• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    会泽铅锌矿区摆佐组地层白云石类型、特征及成因

    赵思博 刘英超 岳龙龙 马旺 郑宁 唐波浪

    赵思博, 刘英超, 岳龙龙, 马旺, 郑宁, 唐波浪, 2025. 会泽铅锌矿区摆佐组地层白云石类型、特征及成因. 地球科学, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076
    引用本文: 赵思博, 刘英超, 岳龙龙, 马旺, 郑宁, 唐波浪, 2025. 会泽铅锌矿区摆佐组地层白云石类型、特征及成因. 地球科学, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076
    Zhao Sibo, Liu Yingchao, Yue Longlong, Ma Wang, Zheng Ning, Tang Bolang, 2025. Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield. Earth Science, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076
    Citation: Zhao Sibo, Liu Yingchao, Yue Longlong, Ma Wang, Zheng Ning, Tang Bolang, 2025. Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield. Earth Science, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076

    会泽铅锌矿区摆佐组地层白云石类型、特征及成因

    doi: 10.3799/dqkx.2024.076
    基金项目: 

    中国地质调查局地质调查项目 DD20230008

    中国地质调查局地质调查项目 DD20243512

    国家重点研发计划项目 2022YFF0800903

    国家自然科学基金项目 92162322

    国家自然科学基金项目 42261144669

    国家自然科学基金项目 42302107

    国家自然科学基金项目 41922022

    国家自然科学基金项目 42003036

    国家资助博士后研究人员计划项目 GZC20232489

    第二次青藏高原科学考察与研究项目 2021QZKK0304

    云南省兴滇英才青年项目 XDYCQNRC-2022-0136

    国际地学对比计划项目 IGCP-662

    详细信息
      作者简介:

      赵思博(1997-),女,博士研究生,专业方向为矿物学、岩石学、矿床学.ORCID:0009-0008-7397-6318.E-mail:sibo18931123747@126.com

      通讯作者:

      刘英超(1982-),女,研究员,博士生导师,主要从事大陆碰撞铅锌成矿作用研究. E-mail:lychappy@126.com

    • 中图分类号: P614

    Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield

    • 摘要: 白云岩赋矿的密西西比河谷型(Mississippi valley-type,MVT)铅锌矿床中,白云石的成因长期存在争议,川滇黔地区会泽超大型铅锌矿床为典型的白云岩和白云质灰岩赋矿的MVT矿床,是回答这一问题的有利对象. 选择会泽矿区远矿端摆佐组地层中浸染状、条带状、块状白云石(岩),通过详细的矿相学和阴极发光(CL)镜下观察,结合主量元素、LA-ICP-MS原位成分和碳、氧、锶同位素分析,系统研究了其成因. 结果发现,摆佐组地层中的白云石分3个阶段产出. 其中,第1阶段交代型粉晶白云石(Dol 1)见选择性和组构保留交代,CL呈蓝紫色,MgO/CaO平均值0.68,Fe,Mn含量较低,具有LREE弱亏损,Eu、Ce负异常和La正异常;第2阶段交代型细-粗晶白云石(Dol 2)见组构保留交代和重结晶现象,CL呈紫红色、暗红到橙红色,MgO/CaO平均值0.71,Fe、Mn含量较第1阶段升高,显示轻微LREE亏损,Eu负异常,Ce负异常-轻微正异常,C-O、Sr同位素均在同期早石炭世海水范围之内;第3阶段孔隙充填型白云石胶结物(Dol 3),CL为暗红色和亮红色两种环带交替,MgO/CaO平均值为0.68,具有较高的Fe、Mn含量,显示MREE富集,Eu负异常、Ce无异常. 这些特征表明,第1阶段白云石化流体为局限的氧化海水,第2阶段为氧化到弱氧化的浅部孔隙海水,第3阶段可能为还原环境下的富锰深部孔隙海水或残余海水. 基于此,建立了会泽铅锌矿区摆佐组地层大范围白云石化的形成过程:(1)近地表-浅埋藏环境中渗透回流模式形成Dol 1和Dol 2,(2)埋藏环境发生重结晶作用对白云石进行改造,形成粗晶白云岩,(3)成岩后深埋藏阶段粗晶白云岩的孔隙中沉淀Dol 3. 因而,近矿端与远矿端白云石具有相似的特征和成因机制,局部近矿端白云石可能经历了热液流体的改造.

       

    • 图  1  中国川滇黔铅锌矿集区区域地质特征

      a.大地构造位置;b.区域地质图;c.地层分布特征. 图a, b据Zhou et al.(2018);图c据Leach and Song(2019)修改

      Fig.  1.  Regional geological characteristics of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province

      图  2  会泽铅锌矿区地质特征

      a~b.地质简图;c.地层柱状图;d.地质剖面图. 图a, c据Han et al.(2007)修改,图b据矿区水文地质图修改

      Fig.  2.  Geological characteristics of the Huize lead-zinc orefield

      图  3  会泽铅锌矿床远矿端石炭纪地层白云石化分布特征剖面图

      剖面图位置见图2b.威宁组:①同沉积角砾岩层;②威宁组中部生物碎屑灰岩层;③威宁组底部弱白云石化层,灰岩中发育网脉状白云石;摆佐组:④弱白云石化层,灰岩中发育浸染状和条带状白云石,偶有白云岩出露;⑤较强白云石化层,白云质灰岩与白云岩互层,灰岩中发育条带状白云石;⑥强白云石化层,为厚层白云岩或白云岩夹薄层白云质灰岩层;⑦弱白云石化层,灰岩中发育浸染状和网脉状白云石,偶见白云岩;⑧较强白云石化层,白云质灰岩与白云岩互层,灰岩中发育条带状、浸染状白云石;⑨弱白云石化层,偶有白云岩出露;⑩强白云石化层,白云岩夹薄层白云质灰岩.Lim.白云质灰岩;Dol.白云岩.蓝色箭头:浸染状白云石;绿色箭头:网脉/条带状白云石

      Fig.  3.  Geological section illustrating the distribution characteristics of distal dolomitization in the Carboniferous strata in the Huize lead-zinc deposit

      图  4  会泽铅锌矿床远矿端白云石化照片

      a. 白云质灰岩与白云岩互层,两者之间为过渡变化;b. 白云质灰岩与白云岩互层,两者之间为过渡变化;c. 泥粒灰岩、亮晶颗粒灰岩中发育近顺层的网脉状/条带状白云石;d. 灰岩中发育浸染状白云石;红色箭头:白云石;e. 粗晶白云岩.图a自HZ08;图b自HZ11;图c自HZ07;图d自HZ06-2;图e自HZ06-1

      Fig.  4.  Photographs of distal dolomitization in the Huize lead-zinc deposit

      图  5  会泽铅锌矿床远矿端不同产状白云石单偏光图像

      a. 泥晶灰岩中发育的浸染状粗晶自形白云石,围岩中见方解石化的自形双锥石英假晶;b. 鲕粒灰岩(左下角)和亮晶颗粒灰岩(右上角)之间发育泥晶到粗晶白云石条带,白云石见组构保留型交代;c. 亮晶颗粒灰岩中见泥屑,发育浸染状泥晶到细晶白云石,局部见选择性交代泥质和组构保留型交代;d. 泥粒灰岩中发育的白云石条带,条带旁的围岩中可见大量的自形的双锥石英;e. 亮晶颗粒灰岩中发育的白云石条带,白云石具组构保留交代特征;f. 白云岩主体部分(K1)和白云岩孔洞充填部分(K2),充填孔洞的白云石干净明亮,为自形白云石.Lim. 灰岩;Dol. 白云石;Cal. 方解石.橙色箭头:自形双锥石英,部分见方解石化交代;红色箭头:白云石组构保留交代.图a自HZ02;图b自HZ08;图c自HZ06-2;图d自HZ03-2;图e自HZ-10;图f自HZ06-1

      Fig.  5.  Photomicrographs under single polarized light showing distal dolomites with different occurrences in the Huize lead-zinc deposit

      图  6  会泽铅锌矿床远矿端交代型粉晶白云石(Dol 1)特征

      a.亮晶颗粒灰岩中泥屑被选择性交代,发育粉晶白云石,同时具组构保留交代特征,产出于浸染状白云质灰岩(单偏光);b.白云石交代似球粒、鲕粒灰岩,可见泥质物质被选择性交代,发育粉晶白云石,同时具组构保留交代特征.产出于条带状白云质灰岩,白云石条带周围见大量自形的双锥石英(单偏光);c.白云石交代泥晶灰岩,CL下呈蓝紫色,内部均匀发光,产出于浸染状白云质灰岩(CL图像;右上角为单偏光);d.白云石交代泥晶灰岩,CL下呈蓝紫色,内部均匀发光,见后期Dol 2叠加交代Dol 1和围岩,共同表现出组构保留交代特征,产出于条带状白云质灰岩(CL图像;右上角为单偏光).Lim.灰岩;Dol.白云石;橙色箭头:自形双锥石英;红色箭头:白云石组构保留交代.图a自HZ06-2;图b自HZ03-2;图c自HZ02;图d自HZ07

      Fig.  6.  Characteristics of distal replacement micrite to powdered dolomite (Dol 1) in the Huize lead-zinc deposit

      图  7  会泽铅锌矿床远矿端交代型细晶到粗晶白云石(Dol 2)特征

      a.细晶灰岩被交代,形成细晶Dol 2,白云石保留原岩的特征,CL呈均匀的暗红-橙红色,产出于浸染状白云质灰岩(单偏光;右上角为CL图像);b.生物碎屑灰岩中可见Dol 1被Dol 2交代切穿,具组构保留交代特征,产出于条带状白云质灰岩(单偏光;右上角为CL图像);c.鲕粒灰岩和Dol 1被Dol 2交代,单偏光具组构保留交代特征,CL呈均匀的暗红色或呈斑驳的紫红色,产出于条带状白云质灰岩(CL图像;右上角为单偏光);d. Dol 1和原岩被Dol 2交代,单偏光具组构保留交代特征,Dol 2 CL呈斑驳的紫红色,产出于白云岩(CL图像;右上角为单偏光);e. 细晶自形Dol 2和粗晶镶嵌状Dol 2集合体,镶嵌状集合体接触界面模糊,粗晶Dol 2内部隐约可见有原细晶白云石结构残影(单偏光);f. 细晶到中晶自形到半自形不等粒镶嵌状Dol 2集合体,Dol 2晶体间接触界面模糊,但中晶Dol 2局部仍可见原细晶白云石结构残影(单偏光);g. 中晶到粗晶不等粒镶嵌状Dol 2集合体,粗晶Dol 2中局部可见原白云石结构残影(单偏光);h. 与图e对应的CL图像,自形到半自形晶面表现为斑驳的暗红色发光,晶体边部环绕微米级亮红色边;i. 他形不等粒镶嵌状Dol 2,晶面主体呈斑驳状暗红色发光,局部发育和发光边缘相似的亮红色斑点(CL图像;右上角为单偏光).Lim.灰岩;Dol.白云石;红色箭头.白云石组构保留交代. 图a自HZ09;图b自HZ03-2;图c自HZ10;图d自HZ05-2;图e, 图f, 图h自HZ05-2;图g自HZ06-1;;图i自HZ04-1

      Fig.  7.  Characteristics of replacement fine to coarse dolomite (Dol 2) at the distal in the Huize lead-zinc deposit

      图  8  会泽铅锌矿床远矿端孔隙充填型白云石(Dol 3)特征

      a.块状白云岩,见白云岩主体部分(Dol 2)和白云岩孔洞充填部分(Dol 3),充填孔洞的白云石干净明亮,为中晶到粗晶、自形白云石(单偏光);b.充填白云岩孔洞的Dol 3,中晶到粗晶白云石晶面未见交代或溶蚀现象.单偏光下干净明亮,CL下整体表现为暗红色和粽红色两种环带交替发育,晶面见微米尺度的亮红色边缘(CL图像;右上角为单偏光).Dol. 白云石;红色箭头:白云石组构保留交代.图a, 图b自HZ05-2

      Fig.  8.  Characteristics of distal pore-filled dolomite (Dol 3) in the Huize lead-zinc deposit

      图  9  会泽铅锌矿床远矿端和近矿端白云石主量元素端元图解

      其中近矿白云石数据参考Tan et al.(2023

      Fig.  9.  Diagram of the major elements of distal and proximal dolomites in the Huize lead-zinc deposit

      图  10  会泽铅锌矿床不同类型白云石元素含量箱型图

      近矿白云石数据参考Tan et al.(2023

      Fig.  10.  Element abundance box diagrams of dolomites in different types in the Huize lead-zinc deposit

      图  11  会泽铅锌矿床不同类型白云石REE+Y特征及PAAS标准化配分模式图(a~c)和Ce/(0.5La+0.5Pr)SN与Pr/(0.5Ce+0.5Nd)SN相关图(d)

      Fig.  11.  PAAS-normalized REE+Y patterns (a-c) and Ce/(0.5La+0.5Pr)SN vs. Pr/(0.5Ce+0.5Nd)SN correlation diagrams (d)of dolomite within different types in the Huize lead-zinc deposit

      图  12  会泽铅锌矿床摆佐组白云石C-O同位素图

      远矿端白云石(文献数据)来自文献1~5;近矿端白云石(文献数据)来自文献1~9;谢尔普霍夫阶同期海水来自文献10,11. 1.Han et al.(2007);2. 陈士杰等(1984));3. 黄智龙等(2004);4. 史显文等(2021);5. 马宏杰等(2014);6. 柳贺昌和林文达(1999);7. 周朝宪(1998);8. 胡耀国(2000);9. Li et al.(2007);10. Mii(1996);11. Veizer et al.(1999)

      Fig.  12.  The δ13CV-PDB versus δ18OV-PDB diagram for Baizuo Formation dolomites in the Huize lead-zinc deposit

      图  13  会泽铅锌矿床摆佐组白云石Sr同位素图

      谢尔普霍夫阶同期海水(文献数据)来自文献Veizer et al.(1999);近矿端未蚀变白云石(文献数据)和近矿端蚀变白云石(文献数据)来自文献Li et al.(2007

      Fig.  13.  Diagram showing 87Sr/86Sr ratios of Baizuo Formation dolomites in the Huize lead-zinc deposit

      图  14  会泽铅锌矿床摆佐组近矿端白云石化照片

      a.近矿端含矿白云岩;b.近矿端无矿白云岩

      Fig.  14.  Photographs of proximal dolomitization in the Huize lead-zinc deposit

      图  15  会泽铅锌矿床近矿端白云石稀土元素PAAS标准化配分模式图(据Tan et al., 2023

      Fig.  15.  PAAS-normalized REE patterns of proximal dolomites in the Huize lead-zinc deposit (modified from Tan et al., 2023)

      表  1  会泽铅锌矿床石炭纪地层白云石化特征

      Table  1.   Characteristics of dolomitization in Carboniferous strata in the Huize lead-zinc deposit

      白云石产状 特征 地层分布和白云石化程度
      大塘组
      (C1d
      摆佐组
      (C1b
      威宁组
      (C2w
      马坪组(C2m
      浸染状 白云石零星、随机分布于灰岩中,密集时可成团状白云石集合体 不发育 强烈发育 发育 极少发育
      脉状-条带状 白云石集合体呈脉状-条带状分布在灰岩中,密集时可呈薄层白云岩 极少发育,呈网脉状 强烈发育,与地层呈近水平分布 发育,呈网脉状 不发育
      块状 块状白云石集合体,即白云岩 不发育 强烈发育 不发育 不发育
      下载: 导出CSV

      表  2  会泽铅锌矿区远矿端不同类型白云石电子探针分析结果

      Table  2.   Electron microprobe analyses of distal dolomites within different types in the Huize lead-zinc deposit

      类型 白云石产状 样品编号 CaO MgO MnO FeO SrO BaO MgO/CaO CaCO3 MgCO3 FeCO3
      (%) (%)
      Dol 1 浸染状 HZ06-2 32.08 21.07 0.10 0.01 0.00 0.10 0.66 52.15 47.65 0.02
      HZ02 36.27 20.14 3.94 0.00 0.00 0.28 0.56 53.73 41.51 0.00
      29.90 23.23 3.49 0.00 0.00 0.00 0.78 46.01 49.74 0.00
      36.27 20.14 3.94 0.00 0.00 0.28 0.56 53.73 41.51 0.00
      脉状 HZ10 24.80 22.14 2.09 0.19 0.00 0.00 0.89 43.20 53.66 0.26
      Dol 2 浸染状 HZ09 29.89 24.32 0.00 0.03 0.00 0.00 0.81 46.88 53.08 0.04
      30.84 22.02 3.18 0.08 0.00 0.05 0.71 48.14 47.82 0.10
      HZ02 29.90 23.23 3.49 0.00 0.00 0.00 0.78 46.01 49.74 0.00
      30.96 22.88 2.15 0.19 0.00 0.00 0.74 47.90 49.24 0.23
      30.47 18.74 3.50 0.21 0.00 0.00 0.62 51.23 43.84 0.27
      30.96 22.88 2.15 0.19 0.00 0.00 0.74 47.89 49.24 0.23
      脉状 HZ04-2 27.81 16.71 0.00 0.04 0.00 0.00 0.60 54.44 45.50 0.06
      HZ10 31.61 24.15 0.38 0.02 0.00 0.21 0.76 48.18 51.22 0.02
      31.81 21.95 2.54 0.29 0.00 0.08 0.69 49.24 47.26 0.36
      28.24 22.45 2.04 0.20 0.00 0.00 0.79 46.12 51.00 0.25
      块状 HZ06-1 31.34 21.65 2.74 0.09 0.00 0.00 0.69 49.20 47.29 0.11
      HZ04-1 30.53 20.61 0.39 0.02 0.00 0.13 0.68 51.24 48.13 0.03
      HZ05-2 31.05 19.09 1.55 0.21 0.00 0.05 0.61 52.62 45.00 0.28
      31.36 23.78 0.00 0.23 0.00 0.03 0.76 48.52 51.18 0.28
      31.06 20.86 5.15 0.26 0.00 0.03 0.67 48.25 45.10 0.31
      Dol 3 块状 HZ06-1 30.65 22.33 0.00 0.44 0.00 0.08 0.73 49.37 50.03 0.55
      30.01 22.27 2.97 0.01 0.00 0.00 0.74 47.38 48.90 0.01
      28.82 16.95 2.32 0.00 0.00 0.05 0.59 53.13 43.46 0.00
      下载: 导出CSV

      表  3  不同类型白云石LA-ICP-MS分析结果(10-6

      Table  3.   LA-ICP-MS results in the distal dolomites within different types in the Huize lead-zinc deposit (10-6)

      类型 MgO CaO MgO/CaO Na Fe Mn V Cr Co Ni Zn Sr Ba Pb
      Dol 1(n=16) Count 16 16 16 16 16 16 15 16 10 5 16 16 16 16
      Max 205 010.76 375 820.31 0.66 267.20 434.75 96.80 2.36 127.20 0.49 7.28 277.80 130.83 6.49 23.20
      Min 139 704.55 309 612.60 0.37 30.19 20.81 2.11 0.08 5.35 0.01 0.26 3.54 38.95 0.36 0.81
      Median 182 364.88 334 637.14 0.54 107.38 127.39 9.31 0.94 12.20 0.12 3.63 39.38 79.60 0.83 4.13
      GM 181 091.13 334 658.55 0.54 102.87 120.89 10.19 0.70 14.57 0.09 2.41 30.21 72.00 1.10 4.83
      S.D. 17 110.79 16 822.15 0.08 61.34 111.38 22.18 0.66 28.30 0.13 2.53 66.75 24.62 1.52 8.27
      Dol 2(n=64) Count 64 64 64 63 64 64 63 64 46 24 60 64 62 62
      Max 237 760.76 379 643.46 0.85 297.08 1756.16 3272.53 16.53 236.09 12.57 8.13 1178.90 132.59 11.30 50.84
      Min 134 589.59 279 728.48 0.35 10.09 29.95 4.68 0.08 2.53 0.03 0.09 0.32 13.41 0.13 0.00
      Median 210 344.18 305 559.57 0.69 126.55 361.36 56.56 1.27 15.10 0.23 1.72 13.27 45.05 1.29 1.04
      GM 203 895.77 310 506.92 0.66 107.48 361.29 56.42 1.28 16.83 0.23 1.64 14.56 43.94 1.11 0.80
      S.D. 19 102.95 18 941.96 0.09 65.60 387.50 508.30 2.93 30.59 1.81 2.56 204.43 23.10 1.67 9.47
      Dol 3(n=23) Count 23 23 23 13 21 23 23 22 11 7 20 23 16 22
      Max 233 757.98 307 079.42 0.84 370.78 2190.47 9234.39 50.91 43.63 0.64 6.96 394.51 144.25 1.57 324.51
      Min 204 088.57 277 741.95 0.68 4.22 1.98 41.62 0.08 7.67 0.02 1.42 0.44 11.14 0.13 0.02
      Median 215 201.75 297 405.43 0.72 64.65 500.17 120.57 4.07 15.40 0.23 3.20 6.04 52.59 0.55 0.26
      GM 216 784.34 296 281.56 0.73 43.18 267.70 316.31 4.94 16.75 0.21 2.87 9.34 41.82 0.52 0.46
      S.D. 7 802.37 7 243.41 0.04 113.46 695.14 2765.88 12.36 8.55 0.15 1.91 107.80 47.62 0.36 67.31
      类型 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Y/Ho ∑REE+Y δCe δEu
      Dol 1(n=16) Count 16 16 15 15 11 11 13 12 14 16 13 15 12 12 11 13 7 15 9
      Max 4.82 6.08 1.23 6.98 1.74 0.55 2.11 0.36 1.68 9.85 0.31 0.63 0.09 0.50 0.07 103.34 37.01 3.39 0.97
      Min 0.26 0.41 0.03 0.13 0.09 0.00 0.00 0.00 0.03 0.03 0.01 0.02 0.00 0.01 0.00 16.76 3.25 0.14 0.01
      Median 0.81 1.09 0.15 0.54 0.20 0.04 0.19 0.02 0.15 0.67 0.03 0.07 0.01 0.10 0.01 40.56 6.50 0.56 0.71
      GM 0.76 0.99 0.17 0.64 0.24 0.03 0.15 0.02 0.16 0.77 0.03 0.09 0.01 0.08 0.01 40.79 7.76 0.62 0.42
      S.D. 1.07 1.31 0.28 1.63 0.45 0.15 0.53 0.09 0.41 2.34 0.08 0.15 0.02 0.12 0.02 23.03 10.98 0.81 0.27
      Dol 2(n=64) Count 64 64 64 62 50 52 56 58 57 64 56 55 50 56 50 56 27 62 40
      Max 13.87 22.42 3.28 12.68 2.58 0.52 2.36 0.30 2.26 12.07 0.39 1.08 0.16 1.00 0.15 257.40 67.58 4.96 3.06
      Min 0.12 0.20 0.03 0.02 0.02 0.01 0.00 0.00 0.01 0.23 0.00 0.00 0.00 0.00 0.00 14.21 3.15 0.03 0.27
      Median 0.65 0.99 0.14 0.52 0.16 0.04 0.21 0.03 0.13 1.06 0.03 0.09 0.02 0.09 0.02 32.07 37.84 0.80 0.63
      GM 1.05 1.58 0.21 0.77 0.25 0.06 0.21 0.03 0.18 1.33 0.04 0.12 0.02 0.11 0.02 34.65 19.56 0.74 0.69
      S.D. 3.72 6.24 0.86 3.60 0.75 0.14 0.59 0.08 0.61 3.62 0.12 0.32 0.05 0.28 0.04 41.94 22.22 1.02 0.62
      Dol 3(n=23) Count 22 23 22 22 18 20 19 19 21 23 20 18 21 17 18 20 12 20 17
      Max 3.57 12.81 1.87 8.61 1.76 0.37 1.69 0.20 0.94 8.06 0.22 0.47 0.07 0.46 0.06 287.56 40.91 1.98 2.54
      Min 0.03 0.12 0.00 0.11 0.09 0.00 0.24 0.00 0.04 0.08 0.00 0.03 0.01 0.04 0.00 13.65 4.11 0.57 0.12
      Median 0.91 2.27 0.38 1.93 0.80 0.11 0.57 0.07 0.43 2.75 0.09 0.27 0.03 0.25 0.03 38.74 26.83 0.93 0.40
      GM 0.63 2.09 0.27 1.72 0.67 0.08 0.66 0.06 0.32 2.02 0.06 0.20 0.02 0.18 0.03 45.44 20.32 0.98 0.45
      S.D. 1.14 4.38 0.62 2.88 0.54 0.09 0.42 0.06 0.33 2.45 0.07 0.14 0.02 0.13 0.02 63.64 11.40 0.33 0.61
      注:n.数据量;Count.有效数据量;Max.最大值;Min.最小值;Median.中值;GM.几何平均值;S.D.标准差;δCe=(Ce/Ce*)SN =$ \left(\frac{\mathrm{C}\mathrm{e}}{\mathrm{P}\mathrm{r}\mathrm{*}\left(\frac{\mathrm{P}\mathrm{r}}{\mathrm{N}\mathrm{d}}\right)}\right) $SNδEu=(Eu/Eu*)CN=$ \left(\frac{\mathrm{E}\mathrm{u}}{(\mathrm{S}{\mathrm{m}}^{2}{\mathrm{*}\mathrm{T}\mathrm{b})}^{\frac{1}{3}}}\right) $CN.Dol 1样品自HZ02、HZ03-2;HZ06-2;HZ07、HZ08;Dol 2样品自HZ02、HZ03-2、HZ04-1、HZ04-2、HZ05-2、HZ06-1、HZ06-2、HZ07、HZ08、HZ09、HZ10;Dol 3样品自HZ04-1、HZ05-2、HZ06-1.
      下载: 导出CSV

      表  4  会泽铅锌矿床摆佐组白云石(岩)C-O、Sr 同位素组成

      Table  4.   Carbon-oxygen-strontium isotope compositions of dolomite (dolostone) in the Huize lead-zinc deposit

      序号 样品编号 矿物/岩石 类型 δ13CV-PDB δ18OV-PDB δ18OSMOW 87Sr/86Sr 数据来源
      1 HZ04-1 白云石 远矿 0.500 -8.800 21.800 0.708 44 1
      2 HZ01 白云石 远矿 -1.200 -7.900 22.800 0.707 71 1
      3 HZ03-1 白云石 远矿 -1.500 -5.900 24.800 0.708 08 1
      4 HZ05-1 白云石 远矿 0.300 -8.800 21.800 0.708 39 1
      5 HZ05-2 白云石 远矿 -0.700 -6.700 24.000 0.708 37 1
      6 SC-34 白云石 远矿 -2.200 -10.100 20.500 2
      7 SC-35 白云石 远矿 -1.200 -9.200 21.400 2
      8 HE11 白云石 远矿 0.850 -11.190 19.320 3
      9 HE02 白云石 远矿 0.090 -8.010 22.600 3
      10 HZS-40 白云岩 远矿 0.740 -7.864 22.800 4
      11 HZ-X-3 白云岩 远矿 -0.240 -7.573 23.100 4
      12 Y17 白云岩 远矿 -0.890 -10.017 20.580 5
      13 Y18 白云岩 远矿 -3.600 -9.920 20.680 5
      14 Y19 白云岩 远矿 -5.210 -9.784 20.820 5
      15 Y20 白云岩 远矿 -1.960 -9.736 20.870 5
      16 Y21 白云岩 远矿 -3.470 -10.793 19.780 5
      17 Y22 白云岩 远矿 -1.150 -10.347 20.240 5
      18 Y23 白云岩 远矿 -2.550 -9.881 20.720 5
      19 Y24 白云岩 远矿 -1.580 -9.901 20.700 5
      20 Y25 白云岩 远矿 -2.160 -13.412 17.080 5
      21 Y26 白云岩 远矿 -6.580 -9.939 20.660 5
      22 Y27 白云岩 远矿 -3.590 -17.321 13.050 5
      23 Y28 白云岩 远矿 -0.860 -10.677 19.900 5
      24 Y29 白云岩 远矿 -2.050 -7.175 23.510 5
      25 Y30 白云岩 远矿 -1.050 -10.812 19.760 5
      26 Y31 白云岩 远矿 -2.500 -8.145 22.510 5
      27 Y32 白云岩 远矿 -3.330 -10.056 20.540 5
      28 Y33 白云岩 远矿 -2.630 -12.752 17.760 5
      29 Y34 白云岩 远矿 -1.580 -10.754 19.820 5
      30 Y35 白云岩 远矿 -4.870 -9.571 21.040 5
      31 Y36 白云岩 远矿 -4.500 -12.665 17.850 5
      32 Y37 白云岩 远矿 -4.660 -16.157 14.250 5
      33 Y38 白云岩 远矿 -5.520 -11.773 18.770 5
      34 Y39 白云岩 远矿 -3.100 -10.745 19.830 5
      35 Y40 白云岩 远矿 -4.560 -9.658 20.950 5
      36 Y41 白云岩 远矿 -3.010 -11.317 19.240 5
      37 Y42 白云岩 远矿 -4.790 -11.026 19.540 5
      38 Y43 白云岩 远矿 -2.620 -9.852 20.750 5
      39 Y44 白云岩 远矿 -3.300 -10.075 20.520 5
      40 PM1-39b 白云岩 远矿 0.750 -7.420 23.257 6
      41 PM1-40b 白云岩 远矿 -1.080 -8.110 22.546 6
      42 PM1-41b 白云岩 远矿 -1.120 -7.110 23.577 6
      43 PM1-42b 白云岩 远矿 0.110 -7.930 22.731 6
      44 PM1-43b 白云岩 远矿 0.530 -7.560 23.113 6
      45 PM1-44b 白云岩 远矿 0.310 -6.810 23.886 6
      46 PM1-45b 白云岩 远矿 0.560 -7.330 23.350 6
      47 PM1-46b 白云岩 远矿 -0.180 -7.060 23.628 6
      48 PM1-47b 白云岩 远矿 -0.330 -8.240 22.412 6
      49 Hui-1-2 白云石 近矿 0.770 -9.410 21.600 7
      50 2014-4-19 白云石 近矿 -0.800 -10.100 20.500 8
      51 HE17 白云石 近矿 0.850 -9.580 20.980 3
      52 ycp2-a 白云石 近矿 0.750 -9.570 20.990 9
      53 ycp2-b 白云石 近矿 0.810 -9.580 20.980 9
      54 ycp3-lk 白云石 近矿 -0.290 -9.670 16.950 9
      55 HZ2053-29 白云岩 近矿 0.350 -7.476 23.200 4
      56 HZQ74 白云岩 近矿 -0.800 -8.058 22.600 10
      57 HZ2053-29 白云岩 近矿 0.400 -7.476 23.200 10
      58 JK1 白云岩 近矿 -4.200 -6.719 23.980 5
      59 JK2 白云岩 近矿 -4.480 -9.377 21.240 5
      60 JK3 白云岩 近矿 -4.620 -8.058 22.600 5
      61 JK4 白云岩 近矿 -2.680 -11.598 18.950 5
      62 JK5 白云岩 近矿 -3.140 -10.812 19.760 5
      63 JK6 白云岩 近矿 -0.890 -8.931 21.700 5
      64 JK7 白云岩 近矿 -4.250 -7.369 23.310 5
      65 JK8 白云岩 近矿 -0.990 -10.560 20.020 5
      66 JK9 白云岩 近矿 -3.050 -10.609 19.970 5
      67 JK10 白云岩 近矿 -1.290 -8.416 22.230 5
      68 JK11 白云岩 近矿 -2.270 -7.786 22.880 5
      69 JK12 白云岩 近矿 -2.440 -12.015 18.520 5
      70 YK1 白云岩 近矿 -0.540 -6.981 23.710 5
      71 YK2 白云岩 近矿 0.720 -7.679 22.990 5
      72 YK3 白云岩 近矿 1.120 -7.931 22.730 5
      73 YK4 白云岩 近矿 0.770 -5.962 24.760 5
      74 YK5 白云岩 近矿 1.610 -6.758 23.940 5
      75 YK6 白云岩 近矿 2.100 -7.126 23.560 5
      76 YK7 白云岩 近矿 0.590 -6.952 23.740 5
      77 YK8 白云岩 近矿 1.910 -7.514 23.160 5
      78 YK9 白云岩 近矿 1.920 -4.924 25.830 5
      79 YK10 白云岩 近矿 1.570 -3.091 27.720 5
      80 YK11 白云岩 近矿 1.960 -2.916 27.900 5
      81 YK12 白云岩 近矿 -0.380 -7.941 22.720 5
      82 YK13 白云岩 近矿 -0.720 -7.233 23.450 5
      83 YK14 白云岩 近矿 0.190 -6.506 24.200 5
      84 YK15 白云岩 近矿 -1.320 -6.573 24.130 5
      85 YK16 白云岩 近矿 -0.890 -10.337 20.250 5
      86 YK17 白云岩 近矿 -2.290 -6.894 23.800 5
      87 YK18 白云岩 近矿 -0.300 -5.856 24.870 5
      88 YK19 白云岩 近矿 -0.010 -5.361 25.380 5
      89 YK20 白云岩 近矿 0.140 -4.847 25.910 5
      注:数据来源:1.本文;2. Han et al.(2007);3. 陈士杰等(1984);4. 黄智龙等(2004);5. 史显文等(2021);6.马宏杰等(2014)7. 柳贺昌和林文达(1999);8. 周朝宪(1998);9.胡耀国(2000);10. Li et al.(2007).如以白云岩中挑选的白云石作为测试样品,则标明为“白云石”;如文献中未提及或以白云岩全岩作为测试样品,则标明为“白云岩”.
      下载: 导出CSV

      表  5  会泽铅锌矿床远矿端摆佐组不同阶段白云石特征

      Table  5.   The characteristics of distal dolomites in different stages of Baizuo Formation in the Huize lead-zinc deposit

      第1阶段(Dol 1) 第2阶段(Dol 2) 第3阶段(Dol 3)
      粒度 粉晶 细晶-粗晶 粗晶
      (与后期重结晶有关)
      形态 - 自形-半自形-他形 自形
      (与后期重结晶有关)
      颜色 单偏光:深褐色-棕色; 单偏光:棕色; 单偏光:干净明亮白色
      CL:均匀发光,蓝紫色 CL:紫红色、暗红色-橙红色 CL:暗红、亮红色环带
      特征 选择性交代; 局部见组构保留型交代; 未见组构保留型交代;
      常见组构保留交代 常见后期重结晶现象 未见后期重结晶现象
      产出状态 浸染状白云石化中白云石的“雾心”;
      条带状白云石化
      浸染状白云石化中白云石的“亮边”; 白云岩孔隙充填部分
      条带状白云石化;
      白云岩的主体部分
      MgO/CaO(%/%) 0.56~0.89 (0.68) 0.60~ 0.81 (0.71) 0.59~ 0.74 (0.68)
      Fe 20.81~434.75 (120.89) 29.95~1 756.16 (361.29) 1.98~2 190.47 (267.70)
      Mn 2.11~96.80 (10.19) 4.68~3 272.53 (56.42) 41.62~9 234.39 (316.31)
      Na 30.19~267.20 (102.87) 10.09~297.08 (107.48) 4.22~370.78 (43.18)
      Sr 38.95~130.83 (72.00) 13.41~132.59 (43.94) 11.14~144.25 (41.82)
      V 0.08~2.36 (0.70) 0.08~16.53 (1.28) 0.08~50.91 (4.64)
      Pb 0.81~23.20 (4.83) 0.00~50.84 (0.80) 0.02~324.51 (0.46)
      Zn 3.54~277.80 (30.21) 0.32~1 178.90 (14.56) 0.44~394.51 (9.34)
      稀土元素 稀土配分模式整体相对平坦,具有LREE弱亏损、Eu负异常、Ce负异常和La正异常 稀土配分模式整体相对平坦,具有LREE轻微亏损、Eu负异常、Ce的负异常至轻微正异常 稀土配分模式整体相对平坦,具有MREE富集特征、Eu负异常
      C-O同位素 - δ13CV-PDB:-1.50‰~0.50‰ -
      - δ18OV-PDB:-11.7‰~0.01‰ -
      Sr同位素 - 87Sr/86Sr:0.707 71~0.708 43 -
      白云石化流体 局限的氧化海水 氧化-弱氧化的浅部孔隙海水 还原环境下的富Mn深部孔隙海水或残余的还原性富Mn白云石化流体
      注:Fe、Mn、Na、Sr、V、Pb、Zn单位为10-6,“()”中为平均值.
      下载: 导出CSV
    • Bai, X., Zhong, Y. J., Huang, K. K., et al., 2022. Recrystallization of Dolomite and Its Geological Significance. Acta Petrologica et Mineralogica, 41(4): 804-817(in Chinese with English abstract).
      Bau, M., Möller, P., Dulski, P., 1997. Yttrium and Lanthanides in Eastern Mediterranean Seawater and Their Fractionation during Redox-Cycling. Marine Chemistry, 56(1-2): 123-131. https://doi.org/10.1016/S0304-4203(96)00091-6
      Cai, W. K., Liu, J. H., Zhou, C. H., et al., 2021. Structure, Genesis and Resources Efficiency of Dolomite: New Insights and Remaining Enigmas. Chemical Geology, 573: 120191. https://doi.org/10.1016/j.chemgeo.2021.120191
      Chafetz, H. S., Zhang, J., 1998. Authigenic Euhedral Megaquartz Crystals in a Quaternary Dolomite. Journal of Sedimentary Research, 68(5): 994-1000. https://doi.org/10.2110/jsr.68.994
      Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013
      Chen, S. J., Cai, J. F., Wang, Z. J., et al., 1984. Significance of Biostratigraphy to Ore-Controlling of Shanshulin Pb-Zn Deposit. Geology and Prospecting, 20(11): 16-19, 24(in Chinese with English abstract).
      Cui, G. S., Bao, Z. W., Li, Q., 2023. The Origin of Hydrothermal Dolomite in the Huize Giant Pb-Zn Ore-Field in the Yunnan Province and Its Geological Implications. Geotectonica et Metallogenia, 47(2): 361-375(in Chinese with English abstract).
      Davies, G. R., Smith, L. B. Jr, 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641-1690. https://doi.org/10.1306/05220605164
      de Oliveira, S. B., Leach, D. L., Juliani, C., et al., 2019. The Zn-Pb Mineralization of Florida Canyon, an Evaporite-Related Mississippi Valley-Type Deposit in the Bongará District, Northern Peru. Economic Geology, 114(8): 1621-1647. https://doi.org/10.5382/econgeo.4690
      Du, Y., Fan, T. L., Machel, H. G., et al., 2018. Genesis of Upper Cambrian-Lower Ordovician Dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several Limitations from Petrology, Geochemistry, and Fluid Inclusions. Marine and Petroleum Geology, 91: 43-70. https://doi.org/10.1016/j.marpetgeo.2017.12.023
      Friedman, I., O'Neil, J. R., 1977. Data of Geochemistry: Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. Chapter Kk. US Government Printing Office: 440.
      Guo, C., Chen, D. Z., Qing, H. R., et al., 2020. Early Dolomitization and Recrystallization of the Lower-Middle Ordovician Carbonates in Western Tarim Basin (NW China). Marine and Petroleum Geology, 111: 332-349. https://doi.org/10.1016/j.marpetgeo.2019.08.017
      Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
      Han, R. S., Liu, C. Q., Huang, Z. L., et al., 2007. Geological Features and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan, South China. Ore Geology Reviews, 31(1-4): 360-383. https://doi.org/10.1016/j.oregeorev.2006.03.003
      Harper, D. D., Borrok, D. M., 2007. Dolomite Fronts and Associated Zinc-Lead Mineralization, USA. Economic Geology, 102(7): 1345-1352. https://doi.org/10.2113/gsecongeo.102.7.1345
      Heijlen, W., Muchez, P., Banks, D. A., et al., 2003. Carbonate-Hosted Zn-Pb Deposits in Upper Silesia, Poland: Origin and Evolution of Mineralizing Fluids and Constraints on Genetic Models. Economic Geology, 98(5): 911-932. https://doi.org/10.2113/gsecongeo.98.5.911
      Hodson, K. R., Crider, J. G., Huntington, K. W., 2016. Temperature and Composition of Carbonate Cements Record Early Structural Control on Cementation in a Nascent Deformation Band Fault Zone: Moab Fault, Utah, USA. Tectonophysics, 690: 240-252. https://doi.org/10.1016/j.tecto.2016.04.032
      Hou, Y., Azmy, K., Berra, F., et al., 2016. Origin of the Breno and Esino Dolomites in the Western Southern Alps (Italy): Implications for a Volcanic Influence. Marine and Petroleum Geology, 69: 38-52. https://doi.org/10.1016/j.marpetgeo.2015.10.010
      Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China: An Introduction to the Thematic Issue. Mineralium Deposita, 47(6): 579-588. https://doi.org/10.1007/s00126-012-0431-6
      Hu, Y. G., 2000. Occurrence, Source of Ore-Forming Materials and Metallogenic Mechanism of Silver in Yinchangpo Silver Polymetallic Deposit, Guizhou Province (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
      Huang, H. X., Wen, H. G., Wen, L., et al., 2023. Multistage Dolomitization of Deeply Buried Dolomite in the Lower Cambrian Canglangpu Formation, Central and Northern Sichuan Basin. Marine and Petroleum Geology, 152: 106261. http://doi.org /10.1016/j.marpetgeo.2023.106261
      Huang, Z. L., Li, W. B., Chen, J., et al., 2004. Carbon and Oxygen Isotope Geochemistry of the Huize Superlarge Pb-Zn Ore Deposits in Yunnan Province. Geotectonica et Metallogenia, 28(1): 53-59(in Chinese with English abstract).
      Kaczmarek, S. E., Sibley, D. F., 2014. Direct Physical Evidence of Dolomite Recrystallization. Sedimentology, 61(6): 1862-1882. https://doi.org/10.1111/sed.12119
      Kaczmarek, S. E., Thornton, B. P., 2017. The Effect of Temperature on Stoichiometry, Cation Ordering, and Reaction Rate in High-Temperature Dolomitization Experiments. Chemical Geology, 468: 32-41. https://doi.org/10.1016/j.chemgeo.2017.08.004
      Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., One Hundredth Anniversary Volume. Society of Economic Geologists: 1905-2005. https://doi.org/10.5382/av100.18
      Leach, D. L., Song, Y. C., 2019. Chapter 9 Sediment-Hosted Zinc-Lead and Copper Deposits in China. In: Chang, Z. S., Goldfarb, R. J., eds., Mineral Deposits of China. Society of Economic Geologists: 325-409. https://doi.org/10.5382/sp.22.09
      Li, W. B., Huang, Z. L., Yin, M. D., 2007. Isotope Geochemistry of the Huize Zn-Pb Ore Field, Yunnan Province, Southwestern China: Implication for the Sources of Ore Fluid and Metals. Geochemical Journal, 41(1): 65-81. https://doi.org/10.2343/geochemj.41.65
      Li, W. Q., Liu, H. C., Li, P. P., et al., 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 3360-3377(in Chinese with English abstract).
      Li, Y. L., Xu, W., Fu, M. Y., et al., 2021. Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin. Minerals, 11(8): 827. https://doi.org/10.3390/min11080827
      Li, Z. T., Han, R. S., Yan, Q. W., 2017. Mineralization-Alteration Zoning Regularity and Structural Ore-Controlling Role in the Huize Super-Large Sized Ge-Ag-Rich Pb-Zn Deposit, Yunnan Province. Geology in China, 44(2): 316-330(in Chinese with English abstract).
      Liu, H. C., Lin, W. D., 1999. Regularity Research of Ag. Zn. Pb Ore Deposits in Northeast Yunnan Province. Yunnan University Press, Kunming (in Chinese).
      Liu, W. H., Spinks, S. C., Glenn, M., et al., 2021. How Carbonate Dissolution Facilitates Sediment-Hosted Zn-Pb Mineralization. Geology, 49(11): 1363-1368. https://doi.org/10.1130/g49056.1
      Liu, X. M., Hardisty, D. S., Lyons, T. W., et al., 2019. Evaluating the Fidelity of the Cerium Paleoredox Tracer during Variable Carbonate Diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta, 248: 25-42. https://doi.org/10.1016/j.gca.2018.12.028
      Lukoczki, G., Haas, J., Gregg, J. M., et al., 2019. Multi-Phase Dolomitization and Recrystallization of Middle Triassic Shallow Marine-Peritidal Carbonates from the Mecsek MTS. (SW Hungary), as Inferred from Petrography, Carbon, Oxygen, Strontium and Clumped Isotope Data. Marine and Petroleum Geology, 101: 440-458. https://doi.org/10.1016/j.marpetgeo.2018.12.004
      Ma, H. J., Zhang, S. T., Cheng, X. F., et al., 2014. Geochemical Characteristics and Genetic Analysis of Carboniferous Dolomite in Huize Basin, Yunnan. Acta Sedimentologica Sinica, 32(1): 118-125(in Chinese with English abstract).
      Machel, H. G., Braithwaite, C. J. R., Rizzi, G., et al., 2004. Concepts and Models of Dolomitization: A Critical Reappraisal. In: The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs, Geological Society of London. http://doi.org/10.1144/gsl.Sp.2004.235.01.02.
      McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021. https://doi.org/10.1029/2000GC000109
      Mii, H. S., 1996. Late Paleozoic Environments: Carbon and Oxygen Isotope Records and Elemental Concentrations of Brachiopod Shells (Dissertation). Texas A & M University, Texas.
      Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/S0016-7037(03)00422-8
      Planavsky, N., Bekker, A., Rouxel, O. J., et al., 2010. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition. Geochimica et Cosmochimica Acta, 74(22): 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021
      Qiao, Z. F., Zhang, T. F., He, X. Y., et al., 2023. Development and Exploration Direction of Bedded Massive Dolomite Reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin. Earth Science, 48(2): 673-689(in Chinese with English abstract).
      Rieger, P., Magnall, J. M., Gleeson, S. A., et al., 2022. Differentiating between Hydrothermal and Diagenetic Carbonate Using Rare Earth Element and Yttrium (REE+Y) Geochemistry: A Case Study from the Paleoproterozoic George Fisher Massive Sulfide Zn Deposit, Mount Isa, Australia. Mineralium Deposita, 57(2): 187-206. https://doi.org/10.1007/s00126-021-01056-1
      Ryan, B. H., Kaczmarek, S. E., Rivers, J. M., 2021. Multi-Episodic Recrystallization and Isotopic Resetting of Early-Diagenetic Dolomites in Near-Surface Settings. Journal of Sedimentary Research, 91(1): 146-166. https://doi.org/10.2110/jsr.2020.056
      Ryan, B. H., Kaczmarek, S. E., Rivers, J. M., et al., 2022. Extensive Recrystallization of Cenozoic Dolomite during Shallow Burial: A Case Study from the Palaeocene-Eocene Umm Er Radhuma Formation and a Global Meta-Analysis. Sedimentology, 69(5): 2053-2079. https://doi.org/10.1111/sed.12982
      Shi, X. W., Jia, F. J., Ke, L. Y., et al., 2021. The Geochemical Characteristics of the C-O Isotope of the Huize Mine Area of Yunnan Province, China. Acta Mineralogica Sinica, 41(6): 657-667(in Chinese with English abstract).
      Stacey, J., Hollis, C., Corlett, H., et al., 2021. Burial Dolomitization Driven by Modified Seawater and Basal Aquifer-Sourced Brines: Insights from the Middle and Upper Devonian of the Western Canadian Sedimentary Basin. Basin Research, 33(1): 648-680. https://doi.org/10.1111/bre.12489
      Sun, Q. S., 2017. Study on Sequence Stratigraphy and Paleogeographic Evolution of Lower Part of Carboniferous-Permian Zisongdian in Northeast Yunnan and Its Adjacent Areas(Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      Tan, M., Huang, X. W., Wu, P., et al., 2023. Ore-Forming Process of the Huize Super-Large Pb-Zn Deposit, SW China: Constraints from In Situ Elements and S-Pb Isotopes. Ore Geology Reviews, 159: 105580. https://doi.org/10.1016/j.oregeorev.2023.105580
      Tian, L. D., Song, Y. C., Zhuang, L. L., et al., 2022. Characteristic and Genesis of Dolostone Reservoirs around the Proterozoic/Cambrian Boundary in the Upper Yangtze Block for Mississippi Valley-Type Zn-Pb Ores: A Review. Ore Geology Reviews, 150: 105179. https://doi.org/10.1016/j.oregeorev.2022.105179
      Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
      Voigt, M., Mavromatis, V., Oelkers, E. H., 2017. The Experimental Determination of REE Partition Coefficients in the Water-Calcite System. Chemical Geology, 462: 30-43. https://doi.org/10.1016/j.chemgeo.2017.04.024
      Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2
      Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
      Wright, W. R., Johnson, A. W., Shelton, K. L., et al., 2000. Fluid Migration and Rock Interactions during Dolomitisation of the Dinantian Irish Midlands and Dublin Basin. Journal of Geochemical Exploration, 69: 159-164. https://doi.org/10.1016/S0375-6742(00)00019-4
      Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049
      Zhang, Y., Han, R. S., Wei, P. T., et al., 2017. Identification of Two Types of Metallogenic Fluids in the Ultra-Large Huize Pb-Zn Deposit, SW China. Geofluids, 2017: 6345810. https://doi.org/10.1155/2017/6345810
      Zhao, Y. Y., Li, S. Z., Li, D., et al., 2019. Rare Earth Element Geochemistry of Carbonate and Its Paleoenvironmental Implications. Geotectonica et Metallogenia, 43(1): 141-167(in Chinese with English abstract).
      Zhou, C. X., 1998. The Source of Mineralizing Metals, Geochemical Characterization of Ore Forming Solution, and Metallogenetic Mechanism of Qilinchang Zn-Pb Deposit, Northeastern Yunnan Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 17(1): 36-38(in Chinese with English abstract).
      Zhou, C. X., Wei, C. S., Guo, J. Y., et al., 2001. The Source of Metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr Isotope Constraints. Economic Geology, 96(3): 583-598. https://doi.org/10.2113/gsecongeo.96.3.583
      Zhou, J. X., Xiang, Z. Z., Zhou, M. F., et al., 2018. The Giant Upper Yangtze Pb–Zn Province in SW China: Reviews, New Advances and a New Genetic Model. Journal of Asian Earth Sciences, 154: 280-315. https://doi.org/10.1016/j.jseaes.2017.12.032
      Zhuang, L. L., Song, Y. C., Leach, D., et al., 2023. Vanished Evaporites, Halokinetic Structure, and Zn-Pb Mineralization in the World-Class Angouran Deposit, Northwestern Iran. Geological Society of America Bulletin. https://doi.org/10.1130/b36910.1
      白璇, 钟怡江, 黄可可, 等, 2022. 白云石重结晶作用及其地质意义. 岩石矿物学杂志, 41(4): 804-817.
      陈士杰, 蔡继锋, 王志经, 等, 1984. 生物地层相对杉树林铅锌矿床的控矿意义. 地质与勘探, 20(11): 16-19, 24.
      崔广申, 包志伟, 李群, 2023. 云南会泽超大型铅锌矿田热液白云岩的成因及地质意义. 大地构造与成矿学, 47(2): 361-375.
      胡耀国. 2000. 贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制(博士学位论文). 贵阳: 中国科学院地球化学研究所.
      黄智龙, 李文博, 陈进, 等, 2004. 云南会泽超大型铅锌矿床C、O同位素地球化学. 大地构造与成矿学, 28(1): 53-59.
      李文奇, 刘汇川, 李平平, 等, 2023. 四川灯影组白云石化流体多样化特征及白云岩差异性成因. 地球科学, 48(9): 3360-3377. doi: 10.3799/dqkx.2022.126
      李孜腾, 韩润生, 闫庆文, 2017. 会泽超大型富锗银铅锌矿床矿化-蚀变分带规律及构造的控制作用. 中国地质, 44(2): 316-330.
      柳贺昌, 林文达, 1999. 滇东北铅锌银矿床规律研究. 昆明: 云南大学出版社.
      马宏杰, 张世涛, 程先锋, 等, 2014. 云南会泽石炭系摆佐组白云岩地球化学特征及其成因分析. 沉积学报, 32(1): 118-125.
      史显文, 贾福聚, 柯龙跃, 等, 2021. 云南会泽铅锌矿区C-O同位素地球化学特征. 矿物学报, 41(6): 657-667.
      孙琦森, 2017. 滇东北及其邻区石炭纪-二叠纪紫松阶下部层序地层学及古地理演化研究(博士学位论文). 昆明: 昆明理工大学.
      赵彦彦, 李三忠, 李达, 等, 2019. 碳酸盐(岩)的稀土元素特征及其古环境指示意义. 大地构造与成矿学, 43(1): 141-167.
      周朝宪, 1998. 滇东北麒麟厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究. 矿物岩石地球化学通报, 17(1): 36-38.
    • 加载中
    图(15) / 表(5)
    计量
    • 文章访问数:  28
    • HTML全文浏览量:  12
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-20
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回