Abou-Kandil, A., Shibli, A., Azaizeh, H., et al., 2021. Fate and Removal of Bacteria and Antibiotic Resistance Genes in Horizontal Subsurface Constructed Wetlands: Effect of Mixed Vegetation and Substrate Type. The Science of the Total Environment, 759: 144193. https://doi.org/10.1016/j.scitotenv.2020.144193 |
Ajibade, F. O., Yin, W. X., Guadie, A., et al., 2023. Impact of Biochar Amendment on Antibiotic Removal and ARGs Accumulation in Constructed Wetlands for Low C/N Wastewater Treatment. Chemical Engineering Journal, 459: 141541. https://doi.org/10.1016/j.cej.2023.141541 |
Ávila, C., García-Galán, M. J., Borrego, C. M., et al., 2021. New Insights on the Combined Removal of Antibiotics and ARGs in Urban Wastewater through the Use of Two Configurations of Vertical Subsurface Flow Constructed Wetlands. Science of the Total Environment, 755: 142554. https://doi.org/10.1016/j.scitotenv.2020.142554 |
Boopathy, R., 2017. Presence of Methicillin Resistant Staphylococcus Aureus (MRSA) in Sewage Treatment Plant. Bioresource Technology, 240: 144-148. https://doi.org/10.1016/j.biortech.2017.02.093 |
Chen, B., Hao, L. J., Guo, X. Y., et al., 2015. Prevalence of Antibiotic Resistance Genes of Wastewater and Surface Water in Livestock Farms of Jiangsu Province, China. Environmental Science and Pollution Research, 22(18): 13950-13959. https://doi.org/10.1007/s11356-015-4636-y |
Chen, J., Deng, W. J., Liu, Y. S., et al., 2019. Fate and Removal of Antibiotics and Antibiotic Resistance Genes in Hybrid Constructed Wetlands. Environmental Pollution, 249: 894-903. https://doi.org/10.1016/j.envpol.2019.03.111 |
Chen, J., Ying, G. G., Wei, X. D., et al., 2016. Removal of Antibiotics and Antibiotic Resistance Genes from Domestic Sewage by Constructed Wetlands: Effect of Flow Configuration and Plant Species. The Science of the Total Environment, 571: 974-982. https://doi.org/10.1016/j.scitotenv.2016.07.085 |
Chen, P. P., 2023. Photocatalytic-Constructed Wetland Removal of Antibiotic Resistance Genes and Its Mechanism (Dissertation). Northeast Normal University, Changchun (in Chinese with English abstract). |
Chen, P. P., Yu, X. F., Zhang, J. Y., 2023. Photocatalysis Enhanced Constructed Wetlands Effectively Remove Antibiotic Resistance Genes from Domestic Wastewater. Chemosphere, 325: 138330. https://doi.org/10.1016/j.chemosphere.2023.138330 |
Cheng, Y. X., Wu, D., Chen, Q. L., et al., 2021. Optimization of Tidal-Combined Flow Constructed Wetland System and Its Removal Effect on Antibiotic Resistance Genes. Environmental Science, 42(8): 3799-3807 (in Chinese with English abstract). |
Cui, E. P., Zhou, Z. C., Gao, F., et al., 2023. Roles of Substrates in Removing Antibiotics and Antibiotic Resistance Genes in Constructed Wetlands: A Review. The Science of the Total Environment, 859(Pt 1): 160257. https://doi.org/10.1016/j.scitotenv.2022.160257 |
Du, J. P., Xu, T., Guo, X. P., et al., 2022. Characteristics and Removal of Antibiotics and Antibiotic Resistance Genes in a Constructed Wetland from a Drinking Water Source in the Yangtze River Delta. The Science of the Total Environment, 813: 152540. https://doi.org/10.1016/j.scitotenv.2021.152540 |
Feng, L. K., 2020. Enhancement of Pollution Removal of Swine Wastewater Using a Biochar-Amended Aerated Vertical Flow Constructed Wetland (Dissertation). Northwest A & F University, Yangling (in Chinese with English abstract). |
García, J., García-Galán, M. J., Day, J. W., et al., 2020. A Review of Emerging Organic Contaminants (EOCs), Antibiotic Resistant Bacteria (ARB), and Antibiotic Resistance Genes (ARGs) in the Environment: Increasing Removal with Wetlands and Reducing Environmental Impacts. Bioresource Technology, 307: 123228. https://doi.org/10.1016/j.biortech.2020.123228 |
He, L. Y., He, L. K., Liu, Y. S., et al., 2019. Microbial Diversity and Antibiotic Resistome in Swine Farm Environments. The Science of the Total Environment, 685: 197-207. https://doi.org/10.1016/j.scitotenv.2019.05.369 |
Hu, A. Y., Wang, H. J., Li, J. W., et al., 2020. Homogeneous Selection Drives Antibiotic Resistome in Two Adjacent Sub-Watersheds, China. Journal of Hazardous Materials, 398: 122820. https://doi.org/10.1016/j.jhazmat.2020.122820 |
Huang, X. F., Luo, Y., Liu, Z. L., et al., 2019. Influence of Two-Stage Combinations of Constructed Wetlands on the Removal of Antibiotics, Antibiotic Resistance Genes and Nutrients from Goose Wastewater. International Journal of Environmental Research and Public Health, 16(20): 4030. https://doi.org/10.3390/ijerph16204030 |
Huang, X., Zheng, J. L., Liu, C. X., et al., 2017. Removal of Antibiotics and Resistance Genes from Swine Wastewater Using Vertical Flow Constructed Wetlands: Effect of Hydraulic Flow Direction and Substrate Type. Chemical Engineering Journal, 308: 692-699. https://doi.org/10.1016/j.cej.2016.09.110 |
Li, H., Cao, H. P., Li, T., et al., 2023. Biofilm Electrode Reactor Coupled Manganese Ore Substrate Up-Flow Microbial Fuel Cell-Constructed Wetland System: High Removal Efficiencies of Antibiotic, Zinc (II), and the Corresponding Antibiotic Resistance Genes. Journal of Hazardous Materials, 460: 132394. https://doi.org/10.1016/j.jhazmat.2023.132394 |
Li, H., Xu, H., Yang, Y. L., et al., 2019. Effects of Graphite and Mn Ore Media on Electro-Active Bacteria Enrichment and Fate of Antibiotic and Corresponding Resistance Gene in up Flow Microbial Fuel Cell Constructed Wetland. Water Research, 165: 114988. https://doi.org/10.1016/j.watres.2019.114988 |
Li, L. G., Huang, Q., Yin, X. L., et al., 2020. Source Tracking of Antibiotic Resistance Genes in the Environment: Challenges, Progress, and Prospects. Water Research, 185: 116127. https://doi.org/10.1016/j.watres.2020.116127 |
Li, X. Y., Wu, Y. Y., Jiang, T., et al., 2024. China's Plan to Combat Antimicrobial Resistance. Science, 383(6690): 1424-1425. https://doi.org/10.1126/science.ado5186 |
Liu, L., Li, J., Xin, Y., et al., 2021. Evaluation of Wetland Substrates for Veterinary Antibiotics Pollution Control in Lab-Scale Systems. Environmental Pollution, 269: 116152. https://doi.org/10.1016/j.envpol.2020.116152 |
Liu, X. H., Chen, J., Liu, Y., et al., 2022. Sulfamethoxazole Degradation by Pseudomonas Silesiensis F6a Isolated from Bioelectrochemical Technology-Integrated Constructed Wetlands. Ecotoxicology and Environmental Safety, 240: 113698. https://doi.org/10.1016/j.ecoenv.2022.113698 |
Liu, Y., Hou, B., Chen, J. J., et al., 2021. The Influence of Domestication on the Diversity of Cathodic Microbial Community in Biocathode Microbial Fuel Cell. Microbiology China, 48(2): 373-382 (in Chinese with English abstract). |
Makowska, N., Philips, A., Dabert, M., et al., 2020. Metagenomic Analysis of β-Lactamase and Carbapenemase Genes in the Wastewater Resistome. Water Research, 170: 115277. https://doi.org/10.1016/j.watres.2019.115277 |
McCorquodale-Bauer, K., Grosshans, R., Zvomuya, F., et al., 2023. Critical Review of Phytoremediation for the Removal of Antibiotics and Antibiotic Resistance Genes in Wastewater. The Science of the Total Environment, 870: 161876. https://doi.org/10.1016/j.scitotenv.2023.161876 |
Nõlvak, H., Truu, M., Tiirik, K., et al., 2013. Dynamics of Antibiotic Resistance Genes and Their Relationships with System Treatment Efficiency in a Horizontal Subsurface Flow Constructed Wetland. The Science of the Total Environment, 461-462: 636-644. https://doi.org/10.1016/j.scitotenv.2013.05.052 |
Ohore, O. E., Zhang, S. H., Guo, S. Z., et al., 2021. The Fate of Tetracycline in Vegetated Mesocosmic Wetlands and Its Impact on the Water Quality and Epiphytic Microbes. Journal of Hazardous Materials, 417: 126148. https://doi.org/10.1016/j.jhazmat.2021.126148 |
Perron, G. G., Whyte, L., Turnbaugh, P. J., et al., 2015. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics. PLoS One, 10(3): e0069533. https://doi.org/10.1371/journal.pone.0069533 |
Pruden, A., Pei, R. T., Storteboom, H., et al., 2006. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environmental Science & Technology, 40(23): 7445-7450. https://doi.org/10.1021/es060413l |
Shingare, R. P., Thawale, P. R., Raghunathan, K., et al., 2019. Constructed Wetland for Wastewater Reuse: Role and Efficiency in Removing Enteric Pathogens. Journal of Environmental Management, 246: 444-461. https://doi.org/10.1016/j.jenvman.2019.05.157 |
Song, H. L., Li, H., Zhang, S., et al., 2018. Fate of Sulfadiazine and Its Corresponding Resistance Genes in Up-Flow Microbial Fuel Cell Coupled Constructed Wetlands: Effects of Circuit Operation Mode and Hydraulic Retention Time. Chemical Engineering Journal, 350: 920-929. https://doi.org/10.1016/j.cej.2018.06.035 |
Wang, H. J., Hou, L. Y., Liu, Y. Q., et al., 2021. Horizontal and Vertical Gene Transfer Drive Sediment Antibiotic Resistome in an Urban Lagoon System. Journal of Environmental Sciences (China), 102: 11-23. https://doi.org/10.1016/j.jes.2020.09.004 |
Wang, Y., Han, Y. P., Li, L., et al., 2022. Distribution, Sources, and Potential Risks of Antibiotic Resistance Genes in Wastewater Treatment Plant: A Review. Environmental Pollution, 310: 119870. https://doi.org/10.1016/j.envpol.2022.119870 |
Wen, H. Y., Zhu, H., Yan, B. X., et al., 2022. High Removal Efficiencies of Antibiotics and Low Accumulation of Antibiotic Resistant Genes Obtained in Microbial Fuel Cell-Constructed Wetlands Intensified by Sponge Iron. The Science of the Total Environment, 806(Pt 1): 150220. https://doi.org/10.1016/j.scitotenv.2021.150220 |
Wendel, H. E. W., Downs, J. A., Mihelcic, J. R., 2011. Assessing Equitable Access to Urban Green Space: The Role of Engineered Water Infrastructure. Environmental Science & Technology, 45(16): 6728-6734. https://doi.org/10.1021/es103949f |
Xue, H., Lin, H., Wang, Z., et al., 2023. Research Progress on Removing Antibiotic Resistance Genes in Constructed Wetlands. Environmental Science, 44(10): 5490-5497 (in Chinese with English abstract). |
Yi, X. Z., Tran, N. H., Yin, T. R., et al., 2017. Removal of Selected PPCPS, EDCs, and Antibiotic Resistance Genes in Landfill Leachate by a Full-Scale Constructed Wetlands System. Water Research, 121: 46-60. https://doi.org/10.1016/j.watres.2017.05.008 |
Yu, G. L., Wang, G. L., Chi, T. Y., et al., 2022. Enhanced Removal of Heavy Metals and Metalloids by Constructed Wetlands: A Review of Approaches and Mechanisms. The Science of the Total Environment, 821: 153516. https://doi.org/10.1016/j.scitotenv.2022.153516 |
Yuan, T., Cheng, S., Lin, Z. B., et al., 2022. Effects of Adding Ferrous Iron on the Removal of Sulfonamide Antibiotic Resistance Genes in Constructed Wetlands. Water Saving Irrigation, (9): 114-123 (in Chinese with English abstract). |
Yuan, T., Lin, Z. B., Cheng, S., et al., 2022. Removal of Sulfonamide Resistance Genes in Fishery Reclamation Mining Subsidence Area by Zeolite. International Journal of Environmental Research and Public Health, 19(7): 4281. https://doi.org/10.3390/ijerph19074281 |
Zhang, D. Y., 2022. Removal Efficiency of Emerging Contaminants in Water on Ore/Biochar-Amended Bioretention (Dissertation). Southeast University, Nanjing (in Chinese with English abstract). |
Zhang, L., Yan, C. Z., Wen, C., et al., 2023. Influencing Factors of Antibiotic Resistance Genes Removal in Constructed Wetlands: A Meta-Analysis Assisted by Multivariate Statistical Methods. Chemosphere, 315: 137755. https://doi.org/10.1016/j.chemosphere.2023.137755 |
Zhang, S., Song, H. L., Yang, X. L., et al., 2018. A System Composed of a Biofilm Electrode Reactor and a Microbial Fuel Cell-Constructed Wetland Exhibited Efficient Sulfamethoxazole Removal but Induced Sul Genes. Bioresource Technology, 256: 224-231. https://doi.org/10.1016/j.biortech.2018.02.023 |
Zheng, D. S., Yin, G. Y., Liu, M., et al., 2022. Global Biogeography and Projection of Soil Antibiotic Resistance Genes. Science Advances, 8(46): eabq8015. https://doi.org/10.1126/sciadv.abq8015 |
Zhou, Y. T., Niu, L. L., Zhu, S. Y., et al., 2017. Occurrence, Abundance, and Distribution of Sulfonamide and Tetracycline Resistance Genes in Agricultural Soils across China. The Science of the Total Environment, 599/600: 1977-1983. https://doi.org/10.1016/j.scitotenv.2017.05.152 |
谌萍萍, 2023. 光催化‒人工湿地去除抗生素抗性基因技术及其机制(硕士学位论文). 长春: 东北师范大学. |
程羽霄, 吴丹, 陈铨乐, 等, 2021. 潮汐‒复合流人工湿地系统优化及对抗生素抗性基因的去除效果. 环境科学, 42(8): 3799-3807. |
冯立魁, 2020. 基于生物炭协同曝气强化的人工湿地处理养猪废水效能研究(硕士学位论文). 杨凌: 西北农林科技大学. |
刘瑶, 侯彬, 陈佳俊, 等, 2021. 驯化对生物阴极微生物燃料电池中阴极微生物群落多样性的影响. 微生物学通报, 48(2): 373-382. |
薛慧, 林辉, 王智, 等, 2023. 人工湿地去除抗生素抗性基因的研究进展. 环境科学, 44(10): 5490-5497. |
袁涛, 程森, 林子博, 等, 2022. 亚铁强化人工湿地去除磺胺类抗生素抗性基因. 节水灌溉, (9): 114-123. |
张丹一, 2022. 矿石/生物炭强化生物滞留池去除水中新兴污染物的效能研究(硕士学位论文). 南京: 东南大学. |