Late Quaternary Tectonic Deformation of the Xinminpu Fault and Mechanism of 1785 Huihuibao Earthquake Based on Unmanned Aerial Images
-
摘要: 新民堡断裂是河西走廊西段酒西盆地内部最北侧的一条逆断裂-褶皱带,全新世晚期仍然活动,断错地貌清晰.利用高精度无人机SfM摄影测量方法与断错地貌精细解译,从构造地貌学角度厘定了新民堡断裂累积位错值和1785年惠回堡地震的同震地表位错.根据高分辨率地形地貌数据共测量统计了90组断层陡坎位错值,结合累积位移概率分布曲线,得到7次位错丛集峰值,推测新民堡断裂晚第四纪大致发生过7次古地震事件,符合丛集地震特征,最新两期位移量峰值0.9 m、1.5 m分别对应1785年地震及距今3.8±0.3 ka的古地震事件.根据其平均同震位错值0.9 m,核定1785年惠回堡地震震级约为6.6级,与历史地震考证结果吻合.结合铲式断层模型进一步厘定了新民堡断裂全新世以来的垂直滑动速率约为0.1±0.02 mm/a,水平缩短速率约为0.18±0.06 mm/a.综合分析表明,1785年惠回堡地震为发生在新民堡断裂上的一次逆断裂-褶皱型地震,与河西走廊内部发生的2003年甘肃民乐-山丹6.1、5.8级地震和2002年玉门Ms5.9地震的发震机制类似,表明河西走廊盆地内部具有挤压逆冲-褶皱型的发震机制,未来需加强对此类地震构造带的进一步研究和震灾防御.Abstract: The Xinminpu fault is the northernmost reverse fault-fold belt in the Jiuxi Basin which is at the western of Hexi Corridor, still active in the Late Holocene and its offset geomorphology is clear. In this paper, cumulative offset of Xinminpu fault and co-seismic surface offset of the 1785 Huihuibao Earthquake are determined from tectonic geomorphology by high-precision unmanned aerial vehicle SfM photogrammetry and fine interpretation of offset geomorphology. Based on high-resolution topographic and geomorphologic data, a total of 90 groups of fault scarp offset were measured and counted, and combined with cumulative offset probability distribution plot, seven offset clusters were obtained, and it is inferred that about seven paleoseismic events occurred in Late Quaternary of Xinminpu fault, with quasi-periodic recurrence characteristics, and that the latest two peak offset of 0.9 and 1.5 m corresponded to the earthquake in 1785 and a paleoseismic event at 3.8±0.3 ka ago, respectively. Based on average coseismic offset of 0.9 m, the magnitude of the 1785 Huihuibao earthquake is about M6.6, which is consistent with historical seismic results. Combined with the listric fault model, the vertical slip rate of Xinminpu fault since Holocene was determined as 0.1±0.02 mm/a, and the horizontal shortening rate was about 0.18±0.06 mm/a. Comprehensive analysis shows that the 1785 Huihuibao earthquake was an inverse fault-fold type earthquake on Xinminpu fault, which is similar to the seismogenic mechanism of the 2003 Ms6.1, Ms5.8 Minle-Shandan earthquake in Gansu Province and the 2002 Yumen Ms5.9 earthquake that occurred in the central of the Hexi Corridor, indicating that it has a reverse fault-folding type seismic mechanism in the basin of Hexi Corridor, and further research and seismic defense for this type of seismic tectonic belts should be strengthened in the future.
-
Key words:
- Xinminpu fault /
- Huihuibao earthquake /
- unmanned aerial image /
- offset clustering /
- geophysics
-
图 4 新民堡东侧断裂剖面
年代结果据陈柏林等(2006). U1. 晚更新世晚期灰色松散砾石层;U2. 晚更新世早期浅土黄色砾石层;U3. 上新统深土黄色砂砾石层;U4. 上新统土黄色砂质泥岩层与砂砾石层互层;U5. 中新统砖红色泥岩
Fig. 4. Profile of east side of the Xinminpu fault
图 5 火烧沟村探槽剖面
剖面及样品年代据刘兴旺等(2021). U1. 中新统砖红色泥质砂岩;U2. 晚更新世土黄色细砂土层夹薄层砾石层;U3. 全新世坡洪积砾石层;U4. 全新世浅灰色砂土层;U5. 地表薄层浅土黄色松散粉砂土层
Fig. 5. Profile of trench in Huoshaogou
表 1 深部滑脱面参数
Table 1. Parameters of deep slip surface
剖面编号 α2 h1(m) h2(m) H1(m) H2(m) S(m) P5 27°±5° 12±1 11±2 34±3 58±6 42±5 P6 20°±3° 16±2 11±1 24±2 34±4 24±3 P7 18°±4° 21±2 13±1 37±4 57±6 32±3 -
Bao, G. D., Ren, Z. K., Ha, G. H., et al., 2024. New Evidence of Late Quaternary Tectonic Activity along the Eastern Margin of the Qaidam Basin. Tectonics, 43(1): e2023TC007906. https://doi.org/10.1029/2023tc007906 Bi, H. Y., Zheng, W. J., Ge, W. P., et al., 2018. Constraining the Distribution of Vertical Slip on the South Heli Shan Fault (Northeastern Tibet) from High-Resolution Topographic Data. Journal of Geophysical Research: Solid Earth, 123(3): 2484-2501. https://doi.org/10.1002/2017jb014901 Chen, B. L., Wang, C. Y., Cui, L. L., et al., 2008. Developing Model of Thrust Fault System in Western Part of Northern Qilian Mountains Margin-Hexi Corridor Basin during Late Quaternary. Earth Science Frontiers, 15(6): 260-277(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.06.033 Chen, B. L., Wang, C. Y., Liu, J. M., et al., 2006. The Activity of the Xinminbao Fault from the Late Pleistocene to Holocene. Acta Geoscientica Sinica, 27(6): 515-524(in Chinese with English abstract). Chen, J., Lu, Y. C., Ding, G. Y., 1998. The Latest Quaternary Tectonic Deformation of Terraces of Jiuxi Basin in West Qilianshan Mountains. China Earthquake Engineering Journal, 20(1): 28-36(in Chinese with English abstract). Guo, C. H., Li, A., Liu, R., et al., 2018. A Preliminary Research on the Right-Lateral Strike-Slip Characteristics and the Structural Significance of the Northern Kuantanshan Faults, Hexi Corrider, Based on High-Resolution Imagery. Seismology and Geology, 40(4): 784-800(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2018.04.005 He, W. G., Lei, Z. S., Yuan, D. Y., et al., 2010. Disaster Characteristics of Huihuipu Earthquake in 1785 in Yumen, Gansu Province, and Discussion on Its Seismogenic Structure. Northwestern Seismological Journal, 32(1): 47-53(in Chinese with English abstract). He, W. G., Zheng, W. J., Zhao, G. K., et al., 2004. Study on the Seismogenic Structure of the Yumen, Gansu Province MS 5.9 Earthquake of December 14, 2002. Seismology and Geology, 26(4): 688-697(in Chinese with English abstract). Hetzel, R., 2013. Active Faulting, Mountain Growth, and Erosion at the Margins of the Tibetan Plateau Constrained by In Situ-Produced Cosmogenic Nuclides. Tectonophysics, 582: 1-24. https://doi.org/10.1016/j.tecto.2012.10.027 Hu, X. F., Pan, B. T., Kirby, E., et al., 2015. Rates and Kinematics of Active Shortening along the Eastern Qilian Shan, China, Inferred from Deformed Fluvial Terraces. Tectonics, 34(12): 2478-2493. https://doi.org/10.1002/2015tc003978 Huang, X. F., Gao, R., Guo, X. Y., et al., 2018. Deep Crustal Structure beneath the Junction of the Qilian Shan and Jiuxi Basin in the Northeastern Margin of the Tibetan Plateau and Its Tectonic Implications. Chinese Journal of Geophysics, 61(9): 3640-3650(in Chinese with English abstract). Ji, H. M., Ren, Z. K., Liu, J. R., 2024. Review of Structural Deformation in the Upper Crust of the Southeastern Margin of the Tibetan Plateau since the Late Cenozoic. Earth Science, 49(2): 480-499(in Chinese with English abstract). Klinger, Y., Etchebes, M., Tapponnier, P., et al., 2011. Characteristic Slip for Five Great Earthquakes along the Fuyun Fault in China. Nature Geoscience, 4(6): 389-392. https://doi.org/10.1038/ngeo1158 Lanzhou Institute of Seismology, State Earthquake Administration, 1985. Catalogue of Strong Earthquakes in Shaanxi, Gansu, Ningxia and Qinghai Provinces (Regions): 1177-1982 AD. Shaanxi Science & Technology Press, Xi'an(in Chinese). Li, A., Wang, X. X., Zhang, S. M., et al., 2016. The Structural Deformation of Baiyanghe Thrust Fault-Fold Belt in Jiuxi Basin. Bulletin of the Institute of Crustal Dynamics, (2): 1-11(in Chinese with English abstract). Li, C. Y., Zhang, P. Z., Yin, J. H., et al., 2009. Late Quaternary Left-Lateral Slip Rate of the Haiyuan Fault, Northeastern Margin of the Tibetan Plateau. Tectonics, 28(5): TC5010.1-TC5010.26. https://doi.org/10.1029/2008tc002302 Liu, R., 2021. Tectonic Deformation and Faults Interaction since Late Quaternary in the West End of Hexi Corridor (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract). Liu, X. W., 2017. Characteristics of Active Tectonics and the Deformation Pattern of the Jiuxi Basin at the Western Qilian Shan (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). Liu, X. W., Yuan, D. Y., He, W. G., 2014. Preliminary Study of Palaeo-Earthquakes on the Fodongmiao-Hongyazi Fault in the North Margin of Qilian Mountain. Technology for Earthquake Disaster Prevention, 9(3): 411-419(in Chinese with English abstract). Liu, X. W., Yuan, D. Y., He, W. G., et al., 2021. Research Progress on Paleoearthquake in Jiuxi Basin Located in the Western Hexi Corridor. China Earthquake Engineering Journal, 43(1): 1-10(in Chinese with English abstract). Liu, X. W., Yuan, D. Y., Su, Q., et al., 2019. Study on Late Quaternary Slip Rates of Two Faults within Jiuxi Basin. Journal of Seismological Research, 42(1): 112-119(in Chinese with English abstract). Liu, X. W., Yuan, D. Y., Su, Q., et al., 2020. Paleoearthquake Characteristics along the Baiyanghe Fault in Jiuxi Basin. China Earthquake Engineering Journal, 42(1): 90-97(in Chinese with English abstract). Luo, H., He, W. G., Yuan, D. Y., et al., 2016. New Insight on Paleoearthquake Activity along Changma Fault Zone. China Earthquake Engineering Journal, 38(4): 632-637, 668(in Chinese with English abstract). Ma, J., Zhou, B. G., Wang, M. M., et al., 2022. Surface Rupture and Slip Distribution along the Zheduotang Fault in the Kangding Section of the Xianshuihe Fault Zone. Lithosphere, 2021(Special 2): 6500707. https://doi.org/10.2113/2022/6500707 Min, W., Zhang, P. Z., He, W. G., et al., 2002. Research on the Active Faults and Paleoearthquakes in the Western Jiuquan Basin. Seismology and Geology, 24(1): 35-44(in Chinese with English abstract). Shi, Z. L., Huan, W. L., Xie, Y. D., 1982. Active Faults and Earthquakes in the Western Part of Hexi Corridor. In: Seismological Society of China Seismological Geology Committee, ed., Active Faults in China. Seismological Press, Beijing (in Chinese). Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978 Thompson, S. C., Weldon, R. J., Rubin, C. M., et al., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth, 107(B9): 2203. https://doi.org/10.1029/2001jb000596 Wang, L., Xie, H., Yuan, D. Y., et al., 2024. Investigating Paleoseismicity Using High-Resolution Airborne LiDAR Data: A Case Study of the Huangxianggou Fault in the Northeastern Tibetan Plateau. Journal of Structural Geology, 180: 105063. https://doi.org/10.1016/j.jsg.2024.10506 Wang, Z. J., Yao, W. Q., Liu, J., et al., 2024. Application of Tectonic Geomorphology Method for Constraining the Slip Rate Uncertainty and Implication of Strike-Slip Faults: An Example from the Haiyuan Fault Zone. Earth Science, 49(2): 759-780(in Chinese with English abstract). Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974 Wen, Y. M., Yuan, D. Y., Xie, H., et al., 2023. Typical Fine Structure and Seismogenic Mechanism Analysis of the Surface Rupture of the 2022 Menyuan Mw 6.7 Earthquake. Remote Sensing, 15(18): 4375. https://doi.org/10.3390/rs15184375 Wu, D. Y., Ren, Z. K., Lü, H. H., et al., 2023. Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China. Earth Science, 48(4): 1389-1404(in Chinese with English abstract). Xu, Q., Hetzel, R., Hampel, A., et al., 2021. Slip Rate of the Danghe Nan Shan Thrust Fault from 10Be Exposure Dating of Folded River Terraces: Implications for the Strain Distribution in Northern Tibet. Tectonics, 40(4): e2020TC006584. https://doi.org/10.1029/2020TC006584 You, Z. C., Bi, H. Y., Zheng, W. J., et al., 2023. Fine Characteristics of Earthquake Surface Rupture Zone Based on High-Resolution Remote Sensing Image: A Case Study of Litang Fault. Seismology and Geology, 45(5): 1057-1073(in Chinese with English abstract). Yuan, D. Y., 2003. Tectonic Deformation Features and Space-Time Evolution in Northeastern Margin of the Qinghai-Tibetan Plateau since the Late Cenozoic Time (Dissertation). China Earthquake Administration, Beijing (in Chinese with English abstract). Yuan, D. Y., Xie, H., Su, R. H., et al., 2023. Characteristics of Co-Seismic Surface Rupture Zone of Menyuan MS6.9 Earthquake in Qinghai Province on January 8, 2022 and Seismogenic Mechanism. Chinese Journal of Geophysics, 66(1): 229-244(in Chinese with English abstract). Zhang, P. Z., Molnar, P., Xu, X. W., 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5): TC5010. https://doi.org/10.1029/2006tc002014 Zhang, X. B., Zhang, P. H., He, M. X., et al., 2023. Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications. Journal of Earth Science, 34(6): 1744-1757. https://doi.org/10.1007/s12583-022-1682-5 Zheng, W. J., He, W. G., Zhao, G. K., et al., 2005. Discussion on the Causative Structure and Mechanism of the 2003 Minle-Shandan, Gansu, M6.1, M5.8 Earthquakes. Journal of Seismological Research, 28(2): 133-140(in Chinese with English abstract). Zheng, W. J., Yuan, D. Y., Zhang, D. L., et al., 2004. Rupture Property in the Gulang MS 8.0 Earthquake, 1927 and Numerical Simulation of Rupture Mechanism. Earthquake Research in China, 20(4): 31-41 (in Chinese with English abstract). Zielke, O., Arrowsmith, J. R., Ludwig, L. G., et al., 2010. Slip in the 1857 and Earlier Large Earthquakes along the Carrizo Plain, San Andreas Fault. Science, 327(5969): 1119-1122. https://doi.org/10.1126/science.1182781 Zou, X. B., Yuan, D. Y., Shao, Y. X., et al., 2021. The 2003 Ms6.1 Minle Earthquake: An Earthquake in the Minle-Yongchang Reverse Fault-Related Fold Belt in the Hexi Corridor, NW China. Frontiers in Earth Science, 9: 649268. https://doi.org/10.3389/feart.2021.649268 陈柏林, 王春宇, 崔玲玲, 等, 2008. 祁连山北缘-河西走廊西段晚新生代逆冲推覆断裂发育模式. 地学前缘, 15(6): 260-277. 陈柏林, 王春宇, 刘建民, 等, 2006. 新民堡断裂新构造活动特征. 地球学报, 27(6): 515-524. 陈杰, 卢演俦, 丁国瑜, 1998. 祁连山西段酒西盆地区阶地构造变形的研究. 西北地震学报, 20(1): 28-36. 郭长辉, 李安, 刘睿, 等, 2018. 基于高分辨率影像的宽滩山北缘断裂带右旋走滑特征及其构造意义的初步研究. 地震地质, 40(4): 784-800. 国家地震局兰州地震研究所, 1985. 陕甘宁青四省(区)强地震目录: 公元1177年~公元1982年. 西安: 陕西科学技术出版社. 何文贵, 雷中生, 袁道阳, 等, 2010.1785年玉门惠回堡地震的震灾特点与发震构造. 西北地震学报, 32(1): 47-53. 何文贵, 郑文俊, 赵广堃, 等, 2004.2002年12月14日甘肃玉门5.9级地震的发震构造研究. 地震地质, 26(4): 688-697. 黄兴富, 高锐, 郭晓玉, 等, 2018. 青藏高原东北缘祁连山与酒西盆地结合部深部地壳结构及其构造意义. 地球物理学报, 61(9): 3640-3650. 计昊旻, 任治坤, 刘金瑞, 2024. 青藏高原东南缘上地壳晚新生代构造变形综述. 地球科学, 49(2): 480-499. doi: 10.3799/dqkx.2023.160 李安, 王晓先, 张世民, 等, 2016. 酒西盆地内部白杨河逆断裂-褶皱构造变形. 地壳构造与地壳应力文集, (2): 1-11. 刘睿, 2020. 河西走廊西端晚第四纪构造变形与断裂相互作用(博士学位论文). 北京: 中国地震局地质研究所. 刘兴旺, 2017. 祁连山西段酒西盆地活动构造特征及构造变形模式(博士学位论文). 兰州: 兰州大学. 刘兴旺, 袁道阳, 何文贵, 2014. 祁连山北缘佛洞庙-红崖子断裂古地震特征初步研究. 震灾防御技术, 9(3): 411-419. 刘兴旺, 袁道阳, 何文贵, 等, 2021. 河西走廊西端酒西盆地古地震研究进展. 地震工程学报, 43(1): 1-10. 刘兴旺, 袁道阳, 苏琦, 等, 2019. 酒西盆地内部两条断裂晚第四纪滑动速率研究. 地震研究, 42(1): 112-119. 刘兴旺, 袁道阳, 苏琦, 等, 2020. 酒西盆地白杨河断裂古地震特征研究. 地震工程学报, 42(1): 90-97. 罗浩, 何文贵, 袁道阳, 等, 2016. 昌马断裂带古地震活动特征的新认识. 地震工程学报, 38(4): 632-637, 668. 闵伟, 张培震, 何文贵, 等, 2002. 酒西盆地断层活动特征及古地震研究. 地震地质, 24(1): 35-44. 时振梁, 环文林, 谢原定, 1982. 河西走廊西部的活动断层和地震. 见: 中国地震学会地震地质专业委员会, 编, 中国活动断裂. 北京: 地震出版社. 王子君, 姚文倩, 刘静, 等, 2024. 利用构造地貌方法限定走滑断裂第四纪滑动速率的不确定性及意义: 以海原断裂带为例. 地球科学, 49(2): 759-780. doi: 10.3799/dqkx.2022.405 武登云, 任治坤, 吕红华, 等, 2023. 铲式逆冲断层的地貌约束: 以东天山尤路都斯盆地巴音背斜构造为例. 地球科学, 48(4): 1389-1404. doi: 10.3799/dqkx.2022.169 游子成, 毕海芸, 郑文俊, 等, 2023. 基于高分辨率遥感影像的地震破裂带精细特征研究: 以理塘断裂为例. 地震地质, 45(5): 1057-1073. 袁道阳, 2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化(博士学位论文). 北京: 中国地震局地质研究所. 袁道阳, 谢虹, 苏瑞欢, 等, 2023.2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制. 地球物理学报, 66(1): 229-244. 郑文俊, 何文贵, 赵广坤, 等, 2005.2003年甘肃民乐-山丹6.1, 5.8级地震发震构造及发震机制探讨. 地震研究, 28(2): 133-140. 郑文俊, 袁道阳, 张冬丽, 等, 2004.1927年古浪8级地震的破裂习性及破裂机制的数值模拟. 中国地震, 20(4): 31-41. -