Geological Characteristics and Their Coupling Relationship between Structural Evolution and Reservoir Formation of Paleozoic Oil Reservoirs in the Southern Section of the Western Edge of the Ordos Basin
-
摘要: 基于鄂尔多斯盆地西缘冲断带南段古生界油藏勘探取得的地质、地震和分析化验资料,以2022年发现的首口古生界工业油流井YT3井为依据,结合乌拉力克组、羊虎沟组两套含油层系构造‒沉积背景,开展油源对比,定量恢复构造演化过程,系统分析古生界油藏成因与成藏‒构造耦合关系,构建非常规油藏成藏模式,预测评价勘探有利区.结果表明:(1)下古生界乌拉力克组原油是“单源”的,来自于同层位的泥质烃源岩,上古生界羊虎沟组油砂是“双源”的,为乌拉力克组泥质烃源岩和羊虎沟组煤系烃源岩共同贡献,两套烃源岩均具有生油能力,相比之下乌拉力克组烃源岩生油潜力较大;(2)构造平衡剖面法定量恢复揭示,“海西‒印支期差异沉降作用”是导致银洞子、沙井子冲断席乌拉力克组烃源岩“西高东低”成熟度差异以及油气相态有所不同的根本原因;(3)源储配置构建非常规油藏“双源双储”立体成藏模式,乌拉力克组发育“自生自储式”油藏,羊虎沟组发育“下生上储式”+“源内”油藏;(4)地质‒地震多属性融合预测区内乌拉力克组泥页岩有利勘探面积400 km2、羊虎沟组有利勘探面积300 km2,体积法估算西缘南段上、下古生界油藏总资源潜力1.0×108 t,是古生界油藏勘探的现实目标接替区.Abstract: Based on the geological, seismic, and analytical data obtained from the exploration of Paleozoic oil reservoirs in the southern section of the western margin thrust belt in the Ordos basin and based on the first Paleozoic industrial oil flow Well YT3 discovered in 2022, combined with the tectonic sedimentary background of the Wulalike Formation and Yanghugou Formation oil-bearing series, this study conducts a comparison of Paleozoic oil sources, quantitatively restores the structural evolution process, systematically analyzes the genesis and reservoir-structure coupling relationship of Paleozoic oil reservoirs, constructs unconventional oil reservoir accumulation models, predicts and evaluates favorable exploration areas.The study shows follows. (1) The crude oil of the Lower Paleozoic Wulalike Formation is "single source" from the same layer of mudstone source rocks, and the oil sand of the Upper Paleozoic Yanghugou Formation is "dual source", contributing to the joint contribution of the Wulalike Formation mudstone source rocks and the Yanghugou Formation coal-bearing source rocks. Both sets of source rocks have the ability to generate oil, and in comparison, the Wulalike Formation source rocks have a greater potential for oil generation. (2) The construction quantitative restoration of the balanced profile method reveals that the differential settlement effect during the Hercynian-Indosinian period is the fundamental reason for the differences in maturity of the source rocks of the Wulalike Formation in the Yindongzi and Shajingzi thrust faults, which is high in the west and low in the east, as well as the differences in oil and gas phases. (3) A "dual source and dual storage" stereoscopic reservoir formation model of unconventional oil reservoirs is constructed through the study of source and reservoir configuration relationship. The Wulalike Formation has developed "self generating and self storing" oil reservoirs, while the Yanghugou Formation has developed "bottom generating and upper storing" and "source in" oil reservoirs. (4) The geological seismic multi-attribute fusion prediction area has a favorable exploration area of 400 km2 for the Wulalike Formation shale and 300 km2 for the Yanghugou Formation.The volume method estimates the total resource potential of the Upper and Lower Paleozoic oil reservoirs in the southern section of the western margin to be 1.0×108 t, which is a realistic target replacement area for Paleozoic reservoir exploration.
-
图 1 鄂尔多斯盆地西缘南段构造位置、乌拉力克组地层平面分布与古生界油气勘探生储盖组合
a.鄂尔多斯盆地西缘冲断带南段工区位置示意;b.鄂尔多斯盆地西缘南段乌拉力克组断层与地层厚度分布;c.鄂尔多斯盆地西缘冲断带南段古生界油气勘探生储盖组合
Fig. 1. Structural location of the southern section of the western margin of the Ordos basin, planar distribution of the Wulalike Formation strata, and source reservoir cap combination diagram of Paleozoic oil and gas exploration
图 5 鄂尔多斯盆地西缘南段古生界油藏烃源岩类型、成熟度及沉积环境判识
a.乌拉力克组烃源岩Tmax-降解率;b.乌拉力克组、羊虎沟组烃源岩最大热解峰温频率分布直方图;c.羊虎沟组烃源岩HI-Tmax岩石热解参数;d.羊虎沟组烃源岩C19+20-C21-C23三元相图
Fig. 5. Identification of source rock types, maturity, and sedimentary environment of Paleozoic oil reservoirs in the southern section of the western margin of the Ordos basin
图 6 鄂尔多斯盆地西缘南段古生界油藏含油储层岩石学及储集空间类型特征
a.灰黑色硅质页岩,笔石发育,乌拉力克组,YT3井,4 106.13 m;b.灰黑色含云泥岩,见滑塌现象,乌拉力克组,YT2井,3 926.1 m;c.少量白云石溶蚀产生粒内溶孔,乌拉力克组,YT2井,3 861.18 m,扫描电镜;d.自生微晶石英可见晶间微孔,乌拉力克组,YT1井,1 499.55 m,扫描电镜;e.硅质页岩中见有机质孔,乌拉力克组,YT2井,3 877.68 m,扫描电镜;f.见莓球状黄铁矿及残余片状缝隙形态,乌拉力克组,YT3井,4 101.17 m,扫描电镜;g.硅质页岩中见开启微裂缝,乌拉力克组,YT3井,4 096.85 m,正交偏光;h.褐灰色油斑中砂岩,羊虎沟组,YT6井,3 047.21 m;i.石英砂岩,粒间孔,羊虎沟组,YT3井,2 287.4 m,单偏光;j.长石岩屑砂岩,长石溶孔,羊虎沟组,YT6井,3 029.77 m,单偏光;k.凝灰质溶孔,少量晶间孔,羊虎沟组,YT2井,2 341.20 m,单偏光;l.胶结粒间孔隙的板片状高岭石集合体发育晶间孔缝,羊虎沟组,YT6井,3 061.40 m,扫描电镜
Fig. 6. Petrography and reservoir space type characteristics of Paleozoic oil reservoirs in the southern section of the western margin of the Ordos basin
图 12 鄂尔多斯盆地西缘南段乌拉力克组、羊虎沟组包裹体均一温度分布直方图与油气充注史
a.乌拉力克组盐水包裹体均一温度分布直方图;b.乌拉力克组成藏期次;c.羊虎沟组盐水包裹体均一温度分布直方图;d.羊虎沟组成藏期次
Fig. 12. Histogram of uniform temperature distribution and oil and gas filling history of the Wulalike Formation and Yanghugou Formation inclusions in the southern section of the western margin of the Ordos basin
表 1 鄂尔多斯盆地西缘南段古生界油藏烃源岩地球化学特征
Table 1. Geochemical characteristics of source rocks in Paleozoic oil reservoirs in the southern section of the western margin of the Ordos basin
层位 岩性 氯仿沥青“A”族组成 有机质丰度 有机质成熟度 干酪根类型 烃源岩形成环境 生烃母
质类型饱和烃(%) 芳烃
(%)非烃+沥青质(%) TOC(%) 生烃潜量S1+S2
(mg/g)Ro(%) Tmax(℃) 乌拉力克组 泥
页
岩57.46~75.37 4.67~14.68 1.31~28.33 0.14~1.24 0.04~2.93 0.92~1.15 430~552 Ⅰ-Ⅱ1
型为主海相 腐泥型
为主66.18/7 10.23/7 11.32/7 0.82/38 1.31/38 1.02/9 465.42/38 羊虎沟组 暗色泥岩 16.71~46.57 10.55~31.18 21.18~58.90 0.09~15.26 10.21~146.81 0.46~0.69 428~448 Ⅱ1型
为主海陆过
渡相腐殖腐泥
型为主29.71/17 20.68/17 43.17/17 6.06/41 35.48/41 0.55/9 438.43/15 煤 6.76~46.60 10.29~29.26 31.25~64.06 19.31~85.97 1.65~264.31 0.44~0.74 409~552 Ⅱ1-Ⅱ2
型为主31.47/18 17.71/18 43.60/18 71.30/25 163.94/25 0.57/12 440.64/14 注:/后为样品个数. 表 2 鄂尔多斯盆地西缘南段古生界油藏资源量计算
Table 2. Calculation of resource quantity of Paleozoic oil reservoirs in the southern section of the western margin of the Ordos basin
层位 含油面积
S(km2)油层厚度
H(m)储层孔隙度φ(%) 储层含油饱和度So(%) 地面原油密度
ρ(g/cm3)原油体积系数B 总地质资源量Q(102t) 总地质资源量
Q(108t)乌拉力克组 400 30 1.13 45 0.81 1.20 411 885 0.412 羊虎沟组 300 15 5.00 40 0.80 1.20 600 000 0.600 合计 1.012 注:其中Q.总资源量,102t;S.含油面积,km2;H.油层厚度,m;φ.储层孔隙度,%;So.含油饱和度,%;ρ.原油密度,t/m3(通常看作g/cm3);B.原油体积系数. -
Bao, H. P., Shao, D. B., Wu, C. Y., et al., 2018. The Structural Characteritics of South Segment of Western Ordos Thrust Belt, and Its Influence on Gas Reservoir Forming of Plaeozoic. Chinese Journal of Geology (Scientia Geologica Sinica), 53(2): 434-457 (in Chinese with English abstract). Chen, H. H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150 (in Chinese with English abstract). Chen, J. P., Zhao, C. Y., He, Z. H., et al., 1997. Criteria for Evaluating the Hydrocarbon Generating Potential of Organic Matter in Coal Measures. Petroleum Exploration and Development, 24(1): 1-5 (in Chinese with English abstract). Chen, Z. X., Jia, D., Zhang, Q., et al., 2005. Balanced Cross-Section Analysis of the Fold-Thrust Belt of the Longmen Mountains. Acta Geologica Sinica, 79(1): 38-45 (in Chinese with English abstract). Guo, W., Dong, D. Z., Li, M., et al., 2021. Quartz Genesis in Organic-Rich Shale and Its Indicative Significance to Reservoir Quality: A Case Study on the First Submember of the First Member of Lower Silurian Longmaxi Formation in the Southeastern Sichuan Basin and Its Periphery. Natural Gas Industry, 41(2): 65-74 (in Chinese with English abstract). Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract). Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4" Edition). Chinese Journal of Geophysics, 59(8): 2892-2910(in Chinese with English abstract). Karlsen, D. A., Nedkvitne, T., Larter, S. R., et al., 1993. Hydrocarbon Composition of Authigenic Inclusions: Application to Elucidation of Petroleum Reservoir Filling History. Geochimica et Cosmochimica Acta, 57(15): 3641-3659. https://doi.org/10.1016/ 0016-7037(93)90146-N doi: 10.1016/0016-7037(93)90146-N Kodner, R. B., Pearson, A., Summons, R. E., et al., 2008. Sterols in Red and Green Algae: Quantification, Phylogeny, and Relevance for the Interpretation of Geologic Steranes. Geobiology, 6(4): 411-420. https://doi.org/10.1111/j.1472-4669.2008.00167.x Liu, C. Y., Wang, J. Q., Zhang, D. D., et al., 2021. Genesis of Rich Hydrocarbon Resources and Their Occurrence and Accumulation Characteristics in the Ordos Basin. Oil & Gas Geology, 42(5): 1011-1029 (in Chinese with English abstract). Liu, D. H., Fu, J. M., Xiao, X. M., et al., 2005. Origin and Appraisal of Coal Derived Gas and Oil. Petroleum Exploration and Development, 32(4): 137-141 (in Chinese with English abstract). Liu, Y. M., Kong, Z. P., 1984. Prospect of Oil and Gas of Thrust Belt in Western Margin in Ordos Basin. Petroleum Exploration and Development, 11(1): 33-40 (in Chinese with English abstract). Luo, X., Li, J., Hu, G. Y., et al., 2003. An Experiment of Generation and Expulsion of Oil from the Jurassic Coals and Its Implication of Coal Generated Oil in the Ordos Basin. Experimental Petroleum Geology, 25(1): 76-80 (in Chinese with English abstract). Ma, H., 1986. Pyrolysis Gc of the Permo-Carboniferous Rocks at Western Margin of Ordos Basin. Petroleum Geology & Expeximent, 8(3): 295-298 (in Chinese with English abstract). Ma, Z. R., Bai, H. F., Liu, B. X., et al., 2013. Lithofacies Palaeogeography of the Middle-Late Ordovician Kelimoli and Wulalike Ages in Western Ordos Area. Journal of Palaeogeography, 15(6): 751-764 (in Chinese with English abstract). Niu, X. B., Feng, S. B., Liu, F., et al., 2013. Microscopic Occurrence of Oil in Tight Sandstones and Its Relation with Oil Sources-A Case Study from the Upper Triassic Yanchang Formation, Ordos Basin. Oil & Gas Geology, 34(3): 288-293 (in Chinese with English abstract). Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, New York. Su, P., Hu, S. Z., Li, S. F., et al., 2023. Control of Strike-Slip Faults on Crude Oil Properties: Exemplified by Jinghe Oilfield in South Ordos Basin. Earth Science, 48(6): 2310-2323 (in Chinese with English abstract). Volkman, J. K., Barrett, S. M., Blackburn, S. I., 1999. Eustigmatophyte Microalgae are Potential Sources of C29 Sterols, C22-C28 N-Alcohols and C28-C32 N-Alkyl Diols in Freshwater Environments. Organic Geochemistry, 30(5): 307-318. https://doi.org/10.1016/S0146-6380(99)00009-1 Wang, J., Guo, Q. L., Zhao, C. L., et al., 2023. Potentials and Prospects of Shale Oil-Gas Resources in Major Basins of China. Acta Petrolei Sinica, 44(12): 2033-2044(in Chinese with English abstract). doi: 10.7623/syxb202312003 Wang, Y. J., Cai, C., Xiao, Y., et al., 2021. Geochemical Characteristics and Oil-Source Correlation of Crude Oils of Buried Hills in Shulu Sag, Jizhong Depression. Earth Science, 46(10): 3629-3644 (in Chinese with English abstract). Wei, J. Y., Wang, H. W., Liu, G., et al., 2023. Sedimentary Characteristics of Carboniferous Yanghugou Formation in Thrust Belt on the Western Margin of Ordos Basin. Lithologic Reservoirs, 35(5): 120-130 (in Chinese with English abstract). Wu, L. Y., Gu, X. Z., 1986. The Application of Pyrolysis Technique in Source Rock Research. Acta Petrolei Sinica, 7(2): 13-19 (in Chinese with English abstract). Xi, S. L., Wei, J. Y., Zhang, C. L., et al., 2023. Discovery and Significance of Marine Shale Oil Exploration in Ordos Basin. Acta Petrolei Sinica, 44 (2): 253-269 (in Chinese with English abstract). Xiao, H., Li, M. J., Yang, Z., et al., 2019. Distribution Patterns and Geochemical Implications of C19-C23 Tricyclic Terpanes in Source Rocks and Crude Oils Occurring in Various Depositional Environments. Geochimica, 48(2): 161-170 (in Chinese with English abstract). Yang, F., Wang, Q., Hao, F., et al., 2020. Biomarker Characteristics of Source Rock and Oil-Correlation in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 45(1): 263-275 (in Chinese with English abstract). Yang, H., Niu, X. B., Xu, L. M., et al., 2016a. Exploration Potential of Shale Oil in Chang 7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 43(4): 511-520 (in Chinese with English abstract). Yang, H., Zhang, W. Z., Peng, A. P., et al., 2016b. Oil Detailed Classification and Oil-Source Correlation of Mesozoic Lacustrine Oil in Ordos Basin. Journal of Earth Sciences and Environment, 38(2): 196-205 (in Chinese with English abstract). Yang, H., Tao, J. Q., Ouyang, Z. J., et al., 2011. Structural Characteristics and Forming Mechanism in the Western Margin of the Ordos Basin. Journal of Northwest University (Natural Science Edition), 41(5): 863-868 (in Chinese with English abstract). Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015. Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil. Petroleum Exploration and Development, 42 (5): 555-565 (in Chinese with English abstract). Yang, Z., Zou, C. N., 2019. "Exploring Petroleum Inside Source Kitchen": Connotation and Prospects of Source Rock Oil and Gas. Petroleum Exploration and Development, 46(1): 173-184 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30017-5 Yang, Z., Zou, C. N., 2022. Orderly "Symbiotic Enrichment"of Conventional & Unconventional Oil and Gas Discussion on Theory and Technology of Conventional & Unconventional Petroleum Geology. Acta Geologica Sinica, 96(5): 1635-1653 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.008 Zhang, J. D., 2007. The Most New Applications of Balanced Cross-Sections Technique in Oil and Gas Exploration in China and Overseas. Progress in Geophysics, 22(6): 1856-1861 (in Chinese with English abstract). Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188 (in Chinese with English abstract). Zhao, H. G., Liu, C. Y., Wang, F., et al., 2006. Structural Division and Characteristics in Western Edge of Ordos Basin. Oil & Gas Geology, 27(2): 173-179 (in Chinese with English abstract). Zhou, Z. S., Ma, C. L., Hu, W. W., et al., 2008. Application of Balanced Cross-Section Technique in Seismic Data Interpretation. Coal Geology & Exploration, 36(3): 67-70 (in Chinese with English abstract). Zou, C. N., Yang, Z., He, D. B., et al., 2018. Theory, Technology and Prospects of Conventional and Unconventional Natural Gas. Petroleum Exploration and Development, 45(4): 575-587 (in Chinese with English abstract). Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Earth Science, 48(6): 2376-2397 (in Chinese with English abstract). Zou, C. N., Yang, Z., Zhu, R. K., et al., 2015. Progress in China's Unconventional Oil & Gas Exploration and Development and Theoretical Technologies. Acta Geologica Sinica, 89(6): 979-1007 (in Chinese with English abstract). 包洪平, 邵东波, 武春英, 等, 2018. 鄂尔多斯西缘冲断带南段构造特征及其对古生界天然气成藏演化的影响. 地质科学, 53(2): 434-457. 陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. 陈建平, 赵长毅, 何忠华, 1997. 煤系有机质生烃潜力评价标准探讨. 石油勘探与开发, 24(1): 1-5. 陈竹新, 贾东, 张惬, 等, 2005. 龙门山前陆褶皱冲断带的平衡剖面分析. 地质学报, 79(1): 38-45. 郭雯, 董大忠, 李明, 等, 2021. 富有机质页岩中石英的成因及对储层品质的指示意义: 以四川盆地东南部及周缘龙马溪组龙一1亚段为例. 天然气工业, 41(2): 65-74. 贾承造, 郑民, 张永峰, 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136. 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. 刘池洋, 王建强, 张东东, 等, 2021. 鄂尔多斯盆地油气资源丰富的成因与赋存‒成藏特点. 石油与天然气地质, 42(5): 1011-1029. 刘德汉, 傅家谟, 肖贤明, 等, 2005. 煤成烃的成因与评价. 石油勘探与开发, 32(4): 137-141. 刘友民, 孔志平, 1984. 鄂尔多斯盆地西缘逆冲带油气远景展望. 石油勘探与开发, 11(1): 33-40. 罗霞, 李剑, 胡国艺, 等, 2003. 鄂尔多斯盆地侏罗系煤生、排油能力实验及其形成煤成油可能性探讨. 石油实验地质, 25(1): 76-80. 马晖, 1986. 鄂尔多斯盆地西缘石炭‒二叠系生油岩的热解色谱分析. 石油实验地质, 8(3): 295-298. 马占荣, 白海峰, 刘宝宪, 等, 2013. 鄂尔多斯西部地区中‒晚奥陶世克里摩里期‒乌拉力克期岩相古地理. 古地理学报, 15(6): 751-764. 牛小兵, 冯胜斌, 刘飞, 等, 2013. 低渗透致密砂岩储层中石油微观赋存状态与油源关系: 以鄂尔多斯盆地三叠系延长组为例. 石油与天然气地质, 34(3): 288-293. 苏鹏, 胡守志, 李水福, 等, 2023. 走滑断裂对原油性质的控制作用: 以鄂尔多斯盆地南部泾河油田为例. 地球科学, 48(6): 2310-2323. doi: 10.3799/dqkx.2023.056 王建, 郭秋麟, 赵晨蕾, 等, 2023. 中国主要盆地页岩油气资源潜力及发展前景. 石油学报, 44(12): 2033-2044. 王元杰, 蔡川, 肖阳, 等, 2021. 冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比. 地球科学, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030 魏嘉怡, 王红伟, 刘刚, 等, 2023. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征. 岩性油气藏, 35(5): 120-130. 邬立言, 顾信章, 1986. 热解技术在我国生油岩研究中的应用. 石油学报, 7(2): 13-19. 席胜利, 魏嘉怡, 张才利, 等, 2023. 鄂尔多斯盆地海相页岩油勘探发现及意义. 石油学报, 44(2): 253-269. 肖洪, 李美俊, 杨哲, 等, 2019. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义. 地球化学, 48(2): 161-170. 杨帆, 王权, 郝芳, 等, 2020. 冀中坳陷饶阳凹陷北部烃源岩生物标志物特征与油源对比. 地球科学, 45(1): 263-275. doi: 10.3799/dqkx.2018.374 杨华, 牛小兵, 徐黎明, 等, 2016a. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力. 石油勘探与开发, 43(4): 511-520. 杨华, 张文正, 彭平安, 等, 2016b. 鄂尔多斯盆地中生界湖相油型油的精细划分与油源对比. 地球科学与环境学报, 38(2): 196-205. 杨华, 陶家庆, 欧阳征健, 等, 2011. 鄂尔多斯盆地西缘构造特征及其成因机制. 西北大学学报(自然科学版), 41(5): 863-868. 杨智, 侯连华, 陶士振, 等, 2015. 致密油与页岩油形成条件与"甜点区" 评价. 石油勘探与开发, 42(5): 555-565. 杨智, 邹才能, 2019. "进源找油": 源岩油气内涵与前景. 石油勘探与开发, 46(1): 173-184. 杨智, 邹才能, 2022. 论常规‒非常规油气有序"共生富集": 兼论常规‒非常规油气地质学理论技术. 地质学报, 96(5): 1635-1653. 张进铎, 2007. 平衡剖面技术在国内外油气勘探中的最新应用. 地球物理学进展, 22(6): 1856-1861. 张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103 赵红格, 刘池洋, 王峰, 等, 2006. 鄂尔多斯盆地西缘构造分区及其特征. 石油与天然气地质, 27(2): 173-179 周竹生, 马翠莲, 胡文武, 等, 2008. 平衡剖面技术在地震资料解释中的应用. 煤田地质与勘探, 36(3): 67-70. 邹才能, 杨智, 何东博, 等, 2018. 常规‒非常规天然气理论、技术及前景. 石油勘探与开发, 45(4): 575-587. 邹才能, 杨智, 张国生, 等, 2023. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091 邹才能, 杨智, 朱如凯, 等, 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979-1007. -