• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东海盆地丽水凹陷T85构造变革界面的厘定及其成因模式探讨

    蒋一鸣 吴路路 覃军 唐贤君 张彦振 李泽宇 沈传波

    蒋一鸣, 吴路路, 覃军, 唐贤君, 张彦振, 李泽宇, 沈传波, 2024. 东海盆地丽水凹陷T85构造变革界面的厘定及其成因模式探讨. 地球科学, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084
    引用本文: 蒋一鸣, 吴路路, 覃军, 唐贤君, 张彦振, 李泽宇, 沈传波, 2024. 东海盆地丽水凹陷T85构造变革界面的厘定及其成因模式探讨. 地球科学, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084
    Jiang Yiming, Wu Lulu, Qin Jun, Tang Xianjun, Zhang Yanzhen, Li Zheyu, Shen Chuanbo, 2024. Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin. Earth Science, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084
    Citation: Jiang Yiming, Wu Lulu, Qin Jun, Tang Xianjun, Zhang Yanzhen, Li Zheyu, Shen Chuanbo, 2024. Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin. Earth Science, 49(12): 4450-4464. doi: 10.3799/dqkx.2024.084

    东海盆地丽水凹陷T85构造变革界面的厘定及其成因模式探讨

    doi: 10.3799/dqkx.2024.084
    基金项目: 

    国家自然科学基金项目 42372181

    国家自然科学基金项目 42302171

    湖北省自然科学创新群体项目 2021CFA031

    中国“十四•五”重大科技项目“近海重点潜在富烃洼陷评价技术” KJGG2022-0301

    详细信息
      作者简介:

      蒋一鸣(1983-),男,高级工程师,主要从事海洋油气勘探开发研究. E-mail:jiangym2@cnooc.com.cn

      通讯作者:

      沈传波,教授,博士生导师,主要从事石油勘探构造分析研究. ORCID:0000-0001-5641-9714. E-mail:cbshen@cug.edu.cn

    • 中图分类号: P618

    Deciphering Tectonic Mechanism and Origin of T85 Horizon in Lishui Depression, East China Sea Basin

    • 摘要: 为了揭示东海盆地丽水凹陷T85界面上、下裂陷演化的差异,阐明构造变革的成因,研究基于钻井标定的高精度三维地震数据,精细刻画了丽水凹陷的盆地构型、断层活动性和沉降作用时空变化特征.结果表明:丽水凹陷T85界面是一个角度不整合界面,界面之下发育断控的楔形地层构型,而界面之上变为拗陷作用控制的碟形地层构型;断陷期,凹陷沉降作用向西迁移,而进入断拗期,凹陷沉降作用开始逐步向东迁移.结合区域动力学背景,研究建立了T85界面构造变革的成因模型,即构造迁移引起的热沉降模型和下地壳韧性变形的浅层响应模型.这一成果对裂陷盆地裂陷演化和成盆机制研究具有重要借鉴意义.

       

    • 图  1  东海盆地大地构造位置(修改自Wu et al.,2018a及所附参考文献) (a,b)与丽水凹陷构造单元图(c)

      Fig.  1.  Tectonic location of the East China Sea basin (modified after Wu et al., 2018a, and references therein) (a, b) and structure element map of the Lishui depression (c)

      图  2  丽水凹陷构造-地层柱状图

      Fig.  2.  Tectono-stratigraphic column of the Lishui depression

      图  3  丽水凹陷Tg(a)与T85(b)界面时间域构造图

      Fig.  3.  Time-structure map of the Tg (a) and T85 (b) horizons in the Lishui depression

      图  4  T85界面测井响应(a)与地震反射特征(b)

      Fig.  4.  Characteristics of the T85 horizons in well logs (a) and seismic profiles (b)

      图  5  丽水凹陷北部凹陷构型地震剖面图

      Fig.  5.  Seismic section crossing the northern Lishui depression showing the rift architecture

      图  6  丽水凹陷中部凹陷构型地震剖面图

      Fig.  6.  Seismic section crossing the central Lishui depression showing the rift architecture

      图  7  丽水凹陷断拗层盆地构型立体图

      Fig.  7.  3D architecture of the faulted-sagged sequences in the Lishui depression

      图  8  丽水凹陷不同时期控洼断层位移统计直方图

      Fig.  8.  Major fault displacements for each rift stage in the Lishui depression

      图  9  丽水凹陷不同时期地层时间域厚度

      Fig.  9.  Time thickness maps for each formation in the Lishui depression

      图  10  构造迁移引起的热沉降模型

      Fig.  10.  Schematic diagrams showing the influence of tectonic migration on thermal subsidence within the Lishui depression

      图  11  下地壳韧性变形的浅层响应模型

      Fig.  11.  Schematic diagram showing the influence of ductile deformation of lower crust on the syn-rift sagging with in the Lishui depression

    • Bell, R. E., Jackson, C. A. L., Whipp, P. S., et al., 2014. Strain Migration during Multiphase Extension: Observations from the Northern North Sea. Tectonics, 33(10): 1936-1963. https://doi.org/10.1002/2014tc003551
      Claringbould, J. S., Bell, R. E., Jackson, C. A. L., et al., 2017. Pre-Existing Normal Faults have Limited Control on the Rift Geometry of the Northern North Sea. Earth and Planetary Science Letters, 475: 190-206. https://doi.org/10.1016/j.epsl.2017.07.014
      Cowie, P. A., Underhill, J. R., Behn, M. D., et al., 2005. Spatio-Temporal Evolution of Strain Accumulation Derived from Multi-Scale Observations of Late Jurassic Rifting in the Northern North Sea: A Critical Test of Models for Lithospheric Extension. Earth and Planetary Science Letters, 234(3/4): 401-419. https://doi.org/10.1016/j.epsl.2005.01.039
      do Amarante, F. B., Kuchle, J., Jackson, C. A. L., et al., 2024. The Cryptic Stratigraphic Record of the Syn- to Post-Rift Transition in the Offshore Campos Basin, SE Brazil. Basin Research, 36(1): e12820. https://doi.org/10.1111/bre.12820
      Gao, D. Z., Zhao, J. H., Bo, Y. L., et al., 2004. A Profile Study of Gravitative-Magnetic and Seismic Comprehensive Survey in the East China Sea. Chinese Journal of Geophysics, 47(5): 854-862 (in Chinese with English abstract).
      Huismans, R., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473: 74-78. https://doi.org/10.1038/nature09988
      Huismans, R., Beaumont, C., 2014. Rifted Continental Margins: The Case for Depth-Dependent Extension. Earth and Planetary Science Letters, 407: 148-162. https://doi.org/10.1016/j.epsl.2014.09.032
      Jiang, Y. M., He, X. J., Tang, X. J., et al., 2019. Material Composition of Diaoyu Islands Folded Zone and Reanalysis of Eastern Boundary of Prototype Basin of Xihu Sag in East China Sea. Earth Science, 44(3): 773-783 (in Chinese with English abstract).
      Karner, G. D., Gambôa, L. A. P., 2007. Timing and Origin of the South Atlantic Pre-Salt Sag Basins and Their Capping Evaporites. Geological Society, London, Special Publications, 285(1): 15-35. 10.1144/sp285.2
      Lei, C., Ye, J. R., Yin, S. Y., et al., 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372(in Chinese with English abstract).
      Li, L., Zhao, L., Zhong, D. L., 2013. Cenozoic Continental Intraplate Extension Basin-Mountain Coupling and Continental Collision: Evidences from Bohai Bay Basin, Its Peripheral Mountain and Tancheng-Lujiang Fault. Chinese Journal of Geology (Scientia Geologica Sinica), 48(2): 406-418(in Chinese with English abstract).
      Liu, H., Xu, C. H., Shen, W. L., et al., 2021. Tectonic Evolution Characteristics of Lishui Sag, East China Sea Shelf Basin. Petroleum Geology & Experiment, 43(6): 949-957, 985(in Chinese with English abstract).
      Liu, J. S., Xu, H. Z., Jiang, Y. M., et al., 2020. Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin. Acta Geologica Sinica, 94(3): 675-691 (in Chinese with English abstract).
      Ma, Q., Qin, J., Tang, X. J., et al., 2024. The Structural Characteristics and Sand Controlling Models of Xianqiao Low Uplift in Lishui Sag, East China Sea Shelf Basin. Journal of Yangtze University (Natural Science Edition), 21(1): 10-18, 85(in Chinese with English abstract).
      McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821x(78)90071-7
      Nottvedt, A., Gabrielsen, R. H., Steel, R. J., 1995. Tectonostratigraphy and Sedimentary Architecture of Rift Basins, with Reference to the Northern North Sea. Marine and Petroleum Geology, 12(8): 881-901. https://doi.org/10.1016/0264-8172(95)98853-w
      Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., et al., 2019. The Influence of Structural Inheritance and Multiphase Extension on Rift Development, the Northern North Sea. Tectonics, 38(12): 4099-4126. https://doi.org/10.1029/2019tc005756
      Privat, A. M. L J., Hodgson, D. M., Jackson, C. A. L., et al., 2021. Evolution from Syn-Rift Carbonates to Early Post-Rift Deep-Marine Intraslope Lobes: The Role of Rift Basin Physiography on Sedimentation Patterns. Sedimentology, 68(6): 2563-2605. https://doi.org/10.1111/sed.12864
      Qi, J. F., Yang, Q., 2007. Structural Styles of Extensional Basins and Their Main Controlling Factors of Dynamics. Oil & Gas Geology, 28(5): 634-640 (in Chinese with English abstract).
      Ramos, A., Pedrera, A., García-Senz, J., et al., 2023. Seismic Evidence for Ductile Necking of the Mid-Lower Crust beneath the Columbrets Basin (Western Mediterranean). Terra Nova, 35(5): 404-412. https://doi.org/10.1111/ter.12664
      Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361(in Chinese with English abstract).
      Suo, Y. H, Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618(in Chinese with English abstract).
      Wang, G. H., 2016. "Double Intense Effect" of Tectonic Activity and Its Control on Deposition in Dongying Formation, Nanpu Sag (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      White, N., McKenzie, D., 1988. Formation of the "Steer's Head" Geometry of Sedimentary Basins by Differential Stretching of the Crust and Mantle. Geology, 16(3): 250-253. https://doi.org/10.1130/0091-7613(1988)0160250: fotssh>2.3.co;2 doi: 10.1130/0091-7613(1988)0160250:fotssh>2.3.co;2
      Whiting, L., Haughton, P. D. W., Shannon, P. M., 2021. From Rifting to Hyperextension: Upper Jurassic-Lower Cretaceous Tectono-Stratigraphy of the Porcupine Basin, Irish Atlantic Margin. Basin Research, 33(2): 1662-1696. https://doi.org/10.1111/bre.12530
      Wu, L. L., Mei, L. F., Paton, D. A., et al., 2020. Late Cretaceous-Cenozoic Intraplate Extension and Tectonic Transitions in Eastern China: Implications for Intraplate Geodynamic Origin. Marine and Petroleum Geology, 117: 104379. https://doi.org/10.1016/j.marpetgeo.2020.104379
      Wu, L. L., Mei, L. F., Liu, Y. S., et al., 2018a. The Stratigraphic and Structural Record of the Cretaceous Jianghan Basin, Central China: Implications for Initial Rifting Processes and Geodynamics. Cretaceous Research, 90: 21-39. https://doi.org/10.1016/j.cretres.2018.03.028
      Wu, L. L., Mei, L. F., Paton, D. A., et al., 2018b. Deciphering the Origin of the Cenozoic Intracontinental Rifting and Volcanism in Eastern China Using Integrated Evidence from the Jianghan Basin. Gondwana Research, 64: 67-83. https://doi.org/10.1016/j.gr.2018.07.004
      Wu, L. L., Shen, C. B., Paton, D. A., et al., 2022. The Nature of the Late Syn-Rift Sag Basin (LSSB). Terra Nova, 34(6): 512-522. https://doi.org/10.1111/ter.12616
      Wu, L. L., Shen, C. B., Paton, D. A., et al., 2023. A Rift-Scale View at Strain Partitioning during Multiphase Rifting: Insights from the Hailar Basin, Northeast Asia. Basin Research, 35(4): 1362-1385. https://doi.org/10.1111/bre.12757
      Wu, Z. Q., Zhang, X. H., Meng, X. J., et al., 2021. A Profile Study of OBS Deep Geological Detect in the East China Sea. Chinese Science Bulletin, 66(21): 2728-2744(in Chinese).
      Xie, Y. H., Ye, Y. F., Huang, X. G., et al., 2024. Development Direction of Offshore Seismic Exploration Technology. Earth Science, 49(7): 2301-2314(in Chinese with English abstract).
      Xin, Y. F., Guo, X. W., Wen, Z. H., et al., 2015. Cenozoic Shallow Tectonic Migration and the Deep Dynamic Mechanism in the Bohai Sea. Progress in Geophysics, 30(4): 1535-1543 (in Chinese with English abstract).
      Xu, W., Qiu, N. S., Li, Y., 2019. Evolution of the Cenozoic Thermal Lithosphere of the Jiyang Sub-Basin, Bohai Bay Basin: Implications for the Lithospheric Thinning Mechanism. Tectonophysics, 773: 228229. https://doi.org/10.1016/j.tecto.2019.228229
      Zhang, T., Zhang, J. P., Zhang, S. L., et al., 2015. Tectonic Characteristics and Evolution of the West Depression Belt of the East China Sea Shelf Basin. Marine Geology Frontiers, 31(5): 1-7(in Chinese with English abstract).
      Zhao, R., Chen, S., Wang, H., et al., 2019. Intense Faulting and Downwarping of Nanpu Sag in the Bohai Bay Basin, Eastern China: Response to the Cenozoic Stagnant Pacific Slab. Marine and Petroleum Geology, 109: 819-838. https://doi.org/10.1016/j.marpetgeo.2019.06.034
      Zhao, Z. G., Wang, P., Qi, P., et al., 2016. Regional Background and Tectonic Evolution of East China Sea Basin. Earth Science, 41(3): 546-554 (in Chinese with English abstract).
      Zhou, X. H., Jiang, Y. M., Tang, X. J., 2019. Tectonic Setting, Prototype Basin Evolution and Exploration Enlightenment of Xihu Sag in East China Sea Basin. China Offshore Oil and Gas, 31(3): 1-10(in Chinese with English abstract).
      Zhu, W. L., Wu, J. F., Zhang, G. C., et al., 2015. Discrepancy Tectonic Evolution and Petroleum Exploration in China Offshore Cenozoic Basins. Earth Science Frontiers, 22(1): 88-101(in Chinese with English abstract).
      Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth-Science Reviews, 190: 89-111. https://doi.org/10.1016/j.earscirev.2018.12.009
      高德章, 赵金海, 薄玉玲, 等, 2004. 东海重磁地震综合探测剖面研究. 地球物理学报, 47(5): 854-862.
      蒋一鸣, 何新建, 唐贤君, 等, 2019. 钓鱼岛隆褶带物质构成及东海西湖凹陷原型盆地东边界再认识. 地球科学, 44(3): 773-783. doi: 10.3799/dqkx.2018.293
      雷闯, 叶加仁, 殷世艳, 等, 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束: 来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011
      李理, 赵利, 钟大赉, 2013. 新生代大陆板内伸展盆—山耦合与大陆碰撞效应: 以渤海湾盆地济阳坳陷、周缘隆起及边界断裂构造演化为例. 地质科学, 48(2): 406-418.
      刘欢, 许长海, 申雯龙, 等, 2021. 东海陆架盆地丽水凹陷构造演化特征. 石油实验地质, 43(6): 949-957, 985.
      刘金水, 许怀智, 蒋一鸣, 等, 2020. 东海盆地中、新生代盆架结构与构造演化. 地质学报, 94(3): 675-691.
      马清, 覃军, 唐贤君, 等, 2024. 东海盆地丽水凹陷仙桥低凸起构造特征及其控砂模式. 长江大学学报(自然科学版), 21(1): 10-18, 85.
      漆家福, 杨桥, 2007. 伸展盆地的结构形态及其主控动力学因素. 石油与天然气地质, 28(5): 634-640.
      任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618.
      王观宏, 2016. 南堡凹陷东营组堆积期构造活动的"双强效应"及其对沉积的控制(博士学位论文). 武汉: 中国地质大学.
      吴志强, 张训华, 孟祥君, 等, 2021. 东海OBS深部地学探测断面及其地质意义. 科学通报, 66(21): 2728–2744.
      谢玉洪, 叶云飞, 黄小刚, 等, 2024. 海洋地震勘探技术发展方向. 地球科学, 49(7): 2301-2314. doi: 10.3799/dqkx.2024.070
      信延芳, 郭兴伟, 温珍河, 等, 2015. 渤海新生代盆地浅部构造迁移特征及其深部动力学机制探讨. 地球物理学进展, 30(4): 1535-1543.
      张田, 张建培, 张绍亮, 等, 2015. 东海陆架盆地西部坳陷带构造特征及演化. 海洋地质前沿, 31(5): 1-7.
      赵志刚, 王鹏, 祁鹏, 等, 2016. 东海盆地形成的区域地质背景与构造演化特征. 地球科学, 41(3): 546-554. doi: 10.3799/dqkx.2016.045
      周心怀, 蒋一鸣, 唐贤君, 2019. 西湖凹陷成盆背景、原型盆地演化及勘探启示. 中国海上油气, 31(3): 1-10.
      朱伟林, 吴景富, 张功成, 等, 2015. 中国近海新生代盆地构造差异性演化及油气勘探方向. 地学前缘, 22(1): 88-101.
    • 加载中
    图(11)
    计量
    • 文章访问数:  284
    • HTML全文浏览量:  88
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-28
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回