Response of Gross Primary Productivity to Different Types of Drought across Various Spatial and Temporal Scales from 1982 to 2018
-
摘要:
为准确估测不同类型的干旱对植被生态系统的影响,基于Mann-Kendall、Pearson相关分析等方法,利用1982-2018年的总初级生产力(GPP)数据集以及不同时间尺度的干旱指数(包括scPDSI、SPEI和SPI),定量评估了我国植被GPP对不同时空尺度干旱类型的响应.结果显示,我国干旱化趋势最显著的区域是内蒙古,区域平均的scPDSI、SPEI和SPI分别以每年0.039、0.026和0.004的速率下降.不同区域的GPP与干旱指数的相关性和滞后效应差异显著.华东和华南地区对农业干旱的响应最为显著,平均滞后时间为4~6个月.内蒙古、西北和西南地区对气象干旱的响应更为剧烈,平均滞后时间为9~11个月.华中和华东地区对气象干旱的响应周期较短,为0~3个月.
Abstract:To describe the evolution characteristics of different types of drought and accurately estimate their impact on ecosystems, based on methods such as Mann-Kendall and Pearson correlation coefficients, using the gross primary productivity (GPP) dataset from 1982 to 2018 and concurrent drought indices at different time scales (including scPDSI, SPEI, and SPI), a quantitative assessment was conducted on the response mechanism of the GPP of vegetation in China to different spatiotemporal scales of drought types. The results show that the most significant trend of drought intensification in China is in Inner Mongolia, with the regional averaged scPDSI, SPEI, and SPI declining at an annual rate of 0.039, 0.026, and 0.004, respectively. Further analysis indicates that there are significant differences in the correlation and lag effects between GPP and monthly drought indices in various regions of China. The response to the agricultural drought index is most pronounced in the East China and South China regions, with an average lag time of 4 to 6 months. In contrast, the Inner Mongolia, Northwest, and Southwest regions have a more intense response to meteorological drought, with an average lag time of 9 to 11 months, while the Central and East China regions have a shorter response cycle to meteorological drought, only 0 to 3 months.
-
图 5 中国1982-2018年夏季平均的GPP (a), scPDSI (b), SPEI-01 (c), SPEI-12 (d), SPI-01 (e), SPI-12 (f)的变异系数(标准差)的空间分布
Fig. 5. Spatial distribution of the coefficient of variation (CV) or standard deviation in changes for the JJA averages for GPP (a), scPDSI (b), SPEI-01 (c), SPEI-12 (d), SPI-01 (e), SPI-12 (f) from 1982 to 2018 over China
表 1 不同干旱指数的干湿等级划分
Table 1. Classification of wet and dry grades
等级 SPI SPEI 类型 等级 scPDSI 类型 1 ≥2 ≥2 重涝 1 ≥4 极端湿润 2 [1.5, 2) [1.5, 2) 中涝 2 [3, 4) 严重湿润 3 [1, 1.5) [1, 1.5) 轻涝 3 [2, 3) 中等湿润 4 (-1, 1) (-1, 1) 正常 4 [1, 2) 轻微湿润 5 (-1.5, -1) (-1.5, -1) 轻旱 5 (-1, 1) 正常 6 (-2, -1.5) (-2, -1.5) 中旱 6 (-2, -1] 轻微干旱 7 ≤-2 ≤-2 重旱 7 (-3, -2] 中等干旱 8 (-4, -3] 严重干旱 9 ≤-4 极端干旱 -
Barichivich, J., Osborn, T. J., Harris, I., et al., 2022. Monitoring Global Drought Using the Self-Calibrating Palmer Drought Severity Index [in "State of the Climate in 2021"]. Bulletin of the American Meteorological Society, 103(8): S31-S33. https://doi.org/10.1175/BAMS-D-22-0092.1 Beguería, S., Vicente-Serrano, S. M., Angulo-Martínez, M., 2010. A Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and Impacts. Bulletin of the American Meteorological Society, 91(10): 1351-1356. https://doi.org/10.1175/2010bams2988.1 Beguería, S., Vicente-Serrano, S. M., Reig, F., et al., 2014. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. International Journal of Climatology, 34(10): 3001-3023. https://doi.org/10.1002/joc.3887 Campbell, J. E., Berry, J. A., Seibt, U., et al., 2017. Large Historical Growth in Global Terrestrial Gross Primary Production. Nature, 544(7648): 84-87. https://doi.org/10.1038/nature22030 Douville, H., Raghavan, K., Renwick, J., et al., 2021. Water Cycle Changes. In: Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge. Du, W. L., Sun, S. B., Wu, Y. T., et al., 2020. The Responses of Gross Primary Production to Drought in Terrestrial Ecosystems of China during 1980-2013. Chinese Journal of Ecology, 39(1): 23-35 (in Chinese with English abstract). Fu, C. B., An, Z. S., Guo, W. D., 2005. Evolution of life-Supporting Environment in Our Nation and the Predictive Study of Aridification in Northern China (Ⅰ): Main Scientific Issues and Achievements. Advance in Earth Sciences, 20(11): 1157-1167 (in Chinese with English abstract). Fu, C. B., Ma, Z. G., 2023. Progress and Reflection on the Study of Interdecadal Changes in Dry and Wet Conditions in Global Arid and Semiarid Regions. Transactions of Atmospheric Sciences, 46(4): 481-490 (in Chinese with English abstract). Ge, J., Huang, X., Zan, B. L., et al., 2023. Local Surface Cooling from Afforestation Amplified by Lower Aerosol Pollution. Nature Geoscience, 16(9): 781-788. https://doi.org/10.1038/s41561-023-01251-x Guan, X. D., Huang, J. P., 2024. Constructing Semi-Arid Ecological Barriers to Prevent Desertification. The Innovation Geoscience, 2(2): 100067. https://doi.org/10.59717/j.xinn-geo.2024.100067 Guan, X. D., Shi, R., Kong, X. N., et al., 2018. An Overview of Researches on Land-Atmosphere Interaction over Semi-Arid Region under Global Changes. Advances in Earth Science, 33(10): 995-1004 (in Chinese with English abstract). Gu, T. H., Guan, X. D., Huang, J. P., et al., 2023. The Turning of Ecological Change in the Yellow River Basin. Hydrological Processes, 37(12): e15055. https://doi.org/10.1002/hyp.15055 Gu, X. L., Guo, E. L., Yin, S., et al., 2021. Assessment of the Cumulative and Lagging Effects of Drought on Vegetation Growth in Inner Mongolia. Acta Agrestia Sinica, 29(6): 1301-1310 (in Chinese with English abstract). Harris, I., Jones, P. D., Osborn, T. J., et al., 2014. Updated High-Resolution Grids of Monthly Climatic Observations-The CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642. https://doi.org/10.1002/joc.3711 Jiang, D. B., Wang, X. X., 2021. A Brief Interpretation of Drought Change from IPCC Sixth Assessment Report. Transactions of Atmospheric Sciences, 44(5): 650-653 (in Chinese with English abstract). Li, B., Su, H. B., Chen, F., et al., 2013. The Changing Characteristics of Drought in China from 1982 to 2005. Natural Hazards, 68(2): 723-743. https://doi.org/10.1007/s11069-013-0649-3 Liang, S. L., Chen, X. N., Chen, Y., et al., 2023. Updates on Global LAnd Surface Satellite (GLASS) Products Suite. National Remote Sensing Bulletin, 27(4): 831-856 (in Chinese with English abstract). doi: 10.11834/jrs.20232462 Lu, J. T., Peng, J., Li, G. Y., et al., 2023. Assessment of Time-Lag and Cumulative Effects of Drought on Gross Primary Productivity of Grassland in Central Asia from 1982 to 2018. Acta Ecologica Sinica, 43(23): 9745-9757 (in Chinese with English abstract). McKee, T. B., Doesken, N. J., Kleist, J., 1993. The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, Anaheim. Palmer, W. C., 1965. Meteorological Drought. Office of Climatology Research Paper 45, Weather Bureau, Washington, D. C. Piao, S. L., Sitch, S., Ciais, P., et al., 2013. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to Trends. Global Change Biology, 19(7): 2117-2132. https://doi.org/10.1111/gcb.12187 Sun, B. F., Zhao, H., Wang, X. K., 2016. Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration. Chinese Geographical Science, 26(2): 270-282. https://doi.org/10.1007/s11769-016-0804-3 Teuling, A. J., Seneviratne, S. I., Stöckli, R., et al., 2010. Contrasting Response of European Forest and Grassland Energy Exchange to Heatwaves. Nature Geoscience, 3(10): 722-727. https://doi.org/10.1038/ngeo950 van der Schrier, G., Barichivich, J., Briffa, K. R., et al., 2013. A ScPDSI-Based Global Data Set of Dry and Wet Spells for 1901-2009. Journal of Geophysical Research: Atmospheres, 118(10): 4025-4048. https://doi.org/10.1002/jgrd.50355 Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7): 1696-1718. https://doi.org/10.1175/2009JCLI2909.1 von Buttlar, J., Zscheischler, J., Rammig, A., et al., 2018. Impacts of Droughts and Extreme-Temperature Events on Gross Primary Production and Ecosystem Respiration: A Systematic Assessment across Ecosystems and Climate Zones. Biogeosciences, 15(5): 1293-1318. https://doi.org/10.5194/bg-15-1293-2018 Wang, C. P., Huang, M. T., Zhai, P. M., 2022. New Progress and Enlightenment on Different Types of Drought Changes from IPCC Sixth Assessment Report. Acta Meteorologica Sinica, 80(1): 168-175 (in Chinese with English abstract). Wang, H. Y., He, B., Zhang, Y. F., et al., 2018. Response of Ecosystem Productivity to Dry/Wet Conditions Indicated by Different Drought Indices. Science of the Total Environment, 612: 347-357. https://doi.org/10.1016/j.scitotenv.2017.08.212 Wang, T. H., Wang, X. F., Zhang, S. L., et al., 2024. Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions. Earth Science, 49(5): 1907-1919 (in Chinese with English abstract). Wells, N., Goddard, S., Hayes, M. J., 2004. A Self-Calibrating Palmer Drought Severity Index. Journal of Climate, 17(12): 2335-2351. https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 Wu, X., Liu, H., Li, X., et al., 2018. Differentiating Drought Legacy Effects on Vegetation Growth over the Temperate Northern Hemisphere. Global Change Biology, 24: 504-516. https://doi/10.1111/gcb.13920 doi: 10.1111/gcb.13920 Xu, H. J., Wang, X. P., 2016. Effects of Altered Precipitation Regimes on Plant Productivity in the Arid Region of Northern China. Ecological Informatics, 31: 137-146. https://doi.org/10.1016/j.ecoinf.2015.12.003 Xu, M., Guan, Z. Y., Cai, Q., 2020. Spatial and Temporal Evolution Features of Cooling Extremes in China during Winter Half Year from 1960 to 2015. Journal of the Meteorological Sciences, 40(6): 733-743 (in Chinese with English abstract). Yuan, W. P., Zheng, Y., Piao, S. L., et al., 2019. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth. Science Advances, 5(8): eaax1396. https://doi.org/10.1126/sciadv.aax1396 Yuan, X., Wang, Y. M., Zhou, S. Y., et al., 2024. Multiscale Causes of the 2022 Yangtze Mega-Flash Drought under Climate Change. Scientia Sinica Terrae, 54(8): 2690-2702 (in Chinese with English abstract). doi: 10.1360/SSTe-2024-0007 Yue, S. R., Wang, L. C., Cao, Q., et al., 2024. Vegetation Dynamics and Potential Factors Driving Mechanisms in the Tarim River Basin. Earth Science, 49(9): 3399-3410 (in Chinese with English abstract). Zhang, S. Z., Zhu, X. F., Liu, T. T., et al., 2022. Response of Gross Primary Production to Drought under Climate Change in Different Vegetation Regions of China. Acta Ecologica Sinica, 42(8): 3429-3440 (in Chinese with English abstract). Zhao, H. C., 2020. Study on the Temporal and Spatial Changes of Different Types of Drought and Their Relationship (Dissertation). Northwest A & F University, Xianyang, 56-72 (in Chinese with English abstract). Zheng, Y., Shen, R. Q., Wang, Y. W., et al., 2020. Improved Estimate of Global Gross Primary Production for Reproducing Its Long-Term Variation, 1982-2017. Earth System Science Data, 12(4): 2725-2746. https://doi.org/10.5194/essd-12-2725-2020 Zou, H., Gao, G. Y., Fu, B. J., 2016. The Relationship between Grassland Ecosystem and Soil Water in Arid and Semiarid Areas: A Review. Acta Ecologica Sinica, 36(11): 3127-3136 (in Chinese with English abstract). 杜文丽, 孙少波, 吴云涛, 等, 2020. 1980—2013年中国陆地生态系统总初级生产力对干旱的响应特征. 生态学杂志, 39(1): 23-35. 符淙斌, 安芷生, 郭维栋, 2005. 我国生存环境演变和北方干旱化趋势预测研究(Ⅰ): 主要研究成果. 地球科学进展, 20(11): 1157-1167. 符淙斌, 马柱国, 2023. 全球干旱/半干旱区年代尺度干湿变化研究的进展及思考. 大气科学学报, 46(4): 481-490. 管晓丹, 石瑞, 孔祥宁, 等, 2018. 全球变化背景下半干旱区陆气机制研究综述. 地球科学进展, 33(10): 995-1004. 顾锡羚, 郭恩亮, 银山, 等, 2021. 干旱对内蒙古植被生长的累积与滞后影响评估研究. 草地学报, 29(6): 1301-1310. 姜大膀, 王晓欣, 2021. 对IPCC第六次评估报告中有关干旱变化的解读. 大气科学学报, 44(5): 650-653. 梁顺林, 陈晓娜, 陈琰, 等, 2023. 陆表卫星遥感GLASS产品集的研发新进展. 遥感学报, 27(4): 831-856. 陆建涛, 彭建, 李刚勇, 等, 2023. 干旱对中亚草地总初级生产力时滞和累积效应的影响评估. 生态学报, 43(23): 9745-9757. 王晨鹏, 黄萌田, 翟盘茂, 2022. IPCC AR6报告关于不同类型干旱变化研究的新进展与启示. 气象学报, 80(1): 168-175. 王同红, 王旭峰, 张松林, 等, 2024. 寒旱区内陆河流域碳通量年际变化控制机制. 地球科学, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269 徐蒙, 管兆勇, 蔡倩, 2020. 1960—2015年中国冬半年极端降温过程事件的时空演变特征. 气象科学, 40(6): 733-743. 袁星, 王钰淼, 周诗玙, 等, 2024. 气候变化下2022年长江特大骤旱的多尺度成因分析. 中国科学: 地球科学, 54(8): 2690-2702. 岳胜如, 王伦澈, 曹茜, 等, 2024. 塔里木河流域植被动态及潜在因素驱动机制. 地球科学, 49(9): 3399-3410. doi: 10.3799/dqkx.2023.161 张世喆, 朱秀芳, 刘婷婷, 等, 2022. 气候变化下中国不同植被区总初级生产力对干旱的响应. 生态学报, 42(8): 3429-3440. 赵会超, 2020. 不同类型干旱的时空变化规律及其关系研究(硕士学位论文). 咸阳: 西北农林科技大学, 56-72. 邹慧, 高光耀, 傅伯杰, 2016. 干旱半干旱草地生态系统与土壤水分关系研究进展. 生态学报, 36(11): 3127-3136. -