Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas
-
摘要: 全球气候变暖导致了喜马拉雅高海拔山区的环境变化,冰湖溃决频繁发生,给下游人民和设施造成了巨大的损失.为了解喜马拉雅高海拔山区冰湖溃决时空分异特征,利用地貌分析、时序分析和气候扰动分析方法,分析了喜马拉雅高海拔山区冰川冰湖变化及环境特征,阐明了喜马拉雅高海拔山区冰湖溃决时空格局和演化规律.结果表明:(1)1980‒2014年间喜马拉雅高海拔山区气温和降水均显著增加,且增加速率北坡大于南坡.受地形与气候条件控制,喜马拉雅山北坡冰川损失更为严重;西喜马拉雅比东、中喜马拉雅冰川损失更为严重.冰湖集中分布在中喜马拉雅地区,而喜马拉雅山南坡分布冰湖相对于北坡更多.1990‒2015年间南坡冰湖数量与面积增幅均大于北坡,新增冰湖海拔高于消失冰湖.(2)20世纪以来,喜马拉雅及周边高海拔山区113个冰湖发生了249次溃决;溃决冰湖集中分布在河流陡河段或极陡河段;气候变暖导致区域冰湖溃决数量呈现非线性增加趋势,1901‒2020年间冰湖溃决存在断点1966+37/‒31年,冰湖溃决对升温速率存在20年尺度的滞后效应.研究结果可为应对气候变化下防灾减灾和跨境灾害风险防控提供科学依据.Abstract: Global warming has led to environmental changes in the Himalayas, and glacial lake outburst has occurred frequently, having inflicted significant losses upon downstream communities and infrastructure. To understand the spatio-temporal characteristics of Himalayan glacial lake outbursts, it employed geomorphic analysis, time series analysis, and climate perturbation analysis. These methods allowed us to analyze the spatial differentiation and variation characteristics of glaciers, glacial lakes and environments in the Himalayas, and to reveal the evolution patterns of glacial lake outbursts' spatio-temporal distribution in the region. The results show follows: (1) Temperature and precipitation has increased considerably in the Himalayan region between 1980 and 2014, with a more significant increase rate observed on the northern than southern sides. Due to the influence of topography and climate, the northern slope of Himalayas and western Himalayas experienced more severe glacier mass loss. Glacial lakes were predominantly concentrated in the central Himalayas and the southern slope of Himalayas, and the number and area of glacial lakes on the southern slopes have increased more than those on the northern slopes during 1990‒2015, and the new glacial lakes are distributed at a higher elevation than the disappearing ones. (2) Since the 20th century, 249 glacial lake outburst events have occurred in 113 glacial lakes in the Himalayan region and its surrounding areas. The distribution of those glacial lakes is predominantly concentrated in major rivers' steep or extremely steep sections. The number of regional glacial lake outbursts has shown a nonlinear increase trend driven by climate change. The occurrence frequency of glacial lake outburst disasters has a breakpoint of 1966+37/-31 from 1901 to 2020. Furthermore, there is a lag effect of approximately 20 years between the warming rate and the occurrence of glacial lake outburst floods. These research findings can provide a scientific basis for addressing climate change adaptation, disaster risk reduction, and cross-border disaster risk management.
-
Key words:
- glacial lake outburst /
- differentiation pattern /
- climate change /
- Himalayas /
- environmental geology /
- hazards
-
表 1 数据资料来源
Table 1. Data sources in this study
表 2 不同规模分级下1990、2015年喜马拉雅高海拔山区冰湖数量与面积统计
Table 2. Number and area of glacial lakes in the Himalayas from 1990 to 2015 under different area classifications
冰湖规模(km2) 2015 1990 数量 面积 数量 面积 < 0.02 2 978 42.42 2 723 39.07 0.02~0.03 1 394 34.29 1 332 32.50 0.03~0.05 1 364 52.83 1 293 49.85 0.05~0.10 1 241 87.04 1 180 82.75 0.10~0.40 999 374.80 892 158.80 0.40~0.60 95 227.49 91 43.84 0.60~0.80 42 181.25 50 34.54 0.80~1.00 28 25.12 20 17.74 ≥1.00 63 140.17 44 102.58 表 3 新增冰湖与消失冰湖空间位置特征值
Table 3. Spatial characteristic values of newly formed glacial lakes and disappeared glacial lakes
类别 高程分布范围(m) 高程平均值(m) 高程中位数(m) 新增冰湖 4 600~5 700 5 001.57 5 082 消失冰湖 4 600~5 500 4 918.75 4 990 -
Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432 Bhambri, R., Hewitt, K., Kawishwar, P., et al., 2019. Ice-Dams, Outburst Floods, and Movement Heterogeneity of Glaciers, Karakoram. Global and Planetary Change, 180: 100-116. https://doi.org/10.1016/j.gloplacha.2019.05.004 Bhambri, R., Watson, C. S., Hewitt, K., et al., 2020. The Hazardous 2017-2019 Surge and River Damming by Shispare Glacier, Karakoram. Scientific Reports, 10(1): 4685. https://doi.org/10.1038/s41598-020-61277-8 Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances, 2000-2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/NGEO2999 Byers, A. C., Chand, M. B., Lala, J., et al., 2020. Reconstructing the History of Glacial Lake Outburst Floods (GLOF) in the Kanchenjunga Conservation Area, East Nepal: An Interdisciplinary Approach. Sustainability, 12(13): 5407. https://doi.org/10.3390/su12135407 Carrivick, J. L., Tweed, F. S., 2016. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Global and Planetary Change, 144: 1-16. https://doi.org/10.1016/j.gloplacha.2016.07.001 Chen, Y. N., Xu, C. C., Chen, Y. P., et al., 2010. Response of Glacial-Lake Outburst Floods to Climate Change in the Yarkant River Basin on Northern Slope of Karakoram Mountains, China. Quaternary International, 226(1-2): 75-81. https://doi.org/10.1016/j.quaint.2010.01.003 Cheng, Z. L., Tian, J. C., Zhang, Z. B., et al., 2009. Debris Flow Induced by Glacial-Lake Break in Southeast Tibet. Earth Science Frontiers, 16(6): 207-214 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.06.023 Clague, J. J., Evans, S. G., 2000. A Review of Catastrophic Drainage of Moraine-Dammed Lakes in British Columbia. Quaternary Science Reviews, 19(17/18): 1763-1783. https://doi.org/10.1016/S0277-3791(00)00090-1 Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4): 635-651. https://doi.org/10.1007/s11430-016-5244-x Feng, Q. H., 1991. Characteristics of Glacier Outburst Flood in the Yarkant River, Karakorum Mountains. GeoJournal, 25(2): 255-263. https://doi.org/10.1007/BF02682195 Furian, W., Loibl, D., Schneider, C., 2021. Future Glacial Lakes in High Mountain Asia: An Inventory and Assessment of Hazard Potential from Surrounding Slopes. Journal of Glaciology, 67(264): 653-670. https://doi.org/10.1017/jog.2021.18 GLIMS-Consortium, 2005. Glims Glacier Database, Version 1. Boulder Colorado, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/https://doi.org/10.7265/N5V98602 Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal Research of United States Geological Survey, 1(4): 421-429. Hewitt, K., 1982. Natural Dams and Outburst Floods of the Karakoram Himalaya. IAHS, 138: 259-269. Hewitt, K., Liu, J. S., 2010. Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats. Physical Geography, 31(6): 528-551. https://doi.org/10.2747/0272-3646.31.6.528 Hubbard, B., Heald, A., Reynolds, J. M., et al., 2005. Impact of a Rock Avalanche on a Moraine-Dammed Proglacial Lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surface Processes and Landforms, 30(10): 1251-1264. https://doi.org/10.1002/esp.1198 Huber, M. L., Lupker, M., Gallen, S. F., et al., 2020. Timing of Exotic, Far-Traveled Boulder Emplacement and Paleo-Outburst Flooding in the Central Himalayas. Earth Surface Dynamics, 8(3): 769-787. https://doi.org/10.5194/esurf-8-769-2020 Ikeda, N., Narama, C., Gyalson, S., 2016. Knowledge Sharing for Disaster Risk Reduction: Insights from a Glacier Lake Workshop in the Ladakh Region, Indian Himalayas. Mountain Research and Development, 36(1): 31-40. https://doi.org/10.1659/mrd-journal-d-15-00035.1 Iturrizaga, L., 2005. New Observations on Present and Prehistorical Glacier-Dammed Lakes in the Shimshal Valley (Karakoram Mountains). Journal of Asian Earth Sciences, 25(4): 545-555. https://doi.org/10.1016/j.jseaes.2004.04.011 Jóhannesson, T., Raymond, C., Waddington, E., 1989. Time-Scale for Adjustment of Glaciers to Changes in Mass Balance. Journal of Glaciology, 35(121): 355-369. https://doi.org/10.3189/s002214300000928x King, O., Bhattacharya, A., Bhambri, R., et al., 2019. Glacial Lakes Exacerbate Himalayan Glacier Mass Loss. Scientific Reports, 9(1): 18145. https://doi.org/10.1038/s41598-019-53733-x Komori, J., Koike, T., Yamanokuchi, T., et al., 2012. Glacial Lake Outburst Events in the Bhutan Himalayas. Global Environmental Research, 16: 59-70. Kreutzmann, H., 1994. Habitat Conditions and Settlement Processes in the Hindukush-Karakoram. Petermanns Geographische Mitteilungen, 138: 337-356. Kropáček, J., Neckel, N., Tyrna, B., et al., 2015. Repeated Glacial Lake Outburst Flood Threatening the Oldest Buddhist Monastery in North-Western Nepal. Natural Hazards and Earth System Sciences, 15(10): 2425-2437. https://doi.org/10.5194/nhess-15-2425-2015 Li, D., Shangguan, D. H., Wang, X. Y., et al., 2021. Expansion and Hazard Risk Assessment of Glacial Lake Jialong Co in the Central Himalayas by Using an Unmanned Surface Vessel and Remote Sensing. Science of the Total Environment, 784: 147249. https://doi.org/10.1016/j.scitotenv.2021.147249 Liu, J. J., Cheng, Z. L., Su, P. C., 2014. The Relationship between Air Temperature Fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quaternary International, 321: 78-87. https://doi.org/10.1016/j.quaint.2013.11.023 Mann, M. E., Zhang, Z. H., Hughes, M. K., et al., 2008. Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia. Proceedings of the National Academy of Sciences of the United States of America, 105(36): 13252-13257. https://doi.org/10.1073/pnas.0805721105 Maurer, J. M., Schaefer, J. M., Rupper, S., et al., 2019. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Science Advances, 5(6): eaav7266. https://doi.org/10.1126/sciadv.aav7266 Maussion, F., Scherer, D., Mölg, T., et al., 2014. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate, 27(5): 1910-1927. https://doi.org/10.1175/jcli-d-13-00282.1 Nie, Y., Liu, Q., Wang, J. D., et al., 2018. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas Based on Remote Sensing Observations and Geomorphological Analysis. Geomorphology, 308: 91-106. https://doi.org/10.1016/j.geomorph.2018.02.002 Nie, Y., Pritchard, H. D., Liu, Q., et al., 2021. Glacial Change and Hydrological Implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2: 91-106. https://doi.org/10.1038/s43017-020-00124-w Nie, Y., Sheng, Y. W., Liu, Q., et al., 2017. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. https://doi.org/10.1016/j.rse.2016.11.008 Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65: 31-47. https://doi.org/10.1016/S1040-6182(99)00035-X Sattar, A., Haritashya, U. K., Kargel, J. S., et al., 2022. Transition of a Small Himalayan Glacier Lake Outburst Flood to a Giant Transborder Flood and Debris Flow. Scientific Reports, 12(1): 12421. https://doi.org/10.1038/s41598-022-16337-6 Seeber, L., Gornitz, V., 1983. River Profiles along the Himalayan Arc as Indicators of Active Tectonics. Tectonophysics, 92(4): 335-367. https://doi.org/10.1016/0040-1951(83)90201-9 Shrestha, F., Steiner, J. F., Shrestha, R., et al., 2023. A Comprehensive and Version-Controlled Database of Glacial Lake Outburst Floods in High Mountain Asia. Earth System Science Data, 15(9): 3941-3961. https://doi.org/10.5194/essd-15-3941-2023 Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., et al., 2018. Brief Communication: The Khurdopin Glacier Surge Revisited-Extreme Flow Velocities and Formation of a Dammed Lake in 2017. The Cryosphere, 12(1): 95-101. https://doi.org/10.5194/tc-12-95-2018 Thrasher, B., Wang, W. L., Michaelis, A., et al., 2022. NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1): 262. https://doi.org/10.1038/s41597-022-01393-4 Veh, G., Korup, O., von Specht, S., et al., 2019. Unchanged Frequency of Moraine-Dammed Glacial Lake Outburst Floods in the Himalaya. Nature Climate Change, 9: 379-383. https://doi.org/10.1038/s41558-019-0437-5 Veh, G., Lützow, N., Kharlamova, V., et al., 2022. Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods. Earth's Future, 10(3): e2021EF002426. https://doi.org/10.1029/2021ef002426 Wang, J. X., Chen, F., Zhang, M. M., et al., 2022. NAU-Net: A New Deep Learning Framework in Glacial Lake Detection. IEEE Geoscience and Remote Sensing Letters, 19: 2000905. https://doi.org/10.1109/LGRS.2022.3165045 Wang, W. C., Gao, Y., Iribarren Anacona, P., et al., 2018. Integrated Hazard Assessment of Cirenmaco Glacial Lake in Zhangzangbo Valley, Central Himalayas. Geomorphology, 306: 292-305. https://doi.org/10.1016/j.geomorph.2015.08.013 Wang, X., Liu, S., Ding, Y., et al., 2012. An Approach for Estimating the Breach Probabilities of Moraine-Dammed Lakes in the Chinese Himalayas Using Remote-Sensing Data. Natural Hazards and Earth System Sciences, 12(10): 3109-3122. https://doi.org/10.5194/nhess-12-3109-2012 Westoby, M. J., Glasser, N. F., Brasington, J., et al., 2014. Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 134: 137-159. https://doi.org/10.1016/j.earscirev.2014.03.009 Xu, D. M., Feng, Q. H., 1989. Dangerous Glacial Lake and Outburst Features in Xizang Himalayas. Acta Geographica Sinica, 44(3): 343-351 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1989.03.011 Xu, H. Q., 2006. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179 Yatagai, A., Kamiguchi, K., Arakawa, O., et al., 2012. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bulletin of the American Meteorological Society, 93(9): 1401-1415. https://doi.org/10.1175/bams-d-11-00122.1 Ye, Q. H., Zhang, X. Q., Wang, Y. Z., et al., 2022. Monitoring Glacier Thinning Rate in Rongbuk Catchment on the Northern Slope of Mt. Qomolangma from 1974 to 2021. Ecological Indicators, 144: 109418. https://doi.org/10.1016/j.ecolind.2022.109418 Yin, B. L., Zeng, J., Zhang, Y. L., et al., 2019. Recent Kyagar Glacier Lake Outburst Flood Frequency in Chinese Karakoram Unprecedented over the Last Two Centuries. Natural Hazards, 95(3): 877-881. https://doi.org/10.1007/s11069-018-3505-7 Yang, C. D., Wang, X., Wei, J. F., et al., 2019. Chinese Glacial Lake Inventory Based on 3S Technology Method. Acta Geographica Sinica, 74(3): 544-556 (in Chinese with English abstract). Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2014. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. Journal of Natural Resources, 29(8): 1377-1390 (in Chinese with English abstract). Zhang, D. H., Zhou, G., Li, W., et al., 2023. A Robust Glacial Lake Outburst Susceptibility Assessment Approach Validated by GLOF Event in 2020 in the Nidu Zangbo Basin, Tibetan Plateau. CATENA, 220: 106734. https://doi.org/10.1016/j.catena.2022.106734 Zhang, T. G., Wang, W. C., Gao, T. G., et al., 2022. An Integrative Method for Identifying Potentially Dangerous Glacial Lakes in the Himalayas. Science of the Total Environment, 806: 150442. https://doi.org/10.1016/j.scitotenv.2021.150442 Zhang, X. S., 1992. Investigation of Glacier Bursts of the Yarkant River in Xinjiang, China. Annals of Glaciology, 16: 135-139. https://doi.org/10.1017/s0260305500004948 Zheng, G. X., Allen, S. K., Bao, A. M., et al., 2021. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nature Climate Change, 11: 411-417. https://doi.org/10.1038/s41558-021-01028-3 Zheng, Y. Y., Chen, X., Gao, S. B., et al., 2024. Discovery and Prospecting Significance of Zhaguopu Li-Nb-Ta Deposit in the Western Himalayan Metallogenic Belt. Earth Science, 49(4): 1555-1564 (in Chinese with English abstract). Zhou, B., Zou, Q., Jiang, H., et al., 2022. Research on Climate Change Characteristics and Change of Debris Flow Hazard in the Chuanxi Plateau. Journal of Natural Disasters, 31(4): 241-255 (in Chinese with English abstract). Zhou, B., Zou, Q., Jiang, H., et al., 2024. A Novel Framework for Predicting Glacial Lake Outburst Debris Flows in the Himalayas Amidst Climate Change. Science of the Total Environment, 946: 174435. https://doi.org/10.1016/j.scitotenv.2024.174435 程尊兰, 田金昌, 张正波, 等, 2009. 藏东南冰湖溃决泥石流形成的气候因素与发展趋势. 地学前缘, 16(6): 207-214. 徐道明, 冯清华, 1989. 西藏喜马拉雅山区危险冰湖及其溃决特征. 地理学报, 44(3): 343-351. doi: 10.3321/j.issn:0375-5444.1989.03.011 杨成德, 王欣, 魏俊峰, 等, 2019. 基于3S技术方法的中国冰湖编目. 地理学报, 74(3): 544-556. 姚晓军, 刘时银, 孙美平, 等, 2014.20世纪以来西藏冰湖溃决灾害事件梳理. 自然资源学报, 29(8): 1377-1390. 郑有业, 陈鑫, 高顺宝, 等, 2024. 喜马拉雅成矿带西段扎果普锂铌钽矿床的发现及其找矿意义. 地球科学, 49(4): 1555-1564. doi: 10.3799/dqkx.2024.035 周斌, 邹强, 蒋虎, 等, 2022. 川西高原气候变化特征及泥石流动态危险性响应研究. 自然灾害学报, 31(4): 241-255. -