• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石炭纪-二叠纪转折期重大地质事件与鄂尔多斯盆地东缘页岩气富集主控因素探讨

    高万里 张琴 房强 赵惊涛 刘雯 孔维亮 李文煜 彭弘杰 曲天泉 蔡光银 鲁静 邱振

    高万里, 张琴, 房强, 赵惊涛, 刘雯, 孔维亮, 李文煜, 彭弘杰, 曲天泉, 蔡光银, 鲁静, 邱振, 2024. 石炭纪-二叠纪转折期重大地质事件与鄂尔多斯盆地东缘页岩气富集主控因素探讨. 地球科学, 49(12): 4501-4517. doi: 10.3799/dqkx.2024.079
    引用本文: 高万里, 张琴, 房强, 赵惊涛, 刘雯, 孔维亮, 李文煜, 彭弘杰, 曲天泉, 蔡光银, 鲁静, 邱振, 2024. 石炭纪-二叠纪转折期重大地质事件与鄂尔多斯盆地东缘页岩气富集主控因素探讨. 地球科学, 49(12): 4501-4517. doi: 10.3799/dqkx.2024.079
    Gao Wanli, Zhang Qin, Fang Qiang, Zhao Jingtao, Liu Wen, Kong Weiliang, Li Wenyu, Peng Hongjie, Qu Tianquan, Cai Guangyin, Lu Jing, Qiu Zhen, 2024. Discussion on Significant Geological Events during Carboniferous-Permian Transition and Main Controlling Factors of Shale Gas Enrichment in Eastern Margin of Ordos Basin. Earth Science, 49(12): 4501-4517. doi: 10.3799/dqkx.2024.079
    Citation: Gao Wanli, Zhang Qin, Fang Qiang, Zhao Jingtao, Liu Wen, Kong Weiliang, Li Wenyu, Peng Hongjie, Qu Tianquan, Cai Guangyin, Lu Jing, Qiu Zhen, 2024. Discussion on Significant Geological Events during Carboniferous-Permian Transition and Main Controlling Factors of Shale Gas Enrichment in Eastern Margin of Ordos Basin. Earth Science, 49(12): 4501-4517. doi: 10.3799/dqkx.2024.079

    石炭纪-二叠纪转折期重大地质事件与鄂尔多斯盆地东缘页岩气富集主控因素探讨

    doi: 10.3799/dqkx.2024.079
    基金项目: 

    国家自然科学基金项目 42222209

    中国石油天然气集团公司项目 2023ZZ0801

    中国石油天然气集团公司项目 2021yjcq02

    中国石油天然气集团公司项目 2024DJ8701

    详细信息
      作者简介:

      高万里(1997-),男,博士,从事非常规油气沉积学与勘探评价研究.E-mail:gwl970909@126.com

      通讯作者:

      张琴,E⁃mail: zhangqin2169@petrochina.com.cn

      邱振,E-mail:qiuzhen316@163.com

    • 中图分类号: P618.13

    Discussion on Significant Geological Events during Carboniferous-Permian Transition and Main Controlling Factors of Shale Gas Enrichment in Eastern Margin of Ordos Basin

    • 摘要: 随着非常规油气富集与多地质(生物)事件耦合作用研究的不断深入,逐步证实了黑色页岩层系中非常规油气“甜点区/段”的沉积过程常伴随着多种全球或区域地质(生物)事件,如火山喷发、热液活动、大洋缺氧、气候突变、生物繁盛与灭绝等.鄂尔多斯盆地东缘石炭系-二叠系发育多套海陆过渡相页岩层系,是目前我国页岩气勘探开发的重要目标层段之一.通过梳理石炭纪-二叠纪转折期区域(鄂尔多斯盆地)和全球性重大地质、气候和生物事件,讨论其对鄂尔多斯盆地东缘页岩气富集的潜在影响.研究表明:石炭纪-二叠纪转折期海平面、古气候以及植被面貌等变化,在不同程度上影响着有机质生成的水体表层初级生产力以及有机质保存的水体底部氧化还原状态等条件.由于鄂尔多斯盆地东缘石炭系晋祠段(招贤页岩)和二叠系山23亚段中页岩层段的含气量与TOC含量具有良好的正相关性,从有机质富集的角度探讨了古生产力和古水体氧化还原条件对海陆过渡相页岩气富集程度的影响,提出植物繁盛能够为有机质大量生成提供物质基础,相对海平面的上升易形成贫氧-缺氧水体环境,有利于有机质沉积富集,从而最终促进了该区页岩气“甜点段”形成.

       

    • 图  1  研究区位置及地层概况

      a.宾夕法尼亚晚期(~300 Ma)古地理图(Blakey,R.,Deep Time Maps,http://deep timemaps.com);b.鄂尔多斯盆地构造单元划分及研究区位置示意图据李勇等(2024)修改;c.鄂尔多斯盆地晚石炭世-早二叠世地层综合柱状图据武瑾等(2021);张琴等(2022);蔡光银等(2022)修改;CA⁃ID⁃TIMS⁃U⁃Pb年龄来自于Wu et al.(2021

      Fig.  1.  Location and stratum survey of the study area

      图  2  石炭纪-二叠纪地质(生物)事件

      地质年代据Gradstein et al.(2020);CO2含量据Montañez and Poulsen(2013);冰川频率据Soreghan et al.(2019);冰川事件据Fielding et al.(2008b);超大陆构造事件据Huang et al.(2018);华北地区构造事件据石婧等(2024);全球海平面变化据Haq and Schutter(2008);火山岩记录和相对于0~2.5 Ma估计的爆发性火山活动据Soreghan et al.(2019);古热带雨林据Cleal and Thomas(2005);殷鸿福等(2018);华北地区古气候据张泓等(1999);植物演化事件据Wang(2010);Stevens et al.(2011);维管植物分布据殷鸿福等(2018

      Fig.  2.  Carboniferous⁃Permian geological (biological) event

      图  3  鄂尔多斯盆地东缘生物碎屑微观特征

      a.海绵骨针,透射,大吉3⁃4井山23亚段,2 142 m;b.海绵骨针,单偏,大吉3⁃4井山23亚段,2 142 m;c.有孔虫,透射,大吉3⁃4井山23亚段,2 144.74 m;d.有孔虫,已泥化保留其外形,呈玫瑰花状、卵圆状,正交偏光,大吉3⁃4井山23亚段,2 143.33 m;e.具单轴双射的海绵骨针,正交偏光,大吉3⁃4井山23亚段,2 145.57 m;f.$ \text { 48 } $类(外形多呈纺锤形,旋壁发育,房室亮晶充填,隔壁泥晶结构,个体0.1~0.7 mm),正交偏光,大吉3⁃4井山23亚段,2 184.65 m;g.有孔虫,正交偏光,大吉3⁃4井山23亚段,2 148 m;h.棘皮类(仅见具单晶结构的海百合茎,部分见中央茎结构,个体0.07~2.50 mm),正交偏光,大吉3⁃4井山23亚段,2 164.02 m;i.生物碎屑,正交偏光,大吉3⁃4井山23亚段,2 145.21 m

      Fig.  3.  Microscopic characteristics of biogenic debris in the eastern edge of the Ordos basin

      图  4  鄂尔多斯盆地东缘火山碎屑岩

      a.正交偏光:中酸性火山岩岩屑,大吉3⁃4井山23亚段,2 148 m;b.正交偏光:中酸性火山岩岩屑,大吉3⁃4井山23亚段,2 148 m

      Fig.  4.  Volcanic clastic rocks in the eastern margin of the Ordos basin

      图  5  鄂尔多斯盆地东缘晚石炭纪-早二叠纪之交地质(生物)事件及山西组、太原组、本溪组页岩气甜点段分布特征

      地质年代、岩性地层等据国际地层年代表(2023版)及申博恒等(20212022);沈树忠等(2019),综合岩石地层划分据武瑾等(2021);张琴等(2022);蔡光银等(2022);鄂尔多斯盆地相对海平面变化据吕大炜等(2009);火山活动据Soreghan et al.(2019);沉积水体缺氧程度趋势分布据MoEF和UEF元素建立;冰期-间冰期特征据Qie et al.(2019);Fang et al.(2021);Chen et al.(2018)修改;TOC含量趋势图中数据部分来自武瑾等(2021);张琴等(2022);蔡光银等(2022),其中红色圆点代表样品TOC含量大于12%的样品;含气量趋势图据测井曲线建立

      Fig.  5.  Carboniferous⁃Permian geological (biological) events in the eastern margin of Ordos basin and the distribution characteristics of Shanxi, Taiyuan and Benxi formations shale gas dessert section

      图  6  鄂尔多斯盆地东缘石炭系-二叠系(晋祠段与山23亚段)页岩层段的TOC含量与实测含气量交汇图

      部分数据来自武瑾等(2021);蔡光银等(2022);张琴等(2022);Zhang et al.(2023

      Fig.  6.  Intersection diagram of TOC content and measured gas content for Carboniferous⁃Permian (Jinci Formation and Shan23 Subsection) shale intervals in the eastern margin of the Ordos basin

      图  7  鄂尔多斯盆地东缘石炭系-二叠系(晋祠段与山23亚段)页岩层段的TOC含量与P/Ti交汇图(a)、CIA交汇图(b)、UEF交汇图(c)、MoEF交汇图(d)

      部分数据来自武瑾等(2021);蔡光银等(2022);张琴等(2022);Zhang et al.(2023

      Fig.  7.  Intersection diagrams of TOC content with P/Ti (a), CIA (b), UEF (c), and MoEF (d) for Carboniferous⁃Permian (Jinci Formation and Shan23 Subsection) shale intervals in the eastern margin of the Ordos basin

    • Algeo, T. J., Liu, J. S., 2020. A Re⁃Assessment of Elemental Proxies for Paleoredox Analysis. Chemical Geology, 540: 119549. https://doi.org/10.1016/j.chemgeo.2020.119549
      Berner, R. A., 2003. The Long⁃Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature, 426: 323-326. https://doi.org/10.1038/nature02131
      Cagliari, J., Serratt, H., Cassel, M. C., et al., 2022. New High⁃Precision U⁃Pb Zircon Age of the Irati Formation (Paraná Basin) and Implications for the Timing of the Kungurian Anoxic Events Recorded in Southern Gondwana. Gondwana Research, 107: 134-145. https://doi.org/10.1016/j.gr.2022.03.004
      Cai, G. Y., Jiang, Y. Q., Li, X. T., et al., 2022. Comparison of Characteristics of Transitional and Marine Organic⁃Rich Shale Reservoirs. Acta Sedimentologica Sinica, 40(4): 1030-1042(in Chinese with English abstract).
      Campbell, I. H., Squire, R. J., 2010. The Mountains That Triggered the Late Neoproterozoic Increase in Oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74(15): 4187-4206. https://doi.org/10.1016/j.gca.2010.04.064
      Chen, A. Q., Zou, H., Ogg, J. G., et al., 2020. Source⁃to⁃Sink of Late Carboniferous Ordos Basin: Constraints on Crustal Accretion Margins Converting to Orogenic Belts Bounding the North China Block. Geoscience Frontiers, 11(6): 2031-2052. https://doi.org/10.1016/j.gsf.2020.05.008
      Chen, B., Joachimski, M. M., Wang, X. D., et al., 2016. Ice Volume and Paleoclimate History of the Late Paleozoic Ice Age from Conodont Apatite Oxygen Isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151-161. https://doi.org/10.1016/j.palaeo.2016.01.002
      Chen, J. T., Montañez, I. P., Qi, Y. P., et al., 2018. Strontium and Carbon Isotopic Evidence for Decoupling of $ {p}_{\mathrm{C}{\mathrm{O}}_{2}} $ from Continental Weathering at the Apex of the Late Paleozoic Glaciation. Geology, 46(5): 395-398. https://doi.org/10.1130/g40093.1
      Chen, J. T., Montañez, I. P., Zhang, S., et al., 2022. Marine Anoxia Linked to Abrupt Global Warming during Earth's Penultimate Icehouse. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2115231119. https://doi.org/10.1073/pnas.2115231119
      Chen, S. Y., Liu, H. J., 1995. Sea⁃Level Changes in North China during the Late Palaeozoic. Sedimentary Facies and Palaeogeography, 15(5): 14-21(in Chinese with English abstract).
      Cleal, C. J., Thomas, B. A., 2005. Palaeozoic Tropical Rainforests and Their Effect on Global Climates: Is the Past the Key to the Present? Geobiology, 3(1): 13-31. https://doi.org/10.1111/j.1472⁃4669.2005.00043.x
      Crowley, T. J., Baum, S. K., 1991. Estimating Carboniferous Sea⁃Level Fluctuations from Gondwanan Ice Extent. Geology, 19(10): 975. https://doi.org/10.1130/0091⁃7613(1991)019<0975:ECSLFF>2.3.CO;2 doi: 10.1130/0091⁃7613(1991)019<0975:ECSLFF>2.3.CO;2
      Eros, J. M., Montañez, I. P., Osleger, D. A., et al., 2012. Sequence Stratigraphy and Onlap History of the Donets Basin, Ukraine: Insight into Carboniferous Icehouse Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 313: 1-25. https://doi.org/10.1016/j.palaeo.2011.08.019
      Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High⁃Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
      Fang, Q., Wu, H. C., Shen, S. Z., et al., 2021. Trends and Rhythms in Climate Change during the Early Permian Icehouse. Paleoceanography and Paleoclimatology, 36(12): e2021PA004340. https://doi.org/10.1029/2021pa004340
      Feng, Z., Wang, J., Zhou, W. M., et al., 2021. Plant-Insect Interactions in the Early Permian Wuda Tuff Flora, North China. Review of Palaeobotany and Palynology, 294: 104269. https://doi.org/10.1016/j.revpalbo.2020.104269
      Fielding, C. R., Frank, T. D., Birgenheier, L. P., et al., 2008a. Stratigraphic Imprint of the Late Palaeozoic Ice Age in Eastern Australia: A Record of Alternating Glacial and Nonglacial Climate Regime. Journal of the Geological Society, 165(1): 129-140. https://doi.org/10.1144/0016-76492007⁃036
      Fielding, C. R., Frank, T. D., Isbell, J. L., 2008b. The Late Paleozoic Ice Age: A Review of Current Understanding and Synthesis of Global Climate Patterns. In: Fielding, C. R., Frank, T. D., Isbell, J. L., eds., Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, U. S. A. ., 343-354. https://doi.org/10.1130/2008.2441(24)
      Goddéris, Y., Donnadieu, Y., Carretier, S., et al., 2017. Onset and Ending of the Late Palaeozoic Ice Age Triggered by Tectonically Paced Rock Weathering. Nature Geoscience, 10: 382-386. https://doi.org/10.1038/ngeo2931
      Gong, E. P., Huang, W. T., Guan, C. Q., et al., 2021. The Coupled Relationship between Carboniferous Reefs and the Late Paleozoic Ice Age. Acta Geologica Sinica, 95(6): 1671-1692(in Chinese with English abstract).
      Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2020. Geologic Time Scale 2020. Elsevier, Amsterdam.
      Griffis, N. P., Montañnez, I. P., Mundil, R., et al., 2019. Coupled Stratigraphic and U⁃Pb Zircon Age Constraints on the Late Paleozoic Icehouse⁃to⁃Greenhouse Turnover in South⁃Central Gondwana. Geology, 47(12): 1146-1150. https://doi.org/10.1130/g46740.1
      Grossman, E. L., Yancey, T. E., Jones, T. E., et al., 2008. Glaciation, Aridification, and Carbon Sequestration in the Permo⁃Carboniferous: The Isotopic Record from Low Latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 222-233. https://doi.org/10.1016/j.palaeo.2008.03.053
      Guo, X. S., Hu, D. F., Liu, R. B., et al., 2018. Geological Conditions and Exploration Potential of Permian Marine-Continent Transitional Facies Shale Gas in the Sichuan Basin. Natural Gas Industry, 38(10): 11-18(in Chinese with English abstract).
      Hamilton, M. A., Pearson, D. G., 2011. Precise U⁃Pb Age for the Great Whin Dolerite Complex, N. E. England and Its Significance. In: Srivastava, R. K., ed., Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Berlin Heidelberg, 495-507. https://doi.org/10.1007/978⁃3⁃642⁃12496⁃9_26
      Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea⁃Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648
      Hilton, J., Cleal, C. J., 2007. The Relationship between Euramerican and Cathaysian Tropical Floras in the Late Palaeozoic: Palaeobiogeographical and Palaeogeographical Implications. Earth⁃Science Reviews, 85(3-4): 85-116. https://doi.org/10.1016/j.earscirev.2007.07.003
      Holland, H. D., 2002. Volcanic Gases, Black Smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66(21): 3811-3826. https://doi.org/10.1016/s0016⁃7037(02)00950⁃x
      Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth⁃Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004
      Isbell, J. L., Henry, L. C., Gulbranson, E. L., et al., 2012. Glacial Paradoxes during the Late Paleozoic Ice Age: Evaluating the Equilibrium Line Altitude as a Control on Glaciation. Gondwana Research, 22(1): 1-19. https://doi.org/10.1016/j.gr.2011.11.005
      Isbell, J. L., Miller, M. F., Wolfe, K. L., et al., 2003. Timing of Late Paleozoic Glaciation in Gondwana: Was Glaciation Responsible for the Development of Northern Hemisphere Cyclothems?. Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, U. S. A. . https://doi.org/10.1130/0⁃8137⁃2370⁃1.5
      Jiang, S., Xu, Z. Y., Feng, Y. L., et al., 2016. Geologic Characteristics of Hydrocarbon⁃Bearing Marine, Transitional and Lacustrine Shales in China. Journal of Asian Earth Sciences, 115: 404-418. https://doi.org/10.1016/j.jseaes.2015.10.016
      Jiao, F. Z., Wen, S. M., Liu, X. J., et al., 2023. Research Progress in Exploration Theory and Technology of Transitional Shale Gas in the Ordos Basin. Natural Gas Industry, 43(4): 11-23(in Chinese with English abstract).
      Kuang, L. C., Dong, D. Z., He, W. Y., et al., 2020. Geological Characteristics and Development Potential of Transitional Shale Gas in the East Margin of the Ordos Basin, NW China. Petroleum Exploration and Development, 47(3): 435-446(in Chinese with English abstract).
      Kump, L. R., 2008. The Rise of Atmospheric Oxygen. Nature, 451: 277-278. https://doi.org/10.1038/nature06587
      Lee, H. S., Chough, S. K., 2006. Sequence Stratigraphy of Pyeongan Supergroup (Carboniferous⁃Permian), Taebaek Area, Mideast Korea. Geosciences Journal, 10(4): 369-389. https://doi.org/10.1007/bf02910433
      Li, H. Y., Xu, Y. G., Huang, X. L., et al., 2009. Activation of Northern Margin of the North China Craton in Late Paleozoic: Evidence from U⁃Pb Dating and Hf Isotopes of Detrital Zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu⁃Jingle Basin. Chinese Science Bulletin, 54(5): 632-640(in Chinese). doi: 10.1360/csb2009-54-5-632
      Li, Y., Wang, Z. S., Shao, L. Y., et al., 2024. Reservoir Characteristics and Formation Model of Upper Carboniferous Bauxite Series in Eastern Ordos Basin, NW China. Petroleum Exploration and Development, 51(1): 39-47(in Chinese with English abstract).
      Li, Z. H., Qu, H. J., Gong, W. B., 2015. Late Mesozoic Basin Development and Tectonic Setting of the Northern North China Craton. Journal of Asian Earth Sciences, 114: 115-139. https://doi.org/10.1016/j.jseaes.2015.05.029
      Liu, G. H., 1990. Permo⁃Carboniferous Paleogeography and Coal Accumulation and Their Tectonic Control in the North and South China Continental Plates. International Journal of Coal Geology, 16(1-3): 73-117. https://doi.org/10.1016/0166⁃5162(90)90014⁃p
      Liu, H. L., Zou, C. N., Qiu, Z., et al., 2023. Sedimentary Depositional Environment and Organic Matter Enrichment Mechanism of Lacustrine Black Shales: A Case Study of the Chang 7 Member in the Ordos Basin. Acta Sedimentologica Sinica, 41(6): 1810-1829(in Chinese with English abstract).
      Liu, R., Zhang, K., Liu, Z. J., et al., 2021. Oil Shale Mineralization and Geological Events in China. Acta Sedimentologica Sinica, 39(1): 10-28(in Chinese with English abstract).
      Liu, W., Zhao, Q., Qiu, Z., et al., 2023. Research Status and Prospect of Accumulation Conditions of Transitional Facies Shale Gas in the Eastern Margin of Ordos Basin. Natural Gas Geoscience, 34(5): 868-887(in Chinese with English abstract).
      Lu, J., Zhang, P. X., Dal Corso, J., et al., 2021. Volcanically Driven Lacustrine Ecosystem Changes during the Carnian Pluvial Episode (Late Triassic). Proceedings of the National Academy of Sciences of the United States of America, 118(40): e2109895118. https://doi.org/10.1073/pnas.2109895118
      Lü, D. W., Li, Z. X., Liu, H. Y., et al., 2009. The Sea⁃Level Change and Its Response to the Late Paleozoic Sequence Stratigraphy in North China. Geology in China, 36(5): 1079-1086(in Chinese with English abstract).
      Montañez, I. P., McElwain, J. C., Poulsen, C. J., et al., 2016. Climate, pCO2 and Terrestrial Carbon Cycle Linkages during Late Palaeozoic Glacial-Interglacial Cycles. Nature Geoscience, 9: 824-828. https://doi.org/10.1038/ngeo2822
      Montañez, I. P., Poulsen, C. J., 2013. The Late Paleozoic Ice Age: An Evolving Paradigm. Annual Review of Earth and Planetary Sciences, 41: 629-656. https://doi.org/10.1146/annurev.earth.031208.100118
      Montañez, I. P., Tabor, N. J., Niemeier, D., et al., 2007. CO2⁃Forced Climate and Vegetation Instability during Late Paleozoic Deglaciation. Science, 315(5808): 87-91. https://doi.org/10.1126/science.1134207
      Nakazawa, T., Ueno, K., 2009. Carboniferous⁃Permian Long⁃Term Sea⁃Level Change Inferred from Panthalassan Oceanic Atoll Stratigraphy. Palaeoworld, 18(2/3): 162-168. https://doi.org/10.1016/j.palwor.2009.04.001
      Percival, L. M. E., Witt, M. L. I., Mather, T. A., et al., 2015. Globally Enhanced Mercury Deposition during the End⁃Pliensbachian Extinction and Toarcian OAE: A Link to the Karoo-Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428: 267-280. https://doi.org/10.1016/j.epsl.2015.06.064
      Qie, W. K., Algeo, T. J., Luo, G. M., et al., 2019. Global Events of the Late Paleozoic (Early Devonian to Middle Permian): A Review. Palaeogeography, Palaeoclimatology, Palaeoecology, 531: 109259. https://doi.org/10.1016/j.palaeo.2019.109259
      Qin, J. Z., Shen, B. J., Tao, G. L., et al., 2014. Hydrocarbon⁃Forming Organisms and Dynamic Evaluation of Hydrocarbon Generation Capacity in Excellent Source Rocks. Petroleum Geology & Experiment, 36(4): 465-472(in Chinese with English abstract).
      Qiu, Z., Dou, L. R., Wu, J. F., et al., 2024. Lithofacies Palaeogeographic Evolution of the Middle Permian Sequence Stratigraphy and Its Implications for Shale Gas Exploration in the Northern Sichuan and Western Hubei Provinces. Earth Science, 49(2): 712-748(in Chinese with English abstract).
      Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29(in Chinese with English abstract).
      Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 82. https://doi.org/10.1038/s43247⁃022⁃00412⁃x
      Qiu, Z., Zou, C. N., Wang, H. Y., et al., 2020. Discussion on Characteristics and Controlling Factors of Differential Enrichment of Wufeng⁃Longmaxi Formations Shale Gas in South China. Natural Gas Geoscience, 31(2): 163-175(in Chinese with English abstract).
      Richey, J. D., Montañez, I. P., Goddéris, Y., et al., 2020. Influence of Temporally Varying Weatherability on CO2⁃Climate Coupling and Ecosystem Change in the Late Paleozoic. Climate of the Past, 16(5): 1759-1775. https://doi.org/10.5194/cp⁃16⁃1759⁃2020
      Schmitz, M. D., Pfefferkorn, H. W., Shen, S. Z., et al., 2021. A Volcanic Tuff near the Carboniferous-Permian Boundary, Taiyuan Formation, North China: Radioisotopic Dating and Global Correlation. Review of Palaeobotany and Palynology, 294: 104244. https://doi.org/10.1016/j.revpalbo.2020.104244
      Scholze, M., Knorr, W., Heimann, M., 2003. Modelling Terrestrial Vegetation Dynamics and Carbon Cycling for an Abrupt Climatic Change Event. The Holocene, 13(3): 327-333. https://doi.org/10.1191/0959683603hl625rp
      Shen, B. H., Hou, Z. S., Wang, X. D., et al., 2024. Quantitative Palaeogeographical Reconstruction of the North China Block during the Carboniferous and Permian Transition: Implications for Coal Accumulation and Source Rock Development. Palaeogeography, Palaeoclimatology, Palaeoecology, 640: 112102. https://doi.org/10.1016/j.palaeo.2024.112102
      Shen, B. H., Shen, S. Z., Hou, Z. S., et al., 2021. Lithostratigraphic Subdivision and Correlation of the Permian in China. Journal of Stratigraphy, 45(3): 319-339(in Chinese with English abstract).
      Shen, B. H., Shen, S. Z., Wu, Q., et al., 2022. Carboniferous and Permian Integrative Stratigraphy and Timescale of North China Block. Science China: Earth Sciences, 65(6): 983-1011(in Chinese). doi: 10.1007/s11430-021-9909-9
      Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions? Chinese Science Bulletin, 62(11): 1119-1135(in Chinese).
      Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science China: Earth Sciences, 49(01): 160-193(in Chinese).
      Shi, J., He, D. F., Bao, H. P., et al., 2024. Tectonic Analysis of the Eastern Boundary of Ordos Basin: A Case Study of Northern Region of Shilou Area. Journal of Palaeogeography, 26(1): 150-164(in Chinese with English abstract).
      Shu, D. G., Zhang, X. L., Han, J., et al., 2009. Restudy of Cambrian Explosion and Formation of Animal Tree. Acta Palaeontologica Sinica, 48(3): 414-427(in Chinese with English abstract).
      Shurr, G. W., Ridgley, J. L., 2002. Unconventional Shallow Biogenic Gas Systems. AAPG Bulletin, 86(11): 1939-1969. https://doi.org/10.1306/61eeddc8⁃173e⁃11d7⁃8645000102c1865d
      Soreghan, G. S., Soreghan, M. J., Heavens, N. G., 2019. Explosive Volcanism as a Key Driver of the Late Paleozoic Ice Age. Geology, 47(7): 600-604. https://doi.org/10.1130/g46349.1
      Stevens, L. G., Hilton, J., Bond, D. P. G., et al., 2011. Radiation and Extinction Patterns in Permian Floras from North China as Indicators for Environmental and Climate Change. Journal of the Geological Society, 168(2): 607-619. https://doi.org/10.1144/0016⁃76492010⁃042
      Tian, W., Wang, C. S., Bai, Y. S., et al., 2019. Shale Geochemical Characteristics and Enrichment Mechanism of Organic Matter of the Upper Devonian Shetianqiao Formation Shale in Lianyuan Sag, Central Hunan. Earth Science, 44(11): 3794-3811(in Chinese with English abstract).
      Timmerman, M. J., Heeremans, M., Kirstein, L. A., et al., 2009. Linking Changes in Tectonic Style with Magmatism in Northern Europe during the Late Carboniferous to Latest Permian. Tectonophysics, 473(3-4): 375-390. https://doi.org/10.1016/j.tecto.2009.03.011
      Torsvik, T. H., Smethurst, M. A., Burke, K., et al., 2008. Long Term Stability in Deep Mantle Structure: Evidence from the ~300 Ma Skagerrak⁃Centered Large Igneous Province (the SCLIP). Earth and Planetary Science Letters, 267(3-4): 444-452. https://doi.org/10.1016/j.epsl.2007.12.004
      van der Meer, D. G., van den Berg van Saparoea, A. P. H., van Hinsbergen, D. J. J., et al., 2017. Reconstructing First⁃Order Changes in Sea Level during the Phanerozoic and Neoproterozoic Using Strontium Isotopes. Gondwana Research, 44: 22-34. https://doi.org/10.1016/j.gr.2016.11.002
      Wallace, M. W., Hood, A. V., Shuster, A., et al., 2017. Oxygenation History of the Neoproterozoic to Early Phanerozoic and the Rise of Land Plants. Earth and Planetary Science Letters, 466: 12-19. https://doi.org/10.1016/j.epsl.2017.02.046
      Wang, E. Z., Guo, T. L., Liu, B., et al., 2022. Lithofacies and Pore Features of Marine⁃Continental Transitional Shale and Gas Enrichment Conditions of Favorable Lithofacies: A Case Study of Permian Longtan Formation in the Lintanchang Area, Southeast of Sichuan Basin, SW China. Petroleum Exploration and Development, 49(6): 1132-1142(in Chinese with English abstract).
      Wang, J., 2010. Late Paleozoic Macrofloral Assemblages from Weibei Coalfield, with Reference to Vegetational Change through the Late Paleozoic Ice⁃Age in the North China Block. International Journal of Coal Geology, 83(2-3): 292-317. https://doi.org/10.1016/j.coal.2009.10.007
      Wang, T., Tong, Y., Xiao, W. J., et al., 2022a. Rollback, Scissor⁃Like Closure of the Mongol⁃Okhotsk Ocean and Formation of an Orocline: Magmatic Migration Based on a Large Archive of Age Data. National Science Review, 9(5): nwab210. https://doi.org/10.1093/nsr/nwab210
      Wang, Y. D., Yang, S. L., Zhang, S. H., et al., 2022b. Early⁃Middle Permian Drying in the North China Block Induced by Large Igneous Provinces. Palaeogeography, Palaeoclimatology, Palaeoecology, 592: 110922. https://doi.org/10.1016/j.palaeo.2022.110922
      Wang, Y. J., Liang, K., Chen, B., et al., 2020. Research Progress in the Late Devonian F-F Mass Extinction. Journal of Stratigraphy, 44(3): 277-298(in Chinese with English abstract).
      Wang, Y. N., Cheng, X. L., Fan, K., et al., 2023. The Paleoenvironment and Mechanisms of Organic Matter Enrichment of Shale in the Permian Taiyuan and Shanxi Formations in the Southern North China Basin. Journal of Marine Science and Engineering, 11(5): 992. https://doi.org/10.3390/jmse11050992
      Wu, J., Wang, H. Y., Shi, Z. S., et al., 2021. Favorable Lithofacies Types and Genesis of Marine⁃Continental Transitional Black Shale: A Case Study of Permian Shanxi Formation in the Eastern Margin of Ordos Basin, NW China. Petroleum Exploration and Development, 48(6): 1137-1149(in Chinese with English abstract).
      Wu, Q., Ramezani, J., Zhang, H., et al., 2021. High⁃Precision U⁃Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677-681. https://doi.org/10.1130/g48051.1
      Xie, H. R., Liang, C., Wu, J., et al., 2023. Impacts of Volcanic Activity on Sedimentary Palaeo⁃Environment and Organic Matter Enrichment. Journal of Palaeogeography, 25(4): 768-787(in Chinese with English abstract).
      Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
      Yan, D. Y., Huang, W. H., Lu, X. X., et al., 2016. Contrast of Reservoir⁃Forming Conditions of Marine⁃Continental Transitional Shale Gas in Different Sedimentary Environments in the Lower Yangtze Area of China. Journal of China Coal Society, 41(7): 1778-1787(in Chinese with English abstract).
      Yang, H., Liu, X. S., Yan, X. X., 2015. The Relationship between Tectonic⁃Sedimentary Evolution and Tight Sandstone Gas Reservoir since the Late Paleozoic in Ordos Basin. Earth Science Frontiers, 22(3): 174-183(in Chinese with English abstract).
      Yang, J. H., Cawood, P. A., Du, Y., et al., 2014. Global Continental Weathering Trends across the Early Permian Glacial to Postglacial Transition: Correlating High⁃ and Low-Paleolatitude Sedimentary Records. Geology, 42(10): 835-838. https://doi.org/10.1130/g35892.1
      Yang, J. H., Cawood, P. A., Montañez, I. P., et al., 2020. Enhanced Continental Weathering and Large Igneous Province Induced Climate Warming at the Permo⁃Carboniferous Transition. Earth and Planetary Science Letters, 534: 116074. https://doi.org/10.1016/j.epsl.2020.116074
      Yang, X. G., Guo, S. B., 2021. Reservoirs Characteristics and Environments Evolution of Lower Permian Transitional Shale in the Southern North China Basin: Implications for Shale Gas Exploration. Journal of Natural Gas Science and Engineering, 96: 104282. https://doi.org/10.1016/j.jngse.2021.104282
      Yin, H. F., Yu, J. X., Luo, G. M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822(in Chinese with English abstract).
      Yue, C. S., Chen, J. T., Yang, W. L., et al., 2024. Sedimentary Response and Global Correlation of the Late Pennsylvanian Warming Event. Acta Sedimentologica Sinica(in press)(in Chinese with English abstract).
      Zhai, G. Y., Wang, Y. F., Liu, G. H., et al., 2020. Enrichment and Accumulation Characteristics and Prospect Analysis of the Permian Marine Conticental Multiphase Shale Gas in China. Sedimentary Geology and Tethyan Geology, 40(3): 102-117(in Chinese with English abstract).
      Zhang, G. Y., Tong, X. G., Xin, R. C., et al., 2019. Evolution of Lithofacies and Paleogeography and Hydrocarbon Distribution Worldwide(Ⅰ). Petroleum Exploration and Development, 46(4): 633-652(in Chinese with English abstract).
      Zhang, H., Shen, G. L., He, Z. L., 1999. A Carbon Isotopic Stratigraphic Pattern of the Late Palaeozoic Coals in the North China Platform and Its Palaeoclimatic Implications. Acta Geologica Sinica, 73(1): 111-119. https://doi.org/10.1111/j.1755⁃6724.1999.tb00817.x
      Zhang, H., Shen, G. L., He, Z. L., 1999. Control of Palaeoclimatic Change on Late Palaeozoic Coal Accumulation of the North China Plate. Acta Geologica Sinica, 73(2): 131-139(in Chinese with English abstract).
      Zhang, L. F., Dong, D. Z., Qiu, Z., et al., 2021. Sedimentology and Geochemistry of Carboniferous⁃Permian Marine⁃Continental Transitional Shales in the Eastern Ordos Basin, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 571: 110389. https://doi.org/10.1016/j.palaeo.2021.110389
      Zhang, N., Wang, C. B., Liu, Z. H., et al., 2022. Tectonic Evolution of the Late Paleozoic⁃Early Mesozoic Orogenic Belt in the Eastern Segment of the Northern Margin of the North China Block: Evidence from Meta⁃Volcanic Rocks of Jianshanzi, Northern Liaoning Province. Acta Petrologica Sinica, 38(8): 2323-2344(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.07
      Zhang, Q., Qiu, Z., Zhang, L. F., et al., 2022. Reservoir Characteristics and Its Influence on Transitional Shale: An Example from Permian Shanxi Formation Shale, Daning⁃Jixian Blocks, Ordos Basin. Natural Gas Geoscience, 33(3): 396-407(in Chinese with English abstract).
      Zhang, Q., Xiong, W., Li, X. T., et al., 2023. Discussion on Transitional Shale Gas Accumulation Conditions from the Perspective of Source⁃Reservoir⁃Caprock Controlling Hydrocarbon: Examples from Permian Shanxi Formation and Taiyuan Formation in the Eastern Margin of Ordos Basin, NW China. Energies, 16(9): 3710. https://doi.org/10.3390/en16093710
      Zhang, S. H., Zhao, Y., Kröner, A., et al., 2009. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441-1467. https://doi.org/10.1007/s00531⁃008⁃0368⁃2
      Zhang, S. H., Zhao, Y., Liu, J. M., et al., 2010. Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic⁃Early Mesozoic Magmatism in the Northern Margin of the North China Block: A Preliminary Review. Acta Petrologica et Mineralogica, 29(6): 824-842(in Chinese with English abstract).
      Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth⁃Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
      Zhong, R., Sun, S. P., Fu, Z. M., 1996. The Characteristics of Volcanic Event Deposits and Their Temporal-Spatial Distribution of Benxi and Taiyuan Formations in North China Platform(Ncp). Journal of Geomechanics, 2(1): 83-91(in Chinese with English abstract).
      Zou, C. N., Dong, D. Z., Xiong, W., et al., 2024. Advances, Challenges, and Countermeasures in Shale Gas Exploration of Underexplored Plays, Sequences and New Types in China. Oil & Gas Geology, 45(2): 309-326(in Chinese with English abstract).
      Zou, C. N., Ma, F., Pan, S. Q., et al., 2023. Formation and Distribution Potential of Global Shale Oil and the Developments of Continental Shale Oil Theory and Technology in China. Earth Science Frontiers, 30(1): 128-142(in Chinese with English abstract).
      Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
      Zou, C. N., Qiu, Z., Zhang, J. Q., et al., 2022. Unconventional Petroleum Sedimentology: A Key to Understanding Unconventional Hydrocarbon Accumulation. Engineering, 18: 62-78. https://doi.org/10.1016/j.eng.2022.06.016
      Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 13-25(in Chinese with English abstract).
      蔡光银, 蒋裕强, 李星涛, 等, 2022. 海陆过渡相与海相富有机质页岩储层特征差异. 沉积学报, 40(4): 1030-1042.
      陈世悦, 刘焕杰, 1995. 华北晚古生代海平面变化研究. 岩相古地理, (5): 14-21.
      巩恩普, 黄文韬, 关长庆, 等, 2021. 石炭纪生物礁与晚古生代冰期的耦合关系. 地质学报, 95(6): 1671-1692.
      郭旭升, 胡东风, 刘若冰, 等, 2018. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力. 天然气工业, 38(10): 11-18.
      郭艳琴, 李文厚, 郭彬程, 等, 2019. 鄂尔多斯盆地沉积体系与古地理演化. 古地理学报, 21(2): 293-320.
      焦方正, 温声明, 刘向君, 等, 2023. 鄂尔多斯盆地海陆过渡相页岩气勘探理论与技术研究新进展. 天然气工业, 43(4): 11-23.
      匡立春, 董大忠, 何文渊, 等, 2020. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景. 石油勘探与开发, 47(3): 435-446.
      李洪颜, 徐义刚, 黄小龙, 等, 2009. 华北克拉通北缘晚古生代活化: 山西宁武-静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据. 科学通报, 54(5): 632-640.
      李勇, 王壮森, 邵龙义, 等, 2024. 鄂尔多斯盆地东部上石炭统铝土岩系储集层特征及形成模式. 石油勘探与开发, 51(1): 39-47.
      刘翰林, 邹才能, 邱振, 等, 2023. 陆相黑色页岩沉积环境及有机质富集机制. 沉积学报, 41(6): 1810-1829.
      刘雯, 赵群, 邱振, 等, 2023. 鄂尔多斯盆地东缘海陆过渡相页岩气成藏条件研究现状与展望. 天然气地球科学, 34(5): 868-887.
      柳蓉, 张坤, 刘招君, 等, 2021. 中国油页岩富集与地质事件研究. 沉积学报, 39(1): 10-28.
      吕大炜, 李增学, 刘海燕, 等, 2009. 华北晚古生代海平面变化及其层序地层响应. 中国地质, 36(5): 1079-1086.
      秦建中, 申宝剑, 陶国亮, 等, 2014. 优质烃源岩成烃生物与生烃能力动态评价. 石油实验地质, 36(4): 465-472.
      邱振, 窦立荣, 吴建发, 等, 2024. 川北-鄂西地区中二叠统层序岩相古地理演化及页岩气勘探潜力. 地球科学, 49(2): 712-748. doi: 10.3799/dqkx.2023.216
      邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29.
      邱振, 邹才能, 王红岩, 等, 2020. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163-175.
      申博恒, 沈树忠, 侯章帅, 等, 2021. 中国二叠纪岩石地层划分和对比. 地层学杂志, 45(3): 319-339.
      申博恒, 沈树忠, 吴琼, 等, 2022. 华北板块石炭纪-二叠纪地层时间框架. 中国科学: 地球科学, 52(7): 1181-1212.
      沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135.
      沈树忠, 张华, 张以春, 等, 2019. 中国二叠纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 160-193.
      石婧, 何登发, 包洪平, 等, 2024. 鄂尔多斯盆地东部边界的构造学分析: 以石楼北地区为例. 古地理学报, 26(1): 150-164.
      舒德干, 张兴亮, 韩健, 等, 2009. 再论寒武纪大爆发与动物树成型. 古生物学报, 48(3): 414-427.
      田巍, 王传尚, 白云山, 等, 2019. 湘中涟源凹陷上泥盆统佘田桥组页岩地球化学特征及有机质富集机理. 地球科学, 44(11): 3794-3811. doi: 10.3799/dqkx.2019.156
      王恩泽, 郭彤楼, 刘波, 等, 2022. 海陆过渡相页岩岩相、孔隙特征及有利岩相富气条件: 以四川盆地东南缘林滩场地区二叠系龙潭组为例. 石油勘探与开发, 49(6): 1132-1142.
      王玉珏, 梁昆, 陈波, 等, 2020. 晚泥盆世F⁃F大灭绝事件研究进展. 地层学杂志, 44(3): 277-298.
      武瑾, 王红岩, 施振生, 等, 2021. 海陆过渡相黑色页岩优势岩相类型及成因机制: 以鄂尔多斯盆地东缘二叠系山西组为例. 石油勘探与开发, 48(6): 1137-1149.
      谢浩然, 梁超, 吴靖, 等, 2023. 火山活动对沉积古环境及有机质富集的影响. 古地理学报, 25(4): 768-787.
      闫德宇, 黄文辉, 陆小霞, 等, 2016. 下扬子区海陆过渡相不同沉积环境页岩气成藏条件对比. 煤炭学报, 41(7): 1778-1787.
      杨华, 刘新社, 闫小雄, 2015. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏. 地学前缘, 22(3): 174-183.
      殷鸿福, 喻建新, 罗根明, 等, 2018. 地史时期生物对冰室气候形成的作用. 地球科学, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
      岳超盛, 陈吉涛, 杨文莉, 等, 2024. 晚宾夕法尼亚亚纪变暖事件的沉积响应与全球对比. 沉积学报(待刊).
      翟刚毅, 王玉芳, 刘国恒, 等, 2020. 中国二叠系海陆交互相页岩气富集成藏特征及前景分析. 沉积与特提斯地质, 40(3): 102-117.
      张光亚, 童晓光, 辛仁臣, 等, 2019. 全球岩相古地理演化与油气分布(一). 石油勘探与开发, 46(4): 633-652.
      张泓, 沈光隆, 何宗莲, 1999. 华北板块晚古生代古气候变化对聚煤作用的控制. 地质学报, 73(2): 131-139.
      张诺, 王长兵, 刘正宏, 等, 2022. 华北板块北缘东段晚古生代-早中生代造山带构造演化: 来自辽北开原地区尖山子变质火山岩的证据. 岩石学报, 38(8): 2323-2344.
      张琴, 邱振, 张磊夫, 等, 2022. 海陆过渡相页岩气储层特征与主控因素: 以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例. 天然气地球科学, 33(3): 396-407.
      张拴宏, 赵越, 刘建民, 等, 2010. 华北地块北缘晚古生代: 早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842.
      钟蓉, 孙善平, 付泽明, 1996. 华北地台本溪组、太原组火山事件沉积特征及时空分布规律. 地质力学学报, 2(1): 83-91.
      邹才能, 董大忠, 熊伟, 等, 2024. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策. 石油与天然气地质, 45(2): 309-326.
      邹才能, 马锋, 潘松圻, 等, 2023. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘, 30(1): 128-142.
      邹才能, 翟光明, 张光亚, 等, 2015. 全球常规-非常规油气形成分布、资源潜力及趋势预测. 石油勘探与开发, 42(1): 13-25.
    • 加载中
    图(7)
    计量
    • 文章访问数:  486
    • HTML全文浏览量:  139
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-06-05
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回