• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    人工湿地去除抗生素抗性基因

    柳林妹 陈海洋 朱冠华 翟远征

    柳林妹, 陈海洋, 朱冠华, 翟远征, 2024. 人工湿地去除抗生素抗性基因. 地球科学, 49(9): 3440-3444. doi: 10.3799/dqkx.2024.082
    引用本文: 柳林妹, 陈海洋, 朱冠华, 翟远征, 2024. 人工湿地去除抗生素抗性基因. 地球科学, 49(9): 3440-3444. doi: 10.3799/dqkx.2024.082
    Liu Linmei, Chen Haiyang, Zhu Guanhua, Zhai Yuanzheng, 2024. Constructed Wetlands for the Removal of Antibiotic Resistance Genes. Earth Science, 49(9): 3440-3444. doi: 10.3799/dqkx.2024.082
    Citation: Liu Linmei, Chen Haiyang, Zhu Guanhua, Zhai Yuanzheng, 2024. Constructed Wetlands for the Removal of Antibiotic Resistance Genes. Earth Science, 49(9): 3440-3444. doi: 10.3799/dqkx.2024.082

    人工湿地去除抗生素抗性基因

    doi: 10.3799/dqkx.2024.082
    基金项目: 

    国家自然科学基金项目 42377052

    详细信息
      作者简介:

      柳林妹(1997-),女,博士研究生,主要研究抗生素及其抗性基因环境行为.ORCID:0009-0001-1243-8312.E-mail:202331470014@mail.bnu.edu.cn

      通讯作者:

      翟远征,ORCID: 0000-0002-2615-9859.E-mail: zyz@bnu.edu.cn

    Constructed Wetlands for the Removal of Antibiotic Resistance Genes

    • Abou-Kandil, A., Shibli, A., Azaizeh, H., et al., 2021. Fate and Removal of Bacteria and Antibiotic Resistance Genes in Horizontal Subsurface Constructed Wetlands: Effect of Mixed Vegetation and Substrate Type. The Science of the Total Environment, 759: 144193. https://doi.org/10.1016/j.scitotenv.2020.144193
      Ajibade, F. O., Yin, W. X., Guadie, A., et al., 2023. Impact of Biochar Amendment on Antibiotic Removal and ARGs Accumulation in Constructed Wetlands for Low C/N Wastewater Treatment. Chemical Engineering Journal, 459: 141541. https://doi.org/10.1016/j.cej.2023.141541
      Ávila, C., García-Galán, M. J., Borrego, C. M., et al., 2021. New Insights on the Combined Removal of Antibiotics and ARGs in Urban Wastewater through the Use of Two Configurations of Vertical Subsurface Flow Constructed Wetlands. Science of the Total Environment, 755: 142554. https://doi.org/10.1016/j.scitotenv.2020.142554
      Boopathy, R., 2017. Presence of Methicillin Resistant Staphylococcus Aureus (MRSA) in Sewage Treatment Plant. Bioresource Technology, 240: 144-148. https://doi.org/10.1016/j.biortech.2017.02.093
      Chen, B., Hao, L. J., Guo, X. Y., et al., 2015. Prevalence of Antibiotic Resistance Genes of Wastewater and Surface Water in Livestock Farms of Jiangsu Province, China. Environmental Science and Pollution Research, 22(18): 13950-13959. https://doi.org/10.1007/s11356-015-4636-y
      Chen, J., Deng, W. J., Liu, Y. S., et al., 2019. Fate and Removal of Antibiotics and Antibiotic Resistance Genes in Hybrid Constructed Wetlands. Environmental Pollution, 249: 894-903. https://doi.org/10.1016/j.envpol.2019.03.111
      Chen, J., Ying, G. G., Wei, X. D., et al., 2016. Removal of Antibiotics and Antibiotic Resistance Genes from Domestic Sewage by Constructed Wetlands: Effect of Flow Configuration and Plant Species. The Science of the Total Environment, 571: 974-982. https://doi.org/10.1016/j.scitotenv.2016.07.085
      Chen, P. P., 2023. Photocatalytic-Constructed Wetland Removal of Antibiotic Resistance Genes and Its Mechanism (Dissertation). Northeast Normal University, Changchun (in Chinese with English abstract).
      Chen, P. P., Yu, X. F., Zhang, J. Y., 2023. Photocatalysis Enhanced Constructed Wetlands Effectively Remove Antibiotic Resistance Genes from Domestic Wastewater. Chemosphere, 325: 138330. https://doi.org/10.1016/j.chemosphere.2023.138330
      Cheng, Y. X., Wu, D., Chen, Q. L., et al., 2021. Optimization of Tidal-Combined Flow Constructed Wetland System and Its Removal Effect on Antibiotic Resistance Genes. Environmental Science, 42(8): 3799-3807 (in Chinese with English abstract).
      Cui, E. P., Zhou, Z. C., Gao, F., et al., 2023. Roles of Substrates in Removing Antibiotics and Antibiotic Resistance Genes in Constructed Wetlands: A Review. The Science of the Total Environment, 859(Pt 1): 160257. https://doi.org/10.1016/j.scitotenv.2022.160257
      Du, J. P., Xu, T., Guo, X. P., et al., 2022. Characteristics and Removal of Antibiotics and Antibiotic Resistance Genes in a Constructed Wetland from a Drinking Water Source in the Yangtze River Delta. The Science of the Total Environment, 813: 152540. https://doi.org/10.1016/j.scitotenv.2021.152540
      Feng, L. K., 2020. Enhancement of Pollution Removal of Swine Wastewater Using a Biochar-Amended Aerated Vertical Flow Constructed Wetland (Dissertation). Northwest A & F University, Yangling (in Chinese with English abstract).
      García, J., García-Galán, M. J., Day, J. W., et al., 2020. A Review of Emerging Organic Contaminants (EOCs), Antibiotic Resistant Bacteria (ARB), and Antibiotic Resistance Genes (ARGs) in the Environment: Increasing Removal with Wetlands and Reducing Environmental Impacts. Bioresource Technology, 307: 123228. https://doi.org/10.1016/j.biortech.2020.123228
      He, L. Y., He, L. K., Liu, Y. S., et al., 2019. Microbial Diversity and Antibiotic Resistome in Swine Farm Environments. The Science of the Total Environment, 685: 197-207. https://doi.org/10.1016/j.scitotenv.2019.05.369
      Hu, A. Y., Wang, H. J., Li, J. W., et al., 2020. Homogeneous Selection Drives Antibiotic Resistome in Two Adjacent Sub-Watersheds, China. Journal of Hazardous Materials, 398: 122820. https://doi.org/10.1016/j.jhazmat.2020.122820
      Huang, X. F., Luo, Y., Liu, Z. L., et al., 2019. Influence of Two-Stage Combinations of Constructed Wetlands on the Removal of Antibiotics, Antibiotic Resistance Genes and Nutrients from Goose Wastewater. International Journal of Environmental Research and Public Health, 16(20): 4030. https://doi.org/10.3390/ijerph16204030
      Huang, X., Zheng, J. L., Liu, C. X., et al., 2017. Removal of Antibiotics and Resistance Genes from Swine Wastewater Using Vertical Flow Constructed Wetlands: Effect of Hydraulic Flow Direction and Substrate Type. Chemical Engineering Journal, 308: 692-699. https://doi.org/10.1016/j.cej.2016.09.110
      Li, H., Cao, H. P., Li, T., et al., 2023. Biofilm Electrode Reactor Coupled Manganese Ore Substrate Up-Flow Microbial Fuel Cell-Constructed Wetland System: High Removal Efficiencies of Antibiotic, Zinc (II), and the Corresponding Antibiotic Resistance Genes. Journal of Hazardous Materials, 460: 132394. https://doi.org/10.1016/j.jhazmat.2023.132394
      Li, H., Xu, H., Yang, Y. L., et al., 2019. Effects of Graphite and Mn Ore Media on Electro-Active Bacteria Enrichment and Fate of Antibiotic and Corresponding Resistance Gene in up Flow Microbial Fuel Cell Constructed Wetland. Water Research, 165: 114988. https://doi.org/10.1016/j.watres.2019.114988
      Li, L. G., Huang, Q., Yin, X. L., et al., 2020. Source Tracking of Antibiotic Resistance Genes in the Environment: Challenges, Progress, and Prospects. Water Research, 185: 116127. https://doi.org/10.1016/j.watres.2020.116127
      Li, X. Y., Wu, Y. Y., Jiang, T., et al., 2024. China's Plan to Combat Antimicrobial Resistance. Science, 383(6690): 1424-1425. https://doi.org/10.1126/science.ado5186
      Liu, L., Li, J., Xin, Y., et al., 2021. Evaluation of Wetland Substrates for Veterinary Antibiotics Pollution Control in Lab-Scale Systems. Environmental Pollution, 269: 116152. https://doi.org/10.1016/j.envpol.2020.116152
      Liu, X. H., Chen, J., Liu, Y., et al., 2022. Sulfamethoxazole Degradation by Pseudomonas Silesiensis F6a Isolated from Bioelectrochemical Technology-Integrated Constructed Wetlands. Ecotoxicology and Environmental Safety, 240: 113698. https://doi.org/10.1016/j.ecoenv.2022.113698
      Liu, Y., Hou, B., Chen, J. J., et al., 2021. The Influence of Domestication on the Diversity of Cathodic Microbial Community in Biocathode Microbial Fuel Cell. Microbiology China, 48(2): 373-382 (in Chinese with English abstract).
      Makowska, N., Philips, A., Dabert, M., et al., 2020. Metagenomic Analysis of β-Lactamase and Carbapenemase Genes in the Wastewater Resistome. Water Research, 170: 115277. https://doi.org/10.1016/j.watres.2019.115277
      McCorquodale-Bauer, K., Grosshans, R., Zvomuya, F., et al., 2023. Critical Review of Phytoremediation for the Removal of Antibiotics and Antibiotic Resistance Genes in Wastewater. The Science of the Total Environment, 870: 161876. https://doi.org/10.1016/j.scitotenv.2023.161876
      Nõlvak, H., Truu, M., Tiirik, K., et al., 2013. Dynamics of Antibiotic Resistance Genes and Their Relationships with System Treatment Efficiency in a Horizontal Subsurface Flow Constructed Wetland. The Science of the Total Environment, 461-462: 636-644. https://doi.org/10.1016/j.scitotenv.2013.05.052
      Ohore, O. E., Zhang, S. H., Guo, S. Z., et al., 2021. The Fate of Tetracycline in Vegetated Mesocosmic Wetlands and Its Impact on the Water Quality and Epiphytic Microbes. Journal of Hazardous Materials, 417: 126148. https://doi.org/10.1016/j.jhazmat.2021.126148
      Perron, G. G., Whyte, L., Turnbaugh, P. J., et al., 2015. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics. PLoS One, 10(3): e0069533. https://doi.org/10.1371/journal.pone.0069533
      Pruden, A., Pei, R. T., Storteboom, H., et al., 2006. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environmental Science & Technology, 40(23): 7445-7450. https://doi.org/10.1021/es060413l
      Shingare, R. P., Thawale, P. R., Raghunathan, K., et al., 2019. Constructed Wetland for Wastewater Reuse: Role and Efficiency in Removing Enteric Pathogens. Journal of Environmental Management, 246: 444-461. https://doi.org/10.1016/j.jenvman.2019.05.157
      Song, H. L., Li, H., Zhang, S., et al., 2018. Fate of Sulfadiazine and Its Corresponding Resistance Genes in Up-Flow Microbial Fuel Cell Coupled Constructed Wetlands: Effects of Circuit Operation Mode and Hydraulic Retention Time. Chemical Engineering Journal, 350: 920-929. https://doi.org/10.1016/j.cej.2018.06.035
      Wang, H. J., Hou, L. Y., Liu, Y. Q., et al., 2021. Horizontal and Vertical Gene Transfer Drive Sediment Antibiotic Resistome in an Urban Lagoon System. Journal of Environmental Sciences (China), 102: 11-23. https://doi.org/10.1016/j.jes.2020.09.004
      Wang, Y., Han, Y. P., Li, L., et al., 2022. Distribution, Sources, and Potential Risks of Antibiotic Resistance Genes in Wastewater Treatment Plant: A Review. Environmental Pollution, 310: 119870. https://doi.org/10.1016/j.envpol.2022.119870
      Wen, H. Y., Zhu, H., Yan, B. X., et al., 2022. High Removal Efficiencies of Antibiotics and Low Accumulation of Antibiotic Resistant Genes Obtained in Microbial Fuel Cell-Constructed Wetlands Intensified by Sponge Iron. The Science of the Total Environment, 806(Pt 1): 150220. https://doi.org/10.1016/j.scitotenv.2021.150220
      Wendel, H. E. W., Downs, J. A., Mihelcic, J. R., 2011. Assessing Equitable Access to Urban Green Space: The Role of Engineered Water Infrastructure. Environmental Science & Technology, 45(16): 6728-6734. https://doi.org/10.1021/es103949f
      Xue, H., Lin, H., Wang, Z., et al., 2023. Research Progress on Removing Antibiotic Resistance Genes in Constructed Wetlands. Environmental Science, 44(10): 5490-5497 (in Chinese with English abstract).
      Yi, X. Z., Tran, N. H., Yin, T. R., et al., 2017. Removal of Selected PPCPS, EDCs, and Antibiotic Resistance Genes in Landfill Leachate by a Full-Scale Constructed Wetlands System. Water Research, 121: 46-60. https://doi.org/10.1016/j.watres.2017.05.008
      Yu, G. L., Wang, G. L., Chi, T. Y., et al., 2022. Enhanced Removal of Heavy Metals and Metalloids by Constructed Wetlands: A Review of Approaches and Mechanisms. The Science of the Total Environment, 821: 153516. https://doi.org/10.1016/j.scitotenv.2022.153516
      Yuan, T., Cheng, S., Lin, Z. B., et al., 2022. Effects of Adding Ferrous Iron on the Removal of Sulfonamide Antibiotic Resistance Genes in Constructed Wetlands. Water Saving Irrigation, (9): 114-123 (in Chinese with English abstract).
      Yuan, T., Lin, Z. B., Cheng, S., et al., 2022. Removal of Sulfonamide Resistance Genes in Fishery Reclamation Mining Subsidence Area by Zeolite. International Journal of Environmental Research and Public Health, 19(7): 4281. https://doi.org/10.3390/ijerph19074281
      Zhang, D. Y., 2022. Removal Efficiency of Emerging Contaminants in Water on Ore/Biochar-Amended Bioretention (Dissertation). Southeast University, Nanjing (in Chinese with English abstract).
      Zhang, L., Yan, C. Z., Wen, C., et al., 2023. Influencing Factors of Antibiotic Resistance Genes Removal in Constructed Wetlands: A Meta-Analysis Assisted by Multivariate Statistical Methods. Chemosphere, 315: 137755. https://doi.org/10.1016/j.chemosphere.2023.137755
      Zhang, S., Song, H. L., Yang, X. L., et al., 2018. A System Composed of a Biofilm Electrode Reactor and a Microbial Fuel Cell-Constructed Wetland Exhibited Efficient Sulfamethoxazole Removal but Induced Sul Genes. Bioresource Technology, 256: 224-231. https://doi.org/10.1016/j.biortech.2018.02.023
      Zheng, D. S., Yin, G. Y., Liu, M., et al., 2022. Global Biogeography and Projection of Soil Antibiotic Resistance Genes. Science Advances, 8(46): eabq8015. https://doi.org/10.1126/sciadv.abq8015
      Zhou, Y. T., Niu, L. L., Zhu, S. Y., et al., 2017. Occurrence, Abundance, and Distribution of Sulfonamide and Tetracycline Resistance Genes in Agricultural Soils across China. The Science of the Total Environment, 599/600: 1977-1983. https://doi.org/10.1016/j.scitotenv.2017.05.152
      谌萍萍, 2023. 光催化‒人工湿地去除抗生素抗性基因技术及其机制(硕士学位论文). 长春: 东北师范大学.
      程羽霄, 吴丹, 陈铨乐, 等, 2021. 潮汐‒复合流人工湿地系统优化及对抗生素抗性基因的去除效果. 环境科学, 42(8): 3799-3807.
      冯立魁, 2020. 基于生物炭协同曝气强化的人工湿地处理养猪废水效能研究(硕士学位论文). 杨凌: 西北农林科技大学.
      刘瑶, 侯彬, 陈佳俊, 等, 2021. 驯化对生物阴极微生物燃料电池中阴极微生物群落多样性的影响. 微生物学通报, 48(2): 373-382.
      薛慧, 林辉, 王智, 等, 2023. 人工湿地去除抗生素抗性基因的研究进展. 环境科学, 44(10): 5490-5497.
      袁涛, 程森, 林子博, 等, 2022. 亚铁强化人工湿地去除磺胺类抗生素抗性基因. 节水灌溉, (9): 114-123.
      张丹一, 2022. 矿石/生物炭强化生物滞留池去除水中新兴污染物的效能研究(硕士学位论文). 南京: 东南大学.
    • 加载中
    计量
    • 文章访问数:  293
    • HTML全文浏览量:  147
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回