• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    福建行洛坑高产热花岗岩U、Th来源与富集成因

    胡鐇分 刘昊 王永 刘向冲

    胡鐇分, 刘昊, 王永, 刘向冲, 2025. 福建行洛坑高产热花岗岩U、Th来源与富集成因. 地球科学, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088
    引用本文: 胡鐇分, 刘昊, 王永, 刘向冲, 2025. 福建行洛坑高产热花岗岩U、Th来源与富集成因. 地球科学, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088
    Hu Fanfen, Liu Hao, Wang Yong, Liu Xiangchong, 2025. U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province. Earth Science, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088
    Citation: Hu Fanfen, Liu Hao, Wang Yong, Liu Xiangchong, 2025. U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province. Earth Science, 50(4): 1380-1400. doi: 10.3799/dqkx.2024.088

    福建行洛坑高产热花岗岩U、Th来源与富集成因

    doi: 10.3799/dqkx.2024.088
    基金项目: 

    中国地质科学院基本科研业务费专项经费 JKYQN202339

    国家自然科学基金项目 42473079

    中国地质调查项目 DD20240127

    中国地质调查项目 DD20242867

    中国地质调查项目 DD20242868

    详细信息
      作者简介:

      胡鐇分(1999-),女,在读硕士,矿产普查与勘探专业.ORCID:0009-0007-0602-8302.E-mail:2197342115@qq.com

      通讯作者:

      刘向冲(1987-),男,研究员,主要从事热液成矿作用动力学.E-mail:liuxiangchong1987@163.com

    • 中图分类号: P619.1

    U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province

    • 摘要: 钨矿与高分异花岗岩有密切的成因联系.全球大型/超大型钨锡矿床相关花岗岩的放射性产热率大多为5~10 μW•m-3,属于高产热花岗岩;其放射性产热率主要来源于U,一般达到70%,其次是Th(20%)与K(< 10%),然而目前并不清楚含钨花岗岩放射性产热元素分布规律及其富集原因.选择福建行洛坑超大型钨矿床开展典型实例研究,通过对行洛坑花岗岩单矿物(黑云母、斜长石、锆石、独居石、磷灰石等)的成分分析,结合已发表的全岩主、微量数据,利用质量守恒原理分别约束U、Th、K的主要赋存矿物.行洛坑两期花岗岩(G1与G2)的锆石U-Pb年龄分别为:151.5±0.6 Ma和150.0±0.6 Ma,根据单矿物计算的G1与G2总产热率分别为1.78 μW•m-3、2.28 μW•m-3.其中,K主要赋存于钾长石和黑云母等矿物,这两种矿物的K对全岩的热贡献率不到10%;Th主要来自于独居石,独居石中Th热贡献率最高达到了46%;U主要来自锆石和独居石,热贡献率均低于15%.G1与G2单矿物计算的产热率只达到全岩平均产热率(分别为3.74 μW•m-3和6.10 μW•m-3)的48%和37%,这种显著差异可能是由于行洛坑花岗岩中大量U存在于少量高U锆石,这种高U锆石统计样本较少,从而导致单矿物求得的产热率偏低.行洛坑花岗岩中U、Th的富集可能由源区和结晶分异作用共同控制的;行洛坑花岗岩放射性元素的衰变热(尤其是晚期岩体)可能延长了行洛坑热液对流时限并促进白钨矿的形成.

       

    • 图  1  大型/超大型钨锡相关花岗岩的放射性产热率

      图中数据来自以下文献:英国Cornubian岩基:Chappell and Hine(2006)和Charoy(1986);德国Erzgebirge岩基:Förster et al.(1999)和Tichomirowa et al.(2019);意大利Sardinian岩基:Naitza et al.(2017).以下数据来自中国南部的花岗岩,千里山花岗质杂岩体:Mao and Li(1995)、Chen et al.(2014)以及Liao et al.(2021a2021b);朱溪花岗岩体:苏晓云(2014)、王先广等(2015)、李宁(2017)、于全(2017)、以及刘经纬等(2017);大湖塘花岗岩体:项新葵等(2012)、黄兰椿和蒋少涌(2012)、Huang and Jiang(2014)、Mao et al.(2015)、毛志昊(2016)、彭花明等(2016)和吴显愿(2019);行洛坑花岗岩体:Wang et al.(2021a)和高允(2022).在每个方框中,中间的黑色标记表示中位数,框的底部和顶部边缘分别表示第25和第75百分位数.n表示每个数据集的采样次数,小圆点表示每个数据集的分布状态.花岗岩产热率平均值约为2 μW•m-3据Artemieva et al.,2017),如图中虚线所示

      Fig.  1.  The heat production rate of large-scale tungsten-tin related granites

      图  2  大型/超大型钨锡相关花岗岩的K/U比值(a)及Th/U比值(b)(数据来源同图 1)

      一般花岗岩平均K/U为1×104、平均Th/U为4.0(据Artemieva et al.,2017),如图中实线所示.大型/超大型钨锡相关花岗岩中平均K/U为0.31×104、平均Th/U为1.34,如图中虚线所示

      Fig.  2.  K/U ratios (a) and Th/U ratios (b) of large-scale tungsten-tin related granites (same data source as Fig.1)

      图  3  大型/超大型钨锡相关花岗岩(a)及行洛坑钨矿花岗岩(b)中U、Th、K的热贡献率(数据来源同图 1)

      大型/超大型钨锡相关花岗岩U的热贡献率为38%~94%,平均热贡献率为70%;Th的热贡献率为2%~51%,平均热贡献率为22%;而K的热贡献率最低,多在1%~15%,平均热贡献率为8%

      Fig.  3.  The heat contribution of U, Th and K in large-scale tungsten-tin related granites (a) and the Xingluokeng granites (b) (same data source as Fig.1)

      图  4  武夷山成矿带大地构造图(a)及行洛坑地区地质简图(b)

      此图据瞿承燚(2016)和福建省地质调查研究院(2014)1︰50万福建省地质图修改. 瞿承燚(2016)将国母洋和北坑岩体标注为侏罗系花岗岩,福建省地质调查研究院在1︰50万福建省地质图中则标注为志留纪花岗岩.此外,笔者未发表的年龄测定数据也显示国母洋和北坑岩体为志留纪花岗岩

      Fig.  4.  The tectonic map of the Wuyishan metallogenic belt (a) and the geological map of the Xingluokeng area (b)

      图  5  行洛坑钨矿地质简图(a)及0勘探线剖面图(b)

      据福建闽西地质大队(1985)修改. 行洛坑花岗岩穿插有众多浸染状石英细脉和大脉,全岩矿化

      Fig.  5.  The geological sketch map of the Xingluokeng W deposit (a) and the section along the exploration line 0 (b)

      图  6  行洛坑花岗岩特征照片

      a.似斑状黑云母花岗岩;b.中细粒黑云母花岗岩;c.似斑状黑云母花岗岩(正交偏光);d.中细粒黑云母花岗岩(正交偏光);e.黑云母中发育的磷灰石(单偏光);f.白云母中发育的磷灰石、黄铁矿、钛铁矿(单偏光);Ap.磷灰石;Bt.黑云母;Kfs.钾长石;Ilm.钛铁矿;Ms.白云母;Pl.斜长石;Py.黄铁矿;Qtz.石英

      Fig.  6.  Typical photos of the Xingluokeng granites

      图  7  行洛坑花岗岩黑云母分类图解(a、b)及斜长石判别图解(c)

      Fig.  7.  Biotite classification diagrams (a, b) and plagioclase discriminant diagram (c) of the Xingluokeng granites

      图  8  行洛坑花岗岩黑云母微量元素含量图(a)、球粒陨石标准化稀土元素配分曲线图(b)及斜长石微量元素含量图(c)、球粒陨石标准化稀土元素配分曲线图(d)

      球粒陨石数据来自Masuda et al.1973

      Fig.  8.  Biotite trace element content diagram (a), chondrite-normalized REE diagram(b) and plagioclase trace element content diagram(c), chondrite-normalized REE diagram(d)

      图  9  似斑状黑云母花岗岩G1(a)和中细粒黑云母花岗岩G2(b)的锆石U-Pb年龄谐和图

      Fig.  9.  Zircon U-Pb concordia diagrams for porphyritic biotite granite (a) and medium- to fine-grained biotite granite (b)

      图  10  锆石微量元素含量图(a)及球粒陨石标准化稀土元素配分曲线图(b)

      球粒陨石数据来自Masuda et al.1973

      Fig.  10.  Zircon trace element content diagram (a) and chondrite-normalized REE diagram (b)

      图  11  行洛坑花岗岩独居石微量元素含量图(a)、球粒陨石标准化稀土元素配分曲线图(b)及磷灰石微量元素含量图(c)、球粒陨石标准化稀土元素配分曲线图(d)

      球粒陨石数据来自Masuda et al.1973

      Fig.  11.  Monazite trace element content diagram (a), chondrite-normalized REE diagram (b) and apatite trace element content diagram(c), chondrite-normalized REE diagram(d) of the Xingluokeng granites

      图  12  行洛坑花岗岩类型判别图解

      a. K2O vs. SiO2图解,据Rickwood(1989)修改;b. A/NK vs. A/CNK图解,据Maniar and Piccoli(1989)修改;c. Zr-10 000×Ga/Al图解,据Whalen et al.(1987)修改;d. P2O5 vs. SiO2图解,全岩数据来源于Wang et al.(2021a)和高允(2022

      Fig.  12.  The classification diagrams of the Xingluokeng granites

      图  13  行洛坑花岗岩中矿物U、Th、K对全岩热贡献率箱状图(a)及频率分布直方图(b)

      行洛坑花岗岩中K主要赋存于钾长石和黑云母等矿物,这两种矿物的K对全岩的热贡献率不到10%;Th主要来自于独居石,独居石中Th热贡献率最高达到了46%;U主要来自锆石和独居石,热贡献率均低于15%

      Fig.  13.  The box diagram (a) and frequency distribution of the heat contribution of minerals U, Th and K to the whole rock (b) in Xingluokeng granites

      图  14  行洛坑花岗岩中代表性锆石阴极发光、透射光(a)及彩色阴极发光图像(b)

      本文未统计的锆石数据显示,部分锆石中存在微裂隙,而这些锆石的微裂隙中U含量较高,为本文统计数据平均值(G1:570×10-6±398×10-6;G2:637×10-6±653×10-6)的几十倍.此外,部分锆石存在包裹体,但基本上为磷灰石(AP)包裹体

      Fig.  14.  Images of CL, transmitted light and color CL of representative zircon in Xingluokeng granites

      图  15  行洛坑花岗岩U、Th、产热率分馏结晶指数

      a. U vs. Rb/Sr;b. Th vs. Rb/Sr;c. 产热率vs. Rb/Sr;d. U vs. Eu/Eu*;e. Th vs. Eu/Eu*;f. 产热率vs. Rb/Sr.全岩数据来源于Wang et al.(2021a)和高允(2022

      Fig.  15.  Fractional crystallisation indices against U, Th, and heat production rate of the Xingluokeng granites

      表  1  行洛坑钨矿样品采样位置

      Table  1.   The sampling positions of the Xingluokeng W deposit

      样品编号 平台(m) 类别 分析矿物
      XL21-18 696 似斑状黑云母花岗岩(G1) 黑云母、斜长石、锆石、独居石、磷灰石
      XL21-27 648 黑云母、斜长石
      XL21-36 780 斜长石
      XLK19-32-3 696 黑云母
      XL21-15 696 中细粒黑云母花岗岩(G2) 黑云母、锆石、独居石、磷灰石
      XL21-20 696 黑云母、斜长石
      XL21-23 696 黑云母
      XL21-25 648 斜长石
      下载: 导出CSV
    • Alessio, K. L., Hand, M., Kelsey, D. E., et al., 2018. Conservation of Deep Crustal Heat Production. Geology, 46(4): 335-338. https://doi.org/10.1130/g39970.1
      Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE2017. Earth-Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003
      Bachmann, O., Miller, C. F., de Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1-4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002
      Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521-552. https://doi.org/10.1093/petrology/37.3.521
      Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
      Bea, F., Montero, P., Molina, J. F., 1999. Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia. The Journal of Geology, 107(4): 399-419. https://doi.org/10.1086/314356
      Breiter, K., 2016. Monazite and Zircon as Major Carriers of Th, U, and Y in Peraluminous Granites: Examples from the Bohemian Massif. Mineralogy and Petrology, 110(6): 767-785. https://doi.org/10.1007/s00710-016-0448-0
      Cai, Y. L., 1984. A Study of the Genetic Type of Xingluokeng Tungsten (Molybdenum) Deposit, Fujian Province. Mineral Deposits, 3(1): 27-36(in Chinese with English abstract).
      Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
      Chappell, B. W., Hine, R., 2006. The Cornubian Batholith: An Example of Magmatic Fractionation on a Crustal Scale. Resource Geology, 56(3): 203-244. https://doi.org/10.1111/j.1751-3928.2006.tb00281.x
      Charoy, B., 1986. The Genesis of the Cornubian Batholith (South-West England): The Example of the Carnmenellis Pluton. Journal of Petrology, 27(3): 571-604. https://doi.org/10.1093/petrology/27.3.571
      Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301-314. https://doi.org/10.1016/j.jseaes.2014.07.022
      Chen, B. L., Shen, J. H., Gao, Y., et al., 2024. Sm-Nd Isochronal Age and Trace Element Geochemistry Characteristics of Scheelite in Xingluokeng Tungsten Deposit, Fujian Province. Mineral Deposits, 43(3): 463-477(in Chinese with English abstract).
      Chen, R. S., Li, J. W., Cao, K., et al., 2013. Zircon U-Pb and Molybdenite Re-Os Dating of the Shangfang Tungsten Deposit in Northern Fujian Province: Implications for Regional Mineralization. Earth Science, 38(2): 289-304(in Chinese with English abstract).
      Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de La Société Géologiquede France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75
      Cuney, M., Friedrich, M., 1987. Physicochemical and Crystal-Chemical Controls on Accessory Mineral Paragenesis in Granitoids: Implications for Uranium Metallogenesis. Bulletinde Minéralogie, 110(2): 235-247. https://doi.org/10.3406/bulmi.1987.7983
      Förster, H. J., Tischendorf, G., Trumbull, R. B., et al., 1999. Late-Collisional Granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11): 1613-1645. https://doi.org/10.1093/petroj/40.11.1613
      Friedrich, M. H., Cuney, M., Poty, B., 1987. Uranium Geochemistry in Peraluminous Leucogranites. Eureka Mag. , 3: 353-385. https://eurekamag.com/research/020/558/020558969.php
      Gao, Y., 2022. Study on Tectonic Control and Metallogenic Mechanism of the Super Large Tungsten Deposit in Xingluokeng, West Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Huang, L. C., Jiang, S. Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900(in Chinese with English abstract). http://www.oalib.com/paper/1475724
      Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202: 207-226. https://doi.org/10.1016/j.lithos.2014.05.030
      Huang, W. R., 1983. Rock Mass Petrological Characteristics of Rock-Controlled Tungsten Ore: Taking Xingluokeng Tungsten Ore as an Example. Geology and Prospecting, 19(12): 2-5(in Chinese with English abstract).
      Jiang, S. Y., Zhao, K. D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. Chinese Science Bulletin, 65(33): 3730-3745(in Chinese).
      Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic-Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011
      Lehmann, B., 2021. Formation of Tin Ore Deposits: A Reassessment. Lithos, 402: 105756. https://doi.org/10.1016/j.lithos.2020.105756
      Li, N., 2017. Research on Mesozoic Granite and Mineralization in Zhuxi Tungsten-Copper Mining Area, Northeast Jiangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Li, Q. L., 2016. "High-U Effect" during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405-412, 401(in Chinese with English abstract).
      Li, X. H., Li, W. X., Li, Z. X., 2007. A Re-Discussion on the Genetic Types and Tectonic Significance of Early Yanshan Granites in Nanling. Chinese Science Bulletin, 52(9): 981-991(in Chinese). doi: 10.1360/csb2007-52-9-981
      Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445. https://doi.org/10.1016/j.oregeorev.2021.104445
      Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W-Sn-Mo-Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598-021-84902-6
      Liu, J. W., Chen, B., Chen, J. S., et al., 2017. Highly Differentiated Granite from the Zhuxi Tungsten(Copper) Deposit in Northeastern Jiangxi Province: Petrogenesis and Their Relationship with W-Mineralization. Acta Petrologica Sinica, 33(10): 3161-3182(in Chinese with English abstract).
      Liu, X. C., Xiao. C. H., Zhang, S. H., et al., 2020. Does the Sanlu Rock Mass in Eastern Liaoning Provide the Necessary Energy for the Mineralization of Wulong Gold Deposit? Earth Science, 45(11): 3998-4013(in Chinese with English abstract).
      Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Mao, J. W., Li, H. Y., 1995. Evolution of the Qianlishan Granite Stock and Its Relation to the Shizhuyuan Polymetallic Tungsten Deposit. International Geology Review, 37(1): 63-80. https://doi.org/10.1080/00206819509465393
      Mao, J. W., Ouyang, H. G., Song, S. W., et al., 2019. Chapter 10 Geology and Metallogeny of Tungsten and Tin Deposits in China. Mineral Deposits of China, 411-482. https://doi.org/10.5382/sp.22.10
      Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762. https://doi.org/10.1360/tb-2020-0370
      Mao, J. W., Yuan, S. D., Xie, G. Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969(in Chinese with English abstract).
      Mao, Z. H., Liu, J. J., Mao, J. W., et al., 2015. Geochronology and Geochemistry of Granitoids Related to the Giant Dahutang Tungsten Deposit, Middle Yangtze River Region, China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Gondwana Research, 28(2): 816-836. https://doi.org/10.1016/j.gr.2014.07.005
      Mao, Z. H., 2016. Metallogenic Dynamic Background and Mineralization of Dahutang Super-Large Porphyry Tungsten Deposit, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Masuda, A., Nakamura, N., Tanaka, T., 1973. Fine Structures of Mutually Normalized Rare-Earth Patterns of Chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248. https://doi.org/10.1016/0016-7037(73)90131-2
      Naitza, S., Conte, A. M., Cuccuru, S., et al., 2017. A Late Variscan Tin Province Associated to the Ilmenite-Series Granites of the Sardinian Batholith (Italy): The Sn and Mo Mineralisation around the Monte Linas Ferroan Granite. Ore Geology Reviews, 80: 1259-1278. https://doi.org/10.1016/j.oregeorev.2016.09.013
      Ni, P., Wang, G. G., Li, W. S., et al., 2021. A Review of the Yanshanian Ore-Related Felsic Magmatism and Tectonic Settings in the Nanling W-Sn and Wuyi Au-Cu Metallogenic Belts, Cathaysia Block, South China. Ore Geology Reviews, 133: 104088. https://doi.org/10.1016/j.oregeorev.2021.104088
      Peng, H. M., Yuan, Q., Li, Q. Y., et al., 2016. Ore-Controlling Role of Porphyraceous Biotite Granite in Shimensi Tungsten Deposit and Its Prospecting Significance. Science Technology and Engineering, 16(3): 135-142(in Chinese with English abstract).
      Perkins, C., Wyborn, L. A. I., 1998. Age of Cu-Au Mineralisation, Cloncurry District, Eastern Mt Isa Inlier, Queensland, as Determined by 40Ar/39Ar Dating. Australian Journal of Earth Sciences, 45(2): 233-246. https://doi.org/10.1080/08120099808728384
      Qu, C. Y., 2016. Geological Characteristics and Prospecting Marks of Guomuyang Wolframite Deposit in Qingliu County, Fujian Province. Geology of Fujian, 35(2): 149-155(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-FJDZ201602009.htm
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Romer, R. L., Kroner, U., 2015. Sediment and Weathering Control on the Distribution of Paleozoic Magmatic Tin-Tungsten Mineralization. Mineralium Deposita, 50(3): 327-338. https://doi.org/10.1007/s00126-014-0540-5
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Rybach, L., Cermak, V., 1982. Radioactive Heat Generation in Rocks. In: Angenheister, G., ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group V. Springer-Verlang, Berlin, 353-371.
      Su, X. Y., 2014. Study on Geological Characteristics and Geochemistry of Zhuxi Tungsten-Copper Deposit in Jiangxi Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Tichomirowa, M., Gerdes, A., Lapp, M., et al., 2019. The Chemical Evolution from Older (323-318 Ma) towards Younger Highly Evolved Tin Granites (315-314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals, 9(12): 769. https://doi.org/10.3390/min9120769
      Van Schmus, W. R., 2017, Radioactivity Properties of Minerals and Rocks. In: Van Schmus, W. R., ed., Handbook of Physical Properties of Rocks (1984). CRC Press, Flarida, 281-293. https://doi.org/10.1201/9780203712030
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Villaros, A., Stevens, G., Moyen, J. F., et al., 2009. The Trace Element Compositions of S-Type Granites: Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source. Contributions to Mineralogy and Petrology, 158(4): 543-561. https://doi.org10.1007/s00410-009-0396-3
      Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Petrogenesis of the Xingluokeng W-Bearing Granitic Stock, Western Fujian Province, SE China and Its Genetic Link to W Mineralization. Ore Geology Reviews, 132: 103987. https://doi.org/10.1016/j.oregeorev.2021.103987
      Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Ore-Forming Mechanism and Fluid Evolution Processes of the Xingluokeng Tungsten Deposit, Western Fujian Province: Constraints Form In-Situ Trace Elemental and Sr Isotopic Analyses of Scheelite. Acta Petrologica Sinica, 37(3): 698-716(in Chinese with English abstract).
      Wang, H., Feng, C. Y., Zhao, Y. M., et al., 2016. Ore Genesis of the Lunwei Granite-Related Scheelite Deposit in the Wuyi Metallogenic Belt, Southeast China: Constraints from Geochronology, Fluid Inclusions, and H-O-S Isotopes. Resource Geology, 66(3): 240-258. https://doi.org/10.1111/rge.12100
      Wang, S., Zhang, S. H., Zhang, Q. Q., et al., 2022. In-Situ Zircon U-Pb Dating Method by LA-ICP-MS and Discussions on the Effect of Different Beam Spot Diameters on the Dating Results. Journal of Geomechanics, 28(4): 642-652(in Chinese with English abstract).
      Wang, X. G., Liu, Z. Q., Liu, S. B., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Petrologic Geochemistry of Finegrained Granite from Zhuxi Cu-W Deposit, Jiangxi Province and Its Geological Significance. Rock and Mineral Analysis, 34(5): 592-599(in Chinese with English abstract).
      Watson, E. B., 1985. Henry's Law Behavior in Simple Systems and in Magmas: Criteria for Discerning Concentration-Dependent Partition Coefficients in Nature. Geochimica et Cosmochimica Acta, 49(4): 917-923. https://doi.org/10.1016/0016-7037(85)90307-2
      The Western Geological Party of Fujian, 1985. Geological Characteristics of the Qingpop Luokeng Tungsten (Mo) Deposit in Fujian Province. Fujian Science and Technology Press, Fuzhou(in Chinese).
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Willis-Richards, J., Jackson, N. J., 1989. Evolution of the Cornubian Ore Field, Southwest England; Part I, Batholith Modeling and Ore Distribution. Economic Geology, 84(5): 1078-1100. https://doi.org/10.2113/gsecongeo.84.5.1078
      Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36(in Chinese with English abstract).
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765(in Chinese).
      Wu, Q., Williams-Jones, A. E., Zhao, P. L., et al., 2023. The Nature and Origin of Granitic Magmas and Their Control on the Formation of Giant Tungsten Deposits. Earth-Science Reviews, 245: 104554. https://doi.org/10.1016/j.earscirev.2023.104554
      Wu, X. Y., 2019. Magmatism and Genesis of Multi-Stage Porphyritic Granite in Dahutang Superlarge Tungsten Mine, Jiangxi Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Xiang, X. K., Chen, M. S., Zhan, G. N., et al., 2012. Metallogenic Geological Conditions of Shimensi Tungsten-Polymetallic Deposit in North Jiangxi Province. Contributions to Geology and Mineral Resources Research, 27(2): 143-155(in Chinese with English abstract).
      Yakymchuk, C., Brown, M., 2019. Divergent Behaviour of Th and U during Anatexis: Implications for the Thermal Evolution of Orogenic Crust. Journal of Metamorphic Geology, 37(7): 899-916. https://doi.org/10.1111/jmg.12469
      Yu, P. P., Ding, W., Zeng, Ch. Y., et al., 2023. Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China. Earth Science, 48(9): 3205-3220. https://doi.org/10.3799/dqkx.2023.078
      Yu, Q., 2017. Metallogenic Chronology and Mineralogy of the Super Large Tungsten Deposit in Zhuxi, Jiangxi Province (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      Zhang, D. H., 2020. Geochemistry of Hydrothermal Ore-Forming Processes. Geological Publishing House, Beijing(in Chinese).
      Zhang, J. J., Chen, Z. H., Wang, D. H., et al., 2008. Geological Characteristics and Metallogenic Epoch of the Xingluokeng Tungsten Deposit, Fujian Province. Geotectonica et Metallogenia, 32(1): 92-97(in Chinese with English abstract).
      Zhang, P. P., Zhang, L., Wang, Z. P., et al., 2018. Diffusion of Molybdenum and Tungsten in Anhydrous and Hydrous Granitic Melts. American Mineralogist, 103(12): 1966-1974. https://doi.org/10.2138/am-2018-6569
      Zhang, Q. Q., Gao, J. F., Tang, Y. W., et al., 2020. In-Situ LA-ICP-MS U-Pb Dating and Trace Element Analyses of Wolframites from the Xingluokeng Tungsten Deposit in Fujian Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1278-1291, 1311(in Chinese with English abstract).
      Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974
      Zhang, Y. X., Liu, Y. M., 1993. Geological-Geochemical Characteristics and Origin of the Xingluokeng W Deposit. Geochimica, 22(2): 187-196(in Chinese with English abstract).
      Zhao, Y. D., Zhang, W. G., Liu, H., et al., 2024. The Spatial and Temporal Evolution of Thermal Stress after Granite Emplacement and Its Influencing Factors. Journal of Geomechanics, 30(1): 38-56(in Chinese with English abstract).
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      蔡元来, 1984. 福建行洛坑钨(钼)矿床的成因类型研究. 矿床地质, 3(1): 27-36.
      陈柏林, 申景辉, 高允, 等, 2024. 福建行洛坑钨矿床白钨矿Sm-Nd等时线年龄及微量元素地球化学特征. 矿床地质, 43(3): 463-477.
      陈润生, 李建威, 曹康, 等, 2013. 闽北上房钨矿床锆石U-Pb和辉钼矿Re-Os定年及其地质意义. 地球科学, 38(2): 289-304. doi: 10.3799/dqkx.2013.029
      福建闽西地质大队, 1985. 福建清流行洛坑钨(钼)矿床地质特征. 福州: 福建科学技术出版社.
      高允, 2022. 闽西行洛坑超大型钨矿床构造控矿作用及成矿机制研究(博士学位论文). 武汉: 中国地质大学.
      黄兰椿, 蒋少涌, 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900.
      黄文荣, 1983. 岩控钨矿的岩体岩石学特征: 以行洛坑钨矿为例. 地质与勘探, 19(12): 2-5.
      蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报, 65(33): 3730-3745.
      李宁, 2017. 赣东北朱溪钨铜矿区中生代花岗岩与成矿研究(硕士学位论文). 北京: 中国地质大学(北京).
      李秋立, 2016. 离子探针锆石U-Pb定年的"高U效应". 矿物岩石地球化学通报, 35(3): 405-412, 401.
      李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991.
      刘经纬, 陈斌, 陈军胜, 等, 2017. 赣东北朱溪钨(铜)矿区高分异花岗岩的成因及与钨矿的关系. 岩石学报, 33(10): 3161-3182.
      刘向冲, 肖昌浩, 张拴宏, 等, 2020. 辽东三股流岩体是否为五龙金矿成矿提供必要的能量?地球科学, 45(11): 3998-4013. doi: 10.3799/dqkx.2020.292
      毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969.
      毛志昊, 2016. 江西大湖塘超大型斑岩钨矿床成矿动力学背景与成矿作用(博士学位论文). 北京: 中国地质大学(北京).
      彭花明, 袁琪, 李秋耘, 等, 2016. 赣西北石门寺钨矿似斑状黑云母花岗岩的控矿作用及找矿意义. 科学技术与工程, 16(3): 135-142.
      瞿承燚, 2016. 福建清流国母洋钨矿床地质特征及找矿标志. 福建地质, 35(2): 149-155.
      苏晓云, 2014. 江西朱溪钨铜矿矿床地质特征及矿床地球化学研究(硕士学位论文). 北京: 中国地质大学(北京).
      王辉, 丰成友, 李荣西, 等, 2021. 闽西行洛坑钨矿流体演化过程与成矿机制: 白钨矿原位微量元素、Sr同位素的制约. 岩石学报, 37(3): 698-716.
      王森, 张拴宏, 张琪琪, 等, 2022. LA-ICP-MS锆石微区U-Pb定年方法及不同束斑直径对年龄结果的影响作用探讨. 地质力学学报, 28(4): 642-652.
      王先广, 刘战庆, 刘善宝, 等, 2015. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 34(5): 592-599.
      吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      吴显愿, 2019. 江西大湖塘超大型钨矿多期似斑状花岗岩岩浆作用与成因(硕士学位论文). 北京: 中国地质大学(北京).
      项新葵, 陈茂松, 詹国年, 等, 2012. 赣北石门寺矿区钨多金属矿床成矿地质条件. 地质找矿论丛, 27(2): 143-155.
      虞鹏鹏, 丁望, 曾长育, 等, 2023. 华南云开地区幕式岩浆作用与大陆再造. 地球科学, 48(9): 3205-3220. doi: 10.3799/dqkx.2023.078
      于全, 2017. 江西朱溪超大型钨矿成矿年代学及矿物学研究(硕士学位论文). 南京: 南京大学.
      张德会, 2020. 热液成矿作用地球化学. 北京: 地质出版社.
      张家菁, 陈郑辉, 王登红, 等, 2008. 福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义. 大地构造与成矿学, 32(1): 92-97.
      张清清, 高剑峰, 唐燕文, 等, 2020. 福建行洛坑钨矿床黑钨矿LA-ICP-MS U-Pb年龄和微量元素地球化学特征. 矿物岩石地球化学通报, 39(6): 1278-1291, 1311.
      张玉学, 刘义茂, 1993. 行洛坑钨矿地质地球化学特征及成因研究. 地球化学, 22(2): 187-196.
      赵裕达, 张文高, 刘昊, 等, 2024. 花岗岩侵位后的热应力时空演化及其影响因素. 地质力学学报, 30(1): 38-56.
    • dqkxzx-50-4-1380-.xlsx
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  23
    • HTML全文浏览量:  5
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-06-12
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回