的启示

    doi: 10.3799/dqkx.2024.072
    基金项目: 

    国家自然科学基金 42172240

    第二次青藏高原综合科学考察研究项目 2019QZKK0708

    详细信息
      作者简介:

      李昊轩(2001-),硕士,主要从事岩石学与岩浆岩地球化学方面的研究. ORCID:0009-0009-9244-404X. E-mail:lihx123@itpcas.ac.cn

      通讯作者:

      王超, 副研究员, 博士,主要从事岩石大地构造和岩浆岩地球化学方面的研究. ORCID: 0000-0002-3141-3348. E-mail: wangchao@itpcas.ac.cn

    • 中图分类号: P581

    Crustal Thickeness and Topographic Elevation: Insights from Geochemistry of Igneous Rocks

    • 摘要: 认识大陆地壳的演化过程对于理解地球圈层结构、探讨板块构造和造山带演化等问题具有重要意义.汇聚板块边缘形成了大规模岩浆岩,其地球化学特征与形成时的深度关系密切,因而被广泛应用于造山带的古地壳厚度的恢复和古高度的反演研究.系统回顾了利用地球化学信息探讨地壳厚度的方法建立与发展,评估了各种方法的优劣和适用范围,并总结了该方法在不同造山带的应用实例和其在古高度重建研究中的应用.该方法在时间及空间上相对古高度、地震、温压计等方法可以更加连续地反映地壳厚度并且适用范围较广.结合快速积累的地球化学大数据库,该方法可以为造山带演化研究提供更多信息,为现有的古高度定量估算做补充,并有效地促进地球系统科学的发展.

       

    • 图  1  压力主导下微量元素在不同矿物中的分配图改自(Sundell et al., 2021)

      Fig.  1.  Distribution of Sr/Y ratios, La/Yb ratios, Eu/Eu* ratios in minerals under different pressures (modified from Sundell et al., 2021)

      图  2  经验公式建立流程图

      Chapman et al.(2015)Profeta et al.(2015)

      Fig.  2.  The flow diagram of establishment for empirical formula

      图  3  全岩Sr/Y比值,[La/Yb]N比值与地壳厚度经验公式

      a.不同地区Sr/Y比值与地壳厚度经验公式(E指高程,需换算成地壳厚度,是在一定壳幔密度下,经公式5计算所得) (科迪勒拉造山带:Chapman et al.,2015;秦岭造山带:Hu et al.,2017;西藏:Hu et al.,2020;拉萨地块:Sundell et al.,2021);b.不同研究区[La/Yb]N比值与地壳厚度经验公式(全球:Profeta et al.,2015;秦岭造山带:Hu et al.,2017;西藏:Hu et al.,2020;拉萨地块:Sundell et al.,2021)

      Fig.  3.  Empirical formulas of crust thickness reflected by different geochemical methods

      图  4  锆石Eu/Eu*比值与地壳厚度经验公式改自(Tang et al., 2021a)

      Fig.  4.  Empirical formulas of zircon Eu/Eu* ratios and crustal thickness (modified from Tang et al., 2021a)

      图  5  全球岩浆地球化学地壳厚度研究分布区

      底图据www.ngdc.noaa.gov.Ce/Y比值:新西兰(Mantle and Collions,2008);Sr/Y比值:全球(Chiaradia,2015),科迪勒拉造山带(Chapman et al.,2015),秦岭(Hu et al.,2017),西藏(Hu et al.,2020),藏南(Sundell et al.,2021),藏东南(Wang et al.,2022),拉萨南部(Sundell et al.,2024);[La/Yb]N比值:全球(Profeta et al.,2015),冈底斯(Zhu et al.,2017),安第斯中部(Carrapa et al.,2022),拉萨(Sundell et al.,2021),拉萨南部(Sundell et al.,2024),藏东南(Wang et al.,2022),秦岭(Hu et al.,2017),北羌塘至喜马拉雅(Hu et al.,2020);锆石Eu/Eu*比值:全球(Tang et al.,2021b),印度克拉通(McKenzie et al.,2018),格林威尔造山带(Brudner et al.,2022),拉萨南部(Sundell et al.,2024),冈底斯东部(Tang et al.,2021b);冈底斯(Zhu et al.,2017)

      Fig.  5.  Research area distribution of crustal thickness calculated by magmatic geochemistry in global

      图  6  西藏部分地区隆升历史

      a.羌塘地块隆升历史(绿色曲线引自Hu et al.,2020;蓝色曲线引自Ding et al.,2022).其中岩浆地球化学方法主要利用y=(10.50±0.99)E+(4.71±0.82)和y=(2.61±0.32)e(0.410±0.032)E;b.拉萨地块隆升历史(绿色曲线引自Hu et al.,2020;蓝色曲线引自Ding et al.,2022Ibarra et al.,2023;粉色曲线引自Zhu et al.,2017).其中岩浆古高度y=(2.61±0.32)e(0.410±0.032)Ey=(0.98±0.19)e (0.047±0.005)x.数据来源Zhu et al.(2017)Hu et al.(2020)Zeng et al.(2021)Ding et al.(2022)Ibarra et al.(2023)

      Fig.  6.  History of surface elevation changes across Gandese and Qiangtang

    • Airy, G. B., 1855. On the Computation of the Effect of the Attraction of Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys. Philosophical Transactions of the Royal Society of London, 16(2): 42-43. https://doi.org/10.1098/rstl.1855.0003
      Alexander, E. W., Wielicki, M. M., Harrison, T. M., et al., 2019. Hf and Nd Isotopic Constraints on Pre- and Syn-Collisional Crustal Thickness of Southern Tibet. Journal of Geophysical Research: Solid Earth, 124(11): 11038-11054. https://doi.org/10.1029/2019jb017696
      Balica, C., Ducea, M. N., Gehrels, G. E., et al., 2020. A Zircon Petrochronologic View on Granitoids and Continental Evolution. Earth and Planetary Science Letters, 531: 116005. https://doi.org/10.1016/j.epsl.2019.116005
      Barth, A. P., Wooden, J. L., Jacobson, C. E., et al., 2013. Detrital Zircon as a Proxy for Tracking the Magmatic Arc System: The California Arc Example. Geology, 41(2): 223-226. https://doi.org/10.1130/g33619.1
      Brudner, A., Jiang, H. H., Chu, X., et al., 2022. Crustal Thickness of the Grenville Orogen: A Mesoproterozoic Tibet? Geology, 50(4): 402-406. 10.1130/g49591.1
      Carrapa, B., DeCelles, P. G., Ducea, M. N., et al., 2022. Estimates of Paleo-Crustal Thickness at Cerro Aconcagua (Southern Central Andes) from Detrital Proxy-Records: Implications for Models of Continental Arc Evolution. Earth and Planetary Science Letters, 585: 117526. https://doi.org/10.1016/j.epsl.2022.117526
      Cassel, E. J., Breecker, D. O., Henry, C. D., et al., 2014. Profile of a Paleo-Orogen: High Topography across the Present-Day Basin and Range from 40 to 23 Ma. Geology, 42(11): 1007-1010. https://doi.org/10.1130/g35924.1
      Chai, X. H., Zeng, Y. C., Xu, J. F., et al., 2023. Crustal Thickening and Uplift of the Northwestern Lhasa Terrane, Central Tibetan Plateau: Insights from Mid-Eocene Volcanic Rocks in the Gerze Region. Lithos, 446: 107157. https://doi.org/10.1016/j.lithos.2023.107157
      Chapman, J. B., Ducea, M. N., Decells, P. G., et al., 2015. Tracking Changes in Crustal Thickness during Orogenic Evolution with Sr/Y: An Example from the North American Cordillera. Geology, 43(10): 919-922. https://doi.org/10.1130/g36996.1
      Chapman, J. B., Gehrels, G. E., Ducea, M. N., et al., 2016. A New Method for Estimating Parent Rock Trace Element Concentrations from Zircon. Chemical Geology, 439: 59-70. https://doi.org/10.1016/j.chemgeo.2016.06.014
      Chen, Z., 2023. Europium Anomalies in Detrital Zircons Reveal the Crustal Thickness Evolution of South China in Early Neoproterozoic. Acta Geochimica, 42(4): 739-746. https://doi.org/10.1007/s11631-023-00605-x
      Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7: 43-46. https://doi.org/10.1038/ngeo2028
      Chiaradia, M., 2015. Crustal Thickness Control on Sr/Y Signatures of Recent Arc Magmas: An Earth Scale Perspective. Scientific Reports, 5: 8115. https://doi.org/10.1038/srep08115
      Chiaradia, M., 2021. Zinc Systematics Quantify Crustal Thickness Control on Fractionating Assemblages of Arc Magmas. Scientific Reports, 11(1): 14667. https://doi.org/10.1038/s41598-021-94290-6
      Chiaradia, M., Ulianov, A., Kouzmanov, K., et al., 2012. Why Large Porphyry Cu Deposits Like High Sr/Y Magmas? Scientific Reports, 2: 685. 10.1038/srep00685
      Chung, S. L., Chu, M. F., Ji, J., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from PostCollisional Adakites. Tectonophysics, 477(1-2): 36-48. 10.1016/j.tecto.2009.08.008
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
      DePaolo, D. J., Harrison, T. M., Wielicki, M., et al., 2019. Geochemical Evidence for Thin Syn-Collision Crust and Major Crustal Thickening between 45 and 32 Ma at the Southern Margin of Tibet. Gondwana Research, 73: 123-135. https://doi.org/10.1016/j.gr.2019.03.011
      Dickinson, W. R., 1975. Potash-Depth (K-h) Relations in Continental Margin and Intra-Oceanic Magmatic Arcs. Geology, 3(2): 53. https://doi.org/10.1130/0091-7613(1975)353:pkricm>2.0.co;2 doi: 10.1130/0091-7613(1975)353:pkricm>2.0.co;2
      Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4
      Ding, L., Xu, Q., Yue, Y. H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 382: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
      Ding, L., Xu, Q., Zhang, L. Y., et al., 2009. Regional Variation of River Water Oxygen Isotope and Empirical Elevation Prediction Models in Tibetan Plateau. Quaternary Sciences, 29(1): 1-12(in Chinese with English abstract).
      Ducea, M. N., Paterson, S. R., DeCelles, P. G., 2015b. High-Volume Magmatic Events in Subduction Systems. Elements, 11(2): 99-104. https://doi.org/10.2113/gselements.11.2.99
      Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015a. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      Farner, M. J., Lee, C. T A., 2017. Effects of Crustal Thickness on Magmatic Differentiation in Subduction Zone Volcanism: A Global Study. Earth and Planetary Science Letters, 470: 96-107. https://doi.org/10.1016/j.epsl.2017.04.025
      Haschke, M., Siebel, W., Günther, A., et al., 2002. Repeated Crustal Thickening and Recycling during the Andean Orogeny in North Chile (21°-26°S). Journal of Geophysical Research: Solid Earth, 107(B1): ECV 6-1-ECV 6-18. 10.1029/2001jb000328
      Hawkesworth, C., Dhuime, B., Pietranik, A., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167: 229-248. https://doi.org/10.1144/0016-76492009-072
      Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45: 169-198. https://doi.org/10.1146/annurev-earth-063016-020525
      Hawkesworth, C. J., Vollmer, R., 1979. Crustal Contamination versus Enriched Mantle: 143Nd/144Nd and 87Sr/86Sr Evidence from the Italian Volcanics. Contributions to Mineralogy and Petrology, 69(2): 151-165. https://doi.org/10.1007/bf00371858
      Hildebrand, R. S., 2013. Mesozoic Assembly of the North American Cordillera. Geological Society of America. U. S. A. . 10.1130/spe495
      Hildebrand, R. S., Whalen, J. B., 2014. Arc and Slab-Failure Magmatism in Cordilleran Batholiths Ⅰ: The Cretaceous Coastal Batholith of Peru and Its Role in South American Orogenesis and Hemispheric Subduction Flip. Geoscience Canada, 41(3): 255-282. doi: 10.12789/geocanj.2014.41.047
      Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365
      Hoke, G. D., Giambiagi, L. B., Garzione, C. N., et al., 2014. Neogene Paleoelevation of Intermontane Basins in a Narrow, Compressional Mountain Range, Southern Central Andes of Argentina. Earth and Planetary Science Letters, 406: 153-164. https://doi.org/10.1016/j.epsl.2014.08.032
      House, M. A., Wernicke, B. P., Farley, K. A., 2001. Paleo-Geomorphology of the Sierra Nevada, California, from (U-Th)/He Ages in Apatite. American Journal of Science, 301: 77-102. https://doi.org/10.2475/ajs.301.2.77
      Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7(1): 7058. https://doi.org/10.1038/s41598-017-07849-7
      Hu, F. Y., Wu, F. Y., Chapman, J. B., et al., 2020. Quantitatively Tracking the Elevation of the Tibetan Plateau since the Cretaceous: Insights from Whole-Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 47(15): e2020GL089202. https://doi.org/10.1029/2020gl089202
      Ibarra, D. E., Dai, J. G., Gao, Y., et al., 2023. High-Elevation Tibetan Plateau before India-Eurasia Collision Recorded by Triple Oxygen Isotopes. Nature Geoscience, 16(9): 810-815. https://doi.org/10.1038/s41561-023-01243-x
      Johnston, S. T., 2008. The Cordilleran Ribbon Continent of North America. Annual Review of Earth and Planetary Sciences, 36: 495-530. https://doi.org/10.1146/annurev.earth.36.031207.124331
      Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 18(3): 303-311.
      Keller, C. B., Schoene, B., Barboni, M., et al., 2015. Volcanic-Plutonic Parity and the Differentiation of the Continental Crust. Nature, 523: 301-307. https://doi.org/10.1038/nature14584
      Kusky, T., Wang, L., 2022. Growth of Continental Crust in Intra-Oceanic and Continental-Margin Arc Systems: Analogs for Archean Systems. Science China: Earth Sciences, 65(9): 1615-1645. https://doi.org/10.1007/s11430-021-9964-1
      Laske, G., Masters, G., Ma, Z., et al., 2013. Update on CRUST1.0-A1-Degree Global Model of Earth's Crust. Geophysical Research, 15: 2658.
      Lee, C. T A., Luffi, P., Le Roux, V., et al., 2010. The Redox State of Arc Mantle Using Zn/Fe Systematics. Nature, 468: 681-685. https://doi.org/10.1038/nature09617
      Lee, C. T A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
      Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation: From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3-4): 370-387. 10.1016/j.epsl.2007.09.025
      Liu, S. G., Rudnick, R. L., Liu, W. R., et al., 2023. Copper Isotope Evidence for Sulfide Fractionation and Lower Crustal Foundering in Making Continental Crust. Science Advances, 9(36): eadg6995. https://doi.org/10.1126/sciadv.adg6995
      Luffi, P., Ducea, M. N., 2022. Chemical Mohometry: Assessing Crustal Thickness of Ancient Orogens Using Geochemical and Isotopic Data. Reviews of Geophysics, 60(2): e2021RG000753. https://doi.org/10.1029/2021rg000753
      Mamani, M., Worner, G., Sempere, T., 2010. Geochemical Variations in Igneous Rocks of the Central Andean Orocline (13°S to 18°S): Tracing Crustal Thickening and Magma Generation through Time and Space. Geological Society of America Bulletin, 122(1-2): 162-182. https://doi.org/10.1130/b26538.1
      Mantle, G. W., Collins, W. J., 2008. Quantifying Crustal Thickness Variations in Evolving Orogens: Correlation between Arc Basalt Composition and Moho Depth. Geology, 36(1): 87. https://doi.org/10.1130/g24095a.1
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. 10.1016/0009-2541(94)00140-4
      McKenzie, N. R., Smye, A. J., Hegde, V. S., et al., 2018. Continental Growth Histories Revealed by Detrital Zircon Trace Elements: A Case Study from India. Geology, 46(3): 275-278. https://doi.org/10.1130/g39973.1
      Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract).
      Paterson, S. R., Ducea, M. N., 2015. Arc Magmatic Tempos: Gathering the Evidence. Elements, 11(2): 91-98. https://doi.org/10.2113/gselements.11.2.91
      Plank, T., Langmuir, C. H., 1988. An Evaluation of the Global Variations in the Major Element Chemistry of Arc Basalts. Earth and Planetary Science Letters, 90(4): 349-370. https://doi.org/10.1016/0012-821x(88)90135-5
      Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
      Roberts, N. M. W., Hernández-Montenegro, J. D., Palin, R. M., 2024. Garnet Stability during Crustal Melting: Implications for Chemical Mohometry and Secular Change in Arc Magmatism and Continent Formation. Chemical Geology, 659: 122142. https://doi.org/10.1016/j.chemgeo.2024.122142
      Rowley, D. B., Currie, B. S., 2006. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439: 677-681. https://doi.org/10.1038/nature04506.
      Rowley, D. B., Pierrehumbert, R. T., Currie, B. S., 2001. A New Approach to Stable Isotope-Based Paleoaltimetry: Implications for Paleoaltimetry and Paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188(1-2): 253-268. https://doi.org/10.1016/s0012-821x(01)00324-7
      Stirling, J. E., Denyszyn, S. W., Loucks, R. R., et al., 2023. Formation of Lower Arc Crust by Magmatic Underplating Revealed by High-Precision Geochronology. Geology, 51(12): 1101-1105. https://doi.org/10.1130/G51375.1
      Sun, W. D., Xie, G. Z., Zhang, L. P., et al., 2021. The Onset of Plate Subduction and the Evolution of Continental Crust. Acta Geologica Sinica, 95(1): 32-41(in Chinese with English abstract).
      Sundell, K., Laskowski, A., Kapp, P., et al., 2021. Jurassic to Neogene Quantitative Crustal Thickness Estimates in Southern Tibet. GSA Today, 31(6): 4-10. https://doi.org/10.1130/gsatg461a.1
      Sundell, K. E., George, S. W. M., Carrapa, B., et al., 2022. Crustal Thickening of the Northern Central Andean Plateau Inferred from Trace Elements in Zircon. Geophysical Research Letters, 49(3): e96443. https://doi.org/10.1029/2021gl096443
      Sundell, K. E., Laskowski, A. K., Howlett, C., et al., 2024. Episodic Late Cretaceous to Neogene Crustal Thickness Variation in Southern Tibet. Terra Nova, 36(1): 45-52. https://doi.org/10.1111/ter.12689
      Tang, M., Chu, X., Hao, J. H., et al., 2021a. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
      Tang, M., Ji, W. Q., Chu, X., et al., 2021b. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76-80. https://doi.org/10.1130/g47745.1
      Triantafyllou, A., Ducea, M. N., Jepson, G., et al., 2023. Europium Anomalies in Detrital Zircons Record Major Transitions in Earth Geodynamics at 2.5 Ga and 0.9 Ga. Geology, 51(2): 141-145. https://doi.org/10.1130/g050720.1
      Wang, W., Jing, L. Z., Zeng, L. S., et al., 2022. Crustal Thickness and Paleo-Elevation in SE Tibet during the Eocene-Oligocene: Insights from Whole-Rock La/Yb Ratios. Tectonophysics, 839: 229523. https://doi.org/10.1016/j.tecto.2022.229523
      Wells, M. L., Hoisch, T. D., Cruz-Uribe, A. M., et al., 2012. Geodynamics of Synconvergent Extension and Tectonic Mode Switching: Constraints from the Sevier-Laramide Orogen. Tectonics, 31(1). 10.1029/2011tc002913
      Xiong, Z. Y., Ding, L., Xie, J., 2019. Carbonate Clumped Isotope(Δ47) Thermometry and Its Application in Paleoelevation Reconstruction. Chinese Science Bulletin, 64(16): 1722-1737(in Chinese). doi: 10.1360/N972019-00032
      Xiong, Z. Y., Liu, X. H., Ding, L., et al., 2022. The Rise and Demise of the Paleogene Central Tibetan Valley. Science Advances, 8(6): eabj0944. https://doi.org/10.1126/sciadv.abj0944
      Yakymchuk, C., Holder, R. M., Kendrick, J., et al., 2023. Europium Anomalies in Zircon: A Signal of Crustal Depth? Earth and Planetary Science Letters, 622: 118405. 10.1016/j.epsl.2023.118405
      Yang, J. M., Cao, W. R., Yuan, X. P., et al., 2023. Erosion-Driven Isostatic Flow and Crustal Diapirism: Analytical and Numerical Models with Implications for the Evolution of the Eastern Himalayan Syntaxis, Southern Tibet. Tectonics, 42(8): e2022TC007717. https://doi.org/10.1029/2022tc007717
      Zeng, Y. C., Ducea, M. N., Xu, J. F., et al., 2021. Negligible Surface Uplift Following Foundering of Thickened Central Tibetan Lower Crust. Geology, 49(1): 45-50. https://doi.org/10.1130/g48142.1
      Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413
      Zheng, Y. F., Chen, R. X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28(in Chinese with English abstract).
      Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effect. Scientia Sinica Terrae, 52(7): 1213-1242 (in Chinese). doi: 10.1360/SSTe-2022-0076
      Zhu, D. C., Wang, Q., Cawood, P. A., et al., 2017. Raising the Gangdese Mountains in Southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. https://doi.org/10.1002/2016jb013508
      丁林, 许强, 张利云, 等, 2009. 青藏高原河流氧同位素区域变化特征与高度预测模型建立. 第四纪研究, 29(1): 1-12.
      莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160
      孙卫东, 谢国治, 张丽鹏, 等, 2021. 板块俯冲起始与大陆地壳演化. 地质学报, 95(1): 32-41.
      熊中玉, 丁林, 谢静, 2019. 碳酸盐耦合同位素(Δ47)温度计及其在古高度重建中的应用. 科学通报, 64(16): 1722-1737.
      郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
      郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
    • 加载中
    图(6)
    计量
    • 文章访问数:  437
    • HTML全文浏览量:  115
    • PDF下载量:  127
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-03
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回