• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    喜马拉雅高海拔山区冰湖溃决时空分异特征

    邹强 周斌 杨涛 陈思谕 姚鸿坤 蒋虎 周文韬

    邹强, 周斌, 杨涛, 陈思谕, 姚鸿坤, 蒋虎, 周文韬, 2024. 喜马拉雅高海拔山区冰湖溃决时空分异特征. 地球科学, 49(11): 4047-4062. doi: 10.3799/dqkx.2024.083
    引用本文: 邹强, 周斌, 杨涛, 陈思谕, 姚鸿坤, 蒋虎, 周文韬, 2024. 喜马拉雅高海拔山区冰湖溃决时空分异特征. 地球科学, 49(11): 4047-4062. doi: 10.3799/dqkx.2024.083
    Zou Qiang, Zhou Bin, Yang Tao, Chen Siyu, Yao Hongkun, Jiang Hu, Zhou Wentao, 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science, 49(11): 4047-4062. doi: 10.3799/dqkx.2024.083
    Citation: Zou Qiang, Zhou Bin, Yang Tao, Chen Siyu, Yao Hongkun, Jiang Hu, Zhou Wentao, 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science, 49(11): 4047-4062. doi: 10.3799/dqkx.2024.083

    喜马拉雅高海拔山区冰湖溃决时空分异特征

    doi: 10.3799/dqkx.2024.083
    基金项目: 

    第二次青藏高原综合科学考察研究项目 2019QZKK0902

    国家自然科学基金项目 42171085

    中国科学院“西部之光‒西部交叉团队”项目 xbzg-zdsys-202104

    详细信息
      作者简介:

      邹强(1982-),男,研究员,博士,主要从事山地灾害致灾机理与风险研究.ORCID:0000-0003-0029-8532. E-mail:zouqiang@imde.ac.cn

      通讯作者:

      邹强, ORCID: 0000-0003-0029-8532. E-mail:zouqiang@imde.ac.cn

    • 中图分类号: P951

    Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas

    • 摘要: 全球气候变暖导致了喜马拉雅高海拔山区的环境变化,冰湖溃决频繁发生,给下游人民和设施造成了巨大的损失.为了解喜马拉雅高海拔山区冰湖溃决时空分异特征,利用地貌分析、时序分析和气候扰动分析方法,分析了喜马拉雅高海拔山区冰川冰湖变化及环境特征,阐明了喜马拉雅高海拔山区冰湖溃决时空格局和演化规律.结果表明:(1)1980‒2014年间喜马拉雅高海拔山区气温和降水均显著增加,且增加速率北坡大于南坡.受地形与气候条件控制,喜马拉雅山北坡冰川损失更为严重;西喜马拉雅比东、中喜马拉雅冰川损失更为严重.冰湖集中分布在中喜马拉雅地区,而喜马拉雅山南坡分布冰湖相对于北坡更多.1990‒2015年间南坡冰湖数量与面积增幅均大于北坡,新增冰湖海拔高于消失冰湖.(2)20世纪以来,喜马拉雅及周边高海拔山区113个冰湖发生了249次溃决;溃决冰湖集中分布在河流陡河段或极陡河段;气候变暖导致区域冰湖溃决数量呈现非线性增加趋势,1901‒2020年间冰湖溃决存在断点1966+37/‒31年,冰湖溃决对升温速率存在20年尺度的滞后效应.研究结果可为应对气候变化下防灾减灾和跨境灾害风险防控提供科学依据.

       

    • 图  1  喜马拉雅造山带主要构造单元及南北坡3条带状剖面

      Fig.  1.  Main tectonic units of the Himalayan orogenic belt and three belt profiles on the north and south slopes of the Himalayas

      图  2  喜马拉雅高海拔山区2000‒2016年冰川面积和物质平衡变化

      Fig.  2.  Change of glacier area and mass balance in the Himalayas during 2000‒2016

      图  3  2015年喜马拉雅高海拔山区冰湖空间分布

      Fig.  3.  Spatial distribution of glacial lakes in the Himalayas in 2015

      图  4  不同高程分级下喜马拉雅高海拔山区冰湖数量与面积分布

      Fig.  4.  Distribution of the number and area of glacial lakes in the Himalayas under different elevation classifications

      图  5  不同高程分级下喜马拉雅高海拔山区新增和消失冰湖数量与面积统计

      Fig.  5.  Number and area of new and disappeared glacial lakes in the Himalayas under different elevation classifications

      图  6  1980‒2014年喜马拉雅高海拔山区年均气温和年内日最高气温时空变化趋势

      a.年均气温变化;b.年内日最高气温变化;c.年均温变化趋势空间分布,其中黑点代表通过0.05显著性水平检验的栅格;d.年内日最高气温变化趋势空间分布,其中黑点代表通过0.05显著性水平检验的栅格

      Fig.  6.  Spatial and temporal trends of annual mean temperature and annual daily maximum temperature variations in the Himalayas in 1980‒2014

      图  7  1980‒2014年喜马拉雅高海拔山区年降水和年内日最大降水变化时空变化趋势

      a.年降水变化;b.年内日最大降水变化;c.年降水变化趋势空间分布,其中黑点代表通过0.05显著性水平检验的栅格;d.年内日最大降水变化趋势空间分布,其中黑点代表通过0.05显著性水平检验的栅格

      Fig.  7.  Spatial and temporal trends of annual precipitation and annual maximum daily precipitation variation in the Himalayas in 1980‒2014

      图  8  喜马拉雅及周边高海拔山区冰湖溃决空间分布

      Fig.  8.  Spatial distribution of glacial lake outburst in the Himalayas

      图  9  冰湖溃决统计

      a.不同区域;b.不同坝体类型

      Fig.  9.  Statistics of glacial lake outburst

      图  10  Hack剖面及SL/K指数

      Fig.  10.  Hack profiles and SL/K index

      图  11  冰湖溃决频数贝叶斯分段回归

      Fig.  11.  Bayesian segmentation regression of the frequency of glacial lake outburst

      图  12  年平均温度贝叶斯分段回归

      Fig.  12.  Bayesian segmented regression of annual mean temperature

      图  13  200‒2100年年均温时间序列

      Fig.  13.  Annual mean temperature time series in 200‒2100

      图  14  200‒2100年升温速率

      Fig.  14.  Warming rate from 200 to 2100

      图  15  升温速率与历史冰湖溃决频次匹配

      Fig.  15.  Matching the warming rate with the frequency of historical glacial lake outbursts

      表  1  数据资料来源

      Table  1.   Data sources in this study

      数据名称 时间 数据来源 数据格式
      冰湖溃决事件 1901‒2020 文献(Hewitt, 1982; 徐道明和冯清华, 1989; Feng, 1991; Zhang, 1992; Kreutzmann, 1994; Iturrizaga, 2005; 程尊兰等, 2009; Chen et al., 2010; Hewitt and Liu, 2010; Komori et al., 2012; Wang et al., 2012; Liu et al., 2014; 姚晓军等, 2014; Kropáček et al., 2015; Carrivick and Tweed, 2016; Ikeda et al., 2016; Nie et al., 2018; Steiner et al., 2018; Bhambri et al., 2019; Veh et al., 2019; Yin et al., 2019; Bhambri et al., 2020; Byers et al., 2020; Bazai et al., 2021; Zheng et al., 2021; Shrestha et al., 2023; Zhang et al., 2023) 表格
      冰川边界 2010‒2017 GLIMS全球冰川数据库(GLIMS-Consortium, 2005) 面状图层
      冰湖编目 1990、2015 文献(Zheng et al., 2021) 面状图层
      冰川物质平衡变化 2000‒2016 文献(Brun et al., 2017) 30 m$ \times $30 m栅格
      高程 2000 STRM 90 m$ \times $90 m栅格
      逐日气温、降水 1980‒2014 文献(Yatagai et al., 2012) (http://aphrodite.st.hirosaki-u.ac.jp/download/) 0.25$ °\times $0.25$ ° $栅格
      Muti-poxy重建气温 201‒1900 文献(Mann et al., 2008) 表格
      CRU TS V4.05器测气温 1901‒2020 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/ 0.50$ °\times $0.50$ ° $栅格
      NEX-GDDP-CMIP6 SSP245情景预测气温 2021‒2100 文献(Thrasher et al., 2022) 0.25$ °\times $0.25$ ° $栅格
      下载: 导出CSV

      表  2  不同规模分级下1990、2015年喜马拉雅高海拔山区冰湖数量与面积统计

      Table  2.   Number and area of glacial lakes in the Himalayas from 1990 to 2015 under different area classifications

      冰湖规模(km2 2015 1990
      数量 面积 数量 面积
      < 0.02 2 978 42.42 2 723 39.07
      0.02~0.03 1 394 34.29 1 332 32.50
      0.03~0.05 1 364 52.83 1 293 49.85
      0.05~0.10 1 241 87.04 1 180 82.75
      0.10~0.40 999 374.80 892 158.80
      0.40~0.60 95 227.49 91 43.84
      0.60~0.80 42 181.25 50 34.54
      0.80~1.00 28 25.12 20 17.74
      ≥1.00 63 140.17 44 102.58
      下载: 导出CSV

      表  3  新增冰湖与消失冰湖空间位置特征值

      Table  3.   Spatial characteristic values of newly formed glacial lakes and disappeared glacial lakes

      类别 高程分布范围(m) 高程平均值(m) 高程中位数(m)
      新增冰湖 4 600~5 700 5 001.57 5 082
      消失冰湖 4 600~5 500 4 918.75 4 990
      下载: 导出CSV
    • Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432
      Bhambri, R., Hewitt, K., Kawishwar, P., et al., 2019. Ice-Dams, Outburst Floods, and Movement Heterogeneity of Glaciers, Karakoram. Global and Planetary Change, 180: 100-116. https://doi.org/10.1016/j.gloplacha.2019.05.004
      Bhambri, R., Watson, C. S., Hewitt, K., et al., 2020. The Hazardous 2017-2019 Surge and River Damming by Shispare Glacier, Karakoram. Scientific Reports, 10(1): 4685. https://doi.org/10.1038/s41598-020-61277-8
      Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances, 2000-2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/NGEO2999
      Byers, A. C., Chand, M. B., Lala, J., et al., 2020. Reconstructing the History of Glacial Lake Outburst Floods (GLOF) in the Kanchenjunga Conservation Area, East Nepal: An Interdisciplinary Approach. Sustainability, 12(13): 5407. https://doi.org/10.3390/su12135407
      Carrivick, J. L., Tweed, F. S., 2016. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Global and Planetary Change, 144: 1-16. https://doi.org/10.1016/j.gloplacha.2016.07.001
      Chen, Y. N., Xu, C. C., Chen, Y. P., et al., 2010. Response of Glacial-Lake Outburst Floods to Climate Change in the Yarkant River Basin on Northern Slope of Karakoram Mountains, China. Quaternary International, 226(1-2): 75-81. https://doi.org/10.1016/j.quaint.2010.01.003
      Cheng, Z. L., Tian, J. C., Zhang, Z. B., et al., 2009. Debris Flow Induced by Glacial-Lake Break in Southeast Tibet. Earth Science Frontiers, 16(6): 207-214 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.06.023
      Clague, J. J., Evans, S. G., 2000. A Review of Catastrophic Drainage of Moraine-Dammed Lakes in British Columbia. Quaternary Science Reviews, 19(17/18): 1763-1783. https://doi.org/10.1016/S0277-3791(00)00090-1
      Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4): 635-651. https://doi.org/10.1007/s11430-016-5244-x
      Feng, Q. H., 1991. Characteristics of Glacier Outburst Flood in the Yarkant River, Karakorum Mountains. GeoJournal, 25(2): 255-263. https://doi.org/10.1007/BF02682195
      Furian, W., Loibl, D., Schneider, C., 2021. Future Glacial Lakes in High Mountain Asia: An Inventory and Assessment of Hazard Potential from Surrounding Slopes. Journal of Glaciology, 67(264): 653-670. https://doi.org/10.1017/jog.2021.18
      GLIMS-Consortium, 2005. Glims Glacier Database, Version 1. Boulder Colorado, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/https://doi.org/10.7265/N5V98602
      Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal Research of United States Geological Survey, 1(4): 421-429.
      Hewitt, K., 1982. Natural Dams and Outburst Floods of the Karakoram Himalaya. IAHS, 138: 259-269.
      Hewitt, K., Liu, J. S., 2010. Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats. Physical Geography, 31(6): 528-551. https://doi.org/10.2747/0272-3646.31.6.528
      Hubbard, B., Heald, A., Reynolds, J. M., et al., 2005. Impact of a Rock Avalanche on a Moraine-Dammed Proglacial Lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surface Processes and Landforms, 30(10): 1251-1264. https://doi.org/10.1002/esp.1198
      Huber, M. L., Lupker, M., Gallen, S. F., et al., 2020. Timing of Exotic, Far-Traveled Boulder Emplacement and Paleo-Outburst Flooding in the Central Himalayas. Earth Surface Dynamics, 8(3): 769-787. https://doi.org/10.5194/esurf-8-769-2020
      Ikeda, N., Narama, C., Gyalson, S., 2016. Knowledge Sharing for Disaster Risk Reduction: Insights from a Glacier Lake Workshop in the Ladakh Region, Indian Himalayas. Mountain Research and Development, 36(1): 31-40. https://doi.org/10.1659/mrd-journal-d-15-00035.1
      Iturrizaga, L., 2005. New Observations on Present and Prehistorical Glacier-Dammed Lakes in the Shimshal Valley (Karakoram Mountains). Journal of Asian Earth Sciences, 25(4): 545-555. https://doi.org/10.1016/j.jseaes.2004.04.011
      Jóhannesson, T., Raymond, C., Waddington, E., 1989. Time-Scale for Adjustment of Glaciers to Changes in Mass Balance. Journal of Glaciology, 35(121): 355-369. https://doi.org/10.3189/s002214300000928x
      King, O., Bhattacharya, A., Bhambri, R., et al., 2019. Glacial Lakes Exacerbate Himalayan Glacier Mass Loss. Scientific Reports, 9(1): 18145. https://doi.org/10.1038/s41598-019-53733-x
      Komori, J., Koike, T., Yamanokuchi, T., et al., 2012. Glacial Lake Outburst Events in the Bhutan Himalayas. Global Environmental Research, 16: 59-70.
      Kreutzmann, H., 1994. Habitat Conditions and Settlement Processes in the Hindukush-Karakoram. Petermanns Geographische Mitteilungen, 138: 337-356.
      Kropáček, J., Neckel, N., Tyrna, B., et al., 2015. Repeated Glacial Lake Outburst Flood Threatening the Oldest Buddhist Monastery in North-Western Nepal. Natural Hazards and Earth System Sciences, 15(10): 2425-2437. https://doi.org/10.5194/nhess-15-2425-2015
      Li, D., Shangguan, D. H., Wang, X. Y., et al., 2021. Expansion and Hazard Risk Assessment of Glacial Lake Jialong Co in the Central Himalayas by Using an Unmanned Surface Vessel and Remote Sensing. Science of the Total Environment, 784: 147249. https://doi.org/10.1016/j.scitotenv.2021.147249
      Liu, J. J., Cheng, Z. L., Su, P. C., 2014. The Relationship between Air Temperature Fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quaternary International, 321: 78-87. https://doi.org/10.1016/j.quaint.2013.11.023
      Mann, M. E., Zhang, Z. H., Hughes, M. K., et al., 2008. Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia. Proceedings of the National Academy of Sciences of the United States of America, 105(36): 13252-13257. https://doi.org/10.1073/pnas.0805721105
      Maurer, J. M., Schaefer, J. M., Rupper, S., et al., 2019. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Science Advances, 5(6): eaav7266. https://doi.org/10.1126/sciadv.aav7266
      Maussion, F., Scherer, D., Mölg, T., et al., 2014. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate, 27(5): 1910-1927. https://doi.org/10.1175/jcli-d-13-00282.1
      Nie, Y., Liu, Q., Wang, J. D., et al., 2018. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas Based on Remote Sensing Observations and Geomorphological Analysis. Geomorphology, 308: 91-106. https://doi.org/10.1016/j.geomorph.2018.02.002
      Nie, Y., Pritchard, H. D., Liu, Q., et al., 2021. Glacial Change and Hydrological Implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2: 91-106. https://doi.org/10.1038/s43017-020-00124-w
      Nie, Y., Sheng, Y. W., Liu, Q., et al., 2017. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. https://doi.org/10.1016/j.rse.2016.11.008
      Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65: 31-47. https://doi.org/10.1016/S1040-6182(99)00035-X
      Sattar, A., Haritashya, U. K., Kargel, J. S., et al., 2022. Transition of a Small Himalayan Glacier Lake Outburst Flood to a Giant Transborder Flood and Debris Flow. Scientific Reports, 12(1): 12421. https://doi.org/10.1038/s41598-022-16337-6
      Seeber, L., Gornitz, V., 1983. River Profiles along the Himalayan Arc as Indicators of Active Tectonics. Tectonophysics, 92(4): 335-367. https://doi.org/10.1016/0040-1951(83)90201-9
      Shrestha, F., Steiner, J. F., Shrestha, R., et al., 2023. A Comprehensive and Version-Controlled Database of Glacial Lake Outburst Floods in High Mountain Asia. Earth System Science Data, 15(9): 3941-3961. https://doi.org/10.5194/essd-15-3941-2023
      Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., et al., 2018. Brief Communication: The Khurdopin Glacier Surge Revisited-Extreme Flow Velocities and Formation of a Dammed Lake in 2017. The Cryosphere, 12(1): 95-101. https://doi.org/10.5194/tc-12-95-2018
      Thrasher, B., Wang, W. L., Michaelis, A., et al., 2022. NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1): 262. https://doi.org/10.1038/s41597-022-01393-4
      Veh, G., Korup, O., von Specht, S., et al., 2019. Unchanged Frequency of Moraine-Dammed Glacial Lake Outburst Floods in the Himalaya. Nature Climate Change, 9: 379-383. https://doi.org/10.1038/s41558-019-0437-5
      Veh, G., Lützow, N., Kharlamova, V., et al., 2022. Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods. Earth's Future, 10(3): e2021EF002426. https://doi.org/10.1029/2021ef002426
      Wang, J. X., Chen, F., Zhang, M. M., et al., 2022. NAU-Net: A New Deep Learning Framework in Glacial Lake Detection. IEEE Geoscience and Remote Sensing Letters, 19: 2000905. https://doi.org/10.1109/LGRS.2022.3165045
      Wang, W. C., Gao, Y., Iribarren Anacona, P., et al., 2018. Integrated Hazard Assessment of Cirenmaco Glacial Lake in Zhangzangbo Valley, Central Himalayas. Geomorphology, 306: 292-305. https://doi.org/10.1016/j.geomorph.2015.08.013
      Wang, X., Liu, S., Ding, Y., et al., 2012. An Approach for Estimating the Breach Probabilities of Moraine-Dammed Lakes in the Chinese Himalayas Using Remote-Sensing Data. Natural Hazards and Earth System Sciences, 12(10): 3109-3122. https://doi.org/10.5194/nhess-12-3109-2012
      Westoby, M. J., Glasser, N. F., Brasington, J., et al., 2014. Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 134: 137-159. https://doi.org/10.1016/j.earscirev.2014.03.009
      Xu, D. M., Feng, Q. H., 1989. Dangerous Glacial Lake and Outburst Features in Xizang Himalayas. Acta Geographica Sinica, 44(3): 343-351 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1989.03.011
      Xu, H. Q., 2006. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179
      Yatagai, A., Kamiguchi, K., Arakawa, O., et al., 2012. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bulletin of the American Meteorological Society, 93(9): 1401-1415. https://doi.org/10.1175/bams-d-11-00122.1
      Ye, Q. H., Zhang, X. Q., Wang, Y. Z., et al., 2022. Monitoring Glacier Thinning Rate in Rongbuk Catchment on the Northern Slope of Mt. Qomolangma from 1974 to 2021. Ecological Indicators, 144: 109418. https://doi.org/10.1016/j.ecolind.2022.109418
      Yin, B. L., Zeng, J., Zhang, Y. L., et al., 2019. Recent Kyagar Glacier Lake Outburst Flood Frequency in Chinese Karakoram Unprecedented over the Last Two Centuries. Natural Hazards, 95(3): 877-881. https://doi.org/10.1007/s11069-018-3505-7
      Yang, C. D., Wang, X., Wei, J. F., et al., 2019. Chinese Glacial Lake Inventory Based on 3S Technology Method. Acta Geographica Sinica, 74(3): 544-556 (in Chinese with English abstract).
      Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2014. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. Journal of Natural Resources, 29(8): 1377-1390 (in Chinese with English abstract).
      Zhang, D. H., Zhou, G., Li, W., et al., 2023. A Robust Glacial Lake Outburst Susceptibility Assessment Approach Validated by GLOF Event in 2020 in the Nidu Zangbo Basin, Tibetan Plateau. CATENA, 220: 106734. https://doi.org/10.1016/j.catena.2022.106734
      Zhang, T. G., Wang, W. C., Gao, T. G., et al., 2022. An Integrative Method for Identifying Potentially Dangerous Glacial Lakes in the Himalayas. Science of the Total Environment, 806: 150442. https://doi.org/10.1016/j.scitotenv.2021.150442
      Zhang, X. S., 1992. Investigation of Glacier Bursts of the Yarkant River in Xinjiang, China. Annals of Glaciology, 16: 135-139. https://doi.org/10.1017/s0260305500004948
      Zheng, G. X., Allen, S. K., Bao, A. M., et al., 2021. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nature Climate Change, 11: 411-417. https://doi.org/10.1038/s41558-021-01028-3
      Zheng, Y. Y., Chen, X., Gao, S. B., et al., 2024. Discovery and Prospecting Significance of Zhaguopu Li-Nb-Ta Deposit in the Western Himalayan Metallogenic Belt. Earth Science, 49(4): 1555-1564 (in Chinese with English abstract).
      Zhou, B., Zou, Q., Jiang, H., et al., 2022. Research on Climate Change Characteristics and Change of Debris Flow Hazard in the Chuanxi Plateau. Journal of Natural Disasters, 31(4): 241-255 (in Chinese with English abstract).
      Zhou, B., Zou, Q., Jiang, H., et al., 2024. A Novel Framework for Predicting Glacial Lake Outburst Debris Flows in the Himalayas Amidst Climate Change. Science of the Total Environment, 946: 174435. https://doi.org/10.1016/j.scitotenv.2024.174435
      程尊兰, 田金昌, 张正波, 等, 2009. 藏东南冰湖溃决泥石流形成的气候因素与发展趋势. 地学前缘, 16(6): 207-214.
      徐道明, 冯清华, 1989. 西藏喜马拉雅山区危险冰湖及其溃决特征. 地理学报, 44(3): 343-351. doi: 10.3321/j.issn:0375-5444.1989.03.011
      杨成德, 王欣, 魏俊峰, 等, 2019. 基于3S技术方法的中国冰湖编目. 地理学报, 74(3): 544-556.
      姚晓军, 刘时银, 孙美平, 等, 2014.20世纪以来西藏冰湖溃决灾害事件梳理. 自然资源学报, 29(8): 1377-1390.
      郑有业, 陈鑫, 高顺宝, 等, 2024. 喜马拉雅成矿带西段扎果普锂铌钽矿床的发现及其找矿意义. 地球科学, 49(4): 1555-1564. doi: 10.3799/dqkx.2024.035
      周斌, 邹强, 蒋虎, 等, 2022. 川西高原气候变化特征及泥石流动态危险性响应研究. 自然灾害学报, 31(4): 241-255.
    • 加载中
    图(15) / 表(3)
    计量
    • 文章访问数:  503
    • HTML全文浏览量:  119
    • PDF下载量:  74
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-09-14
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回