• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    长江流域秋季大尺度旱涝转折变化特征及天气形势转换

    王乐 郭生练 谭鑫 董轩 马艺铭

    王乐, 郭生练, 谭鑫, 董轩, 马艺铭, 2025. 长江流域秋季大尺度旱涝转折变化特征及天气形势转换. 地球科学, 50(9): 3408-3421. doi: 10.3799/dqkx.2024.089
    引用本文: 王乐, 郭生练, 谭鑫, 董轩, 马艺铭, 2025. 长江流域秋季大尺度旱涝转折变化特征及天气形势转换. 地球科学, 50(9): 3408-3421. doi: 10.3799/dqkx.2024.089
    Wang Le, Guo Shenglian, Tan Xin, Dong Xuan, Ma Yiming, 2025. Characteristics of Large-Scale Drought and Flood Alternation in Autumn in the Yangtze River Basin and Associated Weather Situation Alternation. Earth Science, 50(9): 3408-3421. doi: 10.3799/dqkx.2024.089
    Citation: Wang Le, Guo Shenglian, Tan Xin, Dong Xuan, Ma Yiming, 2025. Characteristics of Large-Scale Drought and Flood Alternation in Autumn in the Yangtze River Basin and Associated Weather Situation Alternation. Earth Science, 50(9): 3408-3421. doi: 10.3799/dqkx.2024.089

    长江流域秋季大尺度旱涝转折变化特征及天气形势转换

    doi: 10.3799/dqkx.2024.089
    基金项目: 

    国家十四五重点研发计划项目 2022YFC3002701

    国家自然科学基金项目 U2340205

    武汉市曙光知识创新专项 2023020201020356

    水利部重大科技项目 SKS-2022034

    详细信息
      作者简介:

      王乐(1992—),男,工程师,博士研究生,主要研究方向为气候和水资源分析、水文气象预测. ORCID:0000-0001-7789-483X. E-mail:cwrcwangl@163.com

    • 中图分类号: P339

    Characteristics of Large-Scale Drought and Flood Alternation in Autumn in the Yangtze River Basin and Associated Weather Situation Alternation

    • 摘要:

      秋季旱涝转折对于长江流域水库蓄水、发电、供水等有着显著影响.本文采用综合考虑旱涝转折强度和速度的多尺度标准化旱涝急转指数(MSDFAI),分析了长江流域秋季旱涝转折事件的时空变化特征,并从大气驱动的角度分析转折前后的天气形势转换过程.结果表明:1962-2022年长江流域秋季旱涝/涝旱转折事件高发区多位于金沙江中下游、雅砻江上游、岷江、嘉陵江、乌江、汉江石泉以上、鄱阳湖水系,其中以中度事件频数最多;以20世纪90年代中期为转折点,流域旱涝转折范围在此之前呈现减少趋势,之后转为增加,流域内极端旱涝转折事件强度同样先减弱后增强,涝旱转折事件则与之相反;模态分解显示,秋季第二模态主要表现为长江上游北部和汉江上游的一致性旱涝转折异常,在转折前期,我国南方大部由位势高度负异常控制,长江上游及汉江上游风场和水汽输送呈辐散型异常,垂向由干燥下沉气流控制,不利于降雨发生.在转折后一个月,长江中下游出现位势高度正异常,对应副高加强西伸,北方低压槽南伸,长江上游及汉江上游风场和水汽输送呈辐合型异常,垂向由上升气流控制,有利于强降雨发生,从而导致旱涝转折,涝旱转折则基本与之相反.

       

    • 图  1  长江流域雨量站分布及子流域分区

      Fig.  1.  Distribution of rainfall stations and sub-basins in the Yangtze River basin

      图  2  秋季长江流域不同等级旱涝转折和涝旱转折事件累计频数空间分布

      Fig.  2.  Spatial distribution of the cumulative frequency of different levels of drought to flood (DTF) and flood to drought (FTD) in autumn of the Yangtze River basin

      图  3  秋季长江流域旱涝转折和涝旱转折平均强度空间分布

      Fig.  3.  Spatial distribution of the average intensity of DTF and FTD in autumn of the Yangtze River basin

      图  4  秋季长江流域旱涝/涝旱转折范围时间演变特征

      Fig.  4.  Temporal evolution of the range of DFA in autumn of the Yangtze River basin

      图  5  秋季长江流域旱涝/涝旱转折范围年代际演变特征

      Fig.  5.  Interdecadal evolution of DFA ranges in autumn of the Yangtze River basin

      图  6  秋季长江流域旱涝/涝旱转折区域平均强度时间演变特征

      Fig.  6.  Temporal evolution of the regional average intensity of DFA in autumn of the Yangtze River basin

      图  7  秋季长江流域旱涝/涝旱事件时间演变特征

      Fig.  7.  Characteristics of the temporal evolution of DFA events in autumn of the Yangtze River basin

      图  8  秋季长江流域旱涝转折EOF分解模态变化特征

      Fig.  8.  Characteristics of mode changes in EOF decomposition of DFA in autumn of the Yangtze River basin

      图  9  KMSDFAI与位势高度场和风场的超前滞后回归

      填色区域表示位势高度回归值,打点区域表示通过90%的信度检验,单位:gpm;箭头表示风场回归值,绿色箭头表示通过90%的信度检验,单位:m/s

      Fig.  9.  lead and lag regression of KMSDFAI with geopotential height and wind

      图  10  KMSDFAI与500 hPa垂直速度(左)和整层水汽输送(右)的超前滞后回归

      左侧中填色区域表示500 hPa垂直速度回归值,单位:Pa/s;右侧填色区域表示水汽输送散度回归值,单位:kg·m‒2·s‒1,箭头表示水汽输送通量回归值,单位:kg·m‒1·s‒1;打点区域表示通过95%的显著性检验

      Fig.  10.  Lead and lag regression of KMSDFAI with 500 hPa vertical velocity (left) and whole-layer water vapor transport (right)

      图  11  秋季长江流域旱涝(左)和涝旱(右)转折500 hPa环流场合成分析

      填色区域表示位势高度距平,打点区域表示通过90%的信度检验,单位:gpm;箭头表示风场距平,绿色箭头表示通过90%的信度检验,单位:m/s

      Fig.  11.  Composite 500 hPa geopotential height and horizontal wind of drought-flood (left) and flood-drought (right) in the Yangtze River basin in autumn

      表  1  基于MSDFAI指数的旱涝转折等级划分表

      Table  1.   Classification of DFA based on the MSDFAI index

      等级 SPI 类型
      1 MSDFAI≥2.0 极端旱涝转折
      2 MSDFAII≥1.5 重度旱涝转折
      3 1.0≤MSDFAI < 1.5 中度旱涝转折
      4 0.5≤MSDFAI < 1.0 轻度旱涝转折
      5 ‒0.5 < MSDFAI < 0.5 非转折
      6 ‒1.0 < MSDFAI≤‒0.5 轻度涝旱转折
      7 ‒1.5 < MSDFAI≤‒1.0 中度涝旱转折
      8 ‒2.0 < MSDFAI≤‒1.5 重度涝旱转折
      9 MSDFAI≤‒2.0 极端涝旱转折
      下载: 导出CSV

      表  2  秋季旱涝转折异常年份长江上游关键分区降水距平百分率变化(%)

      Table  2.   Composite precipitation anomaly of DFA in key subregions in autumn of the upper Yangtze River basin (%)

      分区 旱涝转折 涝旱转折
      7月 8月 9月 10月 7月 8月 9月 10月
      嘉陵江 ‒15.5 ‒12.8 53.3 29.1 33.9 24.5 ‒13.2 ‒20.8
      汉江上游 ‒8.6 ‒19.3 76.8 34.9 41.3 35.1 ‒32.0 ‒26.6
      长江上游 ‒8.4 ‒5.2 21.0 4.5 17.8 7.9 ‒10.0 ‒8.1
      下载: 导出CSV
    • Bi, W. X., Li, M., Weng, B. S., et al., 2023. Drought-Flood Abrupt Alteration Events over China. Science of The Total Environment, 875: 162529. https://doi.org/10.1016/j.scitotenv.2023.162529
      Chen, G. Y., Zheng, J., Zhang, X., 2022. Flood Control and Water Storage of the Danjiangkou Reservoir in 2021. China Water Resources, (5): 24-27 (in Chinese with English abstract).
      Chen, K., Zhong, L. H., Hua, L. J., et al., 2020. Analysis on the Interdecadal Transition and Its Causes of the Autumn Precipitation Trend in West China. Climatic and Environmental Research, 25(1): 90-102 (in Chinese with English abstract)
      Chen, S. Q., Xu, F., Li, Y. J., et al., 2020. Summer SST in the Northwest Pacific in the Past 70 Years and Its Correlation with the Variation of the Western Pacific Subtropical High. Journal of Tropical Meteorology, 36(6): 846-854 (in Chinese with English abstract).
      De Luca, P., Messori, G., Wilby, R. L., et al., 2020. Concurrent Wet and Dry Hydrological Extremes at the Global Scale. Earth System Dynamics, 11(1): 251-266. https://doi.org/10.5194/esd-11-251-2020
      Duan, M. K., Li, X., Wang, P. X., 2020. Climate Change Characteristics and Significance Tests of Temperature and Precipitation of China Weather Stations in Winter and Summer. Transactions of Atmospheric Sciences, 43(5): 888-896 (in Chinese with English abstract).
      Guo, S. L., Li, N., Wang, J., et al., 2023. Influence of Autumn Rain of West China and Meiyu on Impoundment Operation of Three Gorges Reservoir. Yangtze River, 54(7): 69-74 (in Chinese with English abstract)
      Luo, X., Li, D. L., Wang, H., 2013. New Evolution Features of Autumn Rainfall in West China and Its Responses to Atmospheric Circulation. Plateau Meteorology, 32(4): 1019-1031 (in Chinese with English abstract)
      Ma, J. H., 2020. Practice and Reflection on Flood Control and Disaster Mitigation in Changjiang River Basin in 2020. Yangtze River, 51(12): 1-7 (in Chinese with English abstract).
      Shan, L. J., Zhang, L. P., Chen, X. C., et al., 2015. spatio-Temporal Evolution Characteristics of Droughtflood Abrupt Alternation in the Middle and Lower Reaches of the Yangtze River Basin. Resources and Environment in the Yangtze Basin, 24(12): 2100-2107 (in Chinese with English abstract).
      Shan, L. J., Zhang, L. P., Song, J. Y., et al., 2018. Characteristics of Dry-Wet Abrupt Alternation Events in the Middle and Lower Reaches of the Yangtze River Basin and the Relationship with ENSO. Journal of Geographical Sciences, 28(8): 1039-1058. https://doi.org/10.1007/s11442-018-1540-7
      Sun, Z. X., Zhang, Q., Sun, R., et al., 2022. Characteristics of the Extreme High Temperature and Drought and Their Main Impacts in Southwestern China of 2022. Journal of Arid Meteorology, 40(5): 764-770 (in Chinese with English abstract)
      Tu, X. J., Pang, W. N., Chen, X. H., et al., 2022. Limitations and Improvement of the Traditional Assessment Index for Drought-Wetness Abrupt Alternation. Advances in Water Science, 33(4): 592-601 (in Chinese with English abstract).
      Wang, H. J., Chen, Y. N., Pan, Y. P., et al., 2019. Assessment of Candidate Distributions for SPI/SPEI and Sensitivity of Drought to Climatic Variables in China. International Journal of Climatology, 39(11): 4392-4412. https://doi.org/10.1002/joc.6081
      Wang, L., Guo, S. L., Wang, J., et al., 2024. A Novel Multi-Scale Standardized Index Analyzing Monthly to Sub-Seasonal Drought-Flood Abrupt Alternation Events in the Yangtze River Basin. Journal of Hydrology, 633: 130999. https://doi.org/10.1016/j.jhydrol.2024.130999
      Wei, T., He, S. P., Yan, Q., et al., 2018. Decadal Shift in West China Autumn Precipitation and Its Association with Sea Surface Temperature. Journal of Geophysical Research: Atmospheres, 123(2): 835-847. https://doi.org/10.1002/2017JD027092
      Wu, X. Y., Hao, Z. C., Hao, F. H., et al., 2019. Dry-Hot Magnitude Index: A Joint Indicator for Compound Event Analysis. Environmental Research Letters, 14(6): 064017. https://doi.org/10.1088/1748-9326/ab1ec7
      Wu, Z. W., Li, J. P., He, J. H., et al., 2006. Large-Scale Atmospheric Singularities and Summer Long-Cycle Droughts-Floods Abrupt Alternation in the Middle and Lower Reaches of the Yangtze River. Chinese Science Bulletin, 51(16): 2027-2034. https://doi.org/10.1007/s11434-006-2060-x
      Xia, J., Chen, J., She, D. X., 2022. Impacts and Countermeasures of Extreme Drought in the Yangtze River Basin in 2022. Journal of Hydraulic Engineering, 53(10): 1143-1153 (in Chinese with English abstract).
      Yang, C. P., Tuo, Y. F., Ma, J. M., et al., 2019a. Spatial and Temporal Evolution Characteristics of Drought in Yunnan Province from 1969 to 2018 Based on SPI/SPEI. Water, Air, & Soil Pollution, 230(11): 269. https://doi.org/10.1007/s11270-019-4287-6
      Yang, J. W., Chen, H., Hou, Y. K., et al., 2019b. A Method to Identify the Drought-Flood Transition Based on the Meteorological Drought Index. Acta Geographica Sinica, 74(11): 2358-2370 (in Chinese with English abstract)
      Yang, P., Zhang, S. Q., Xia, J., et al., 2022. Analysis of Drought and Flood Alternation and Its Driving Factors in the Yangtze River Basin under Climate Change. Atmospheric Research, 270: 106087. https://doi.org/10.1016/j.atmosres.2022.106087
      Yang, S. Y., Wu, B. Y., Zhang, R. H., et al., 2013. Relationship between an Abrupt Drought-Flood Transition over Mid-Low Reaches of the Yangtze River in 2011 and the Intraseasonal Oscillation over Mid-High Latitudes of East Asia. Acta Meteorologica Sinica, 27(2): 129-143. https://doi.org/10.1007/s13351-013-0201-0
      Zhang, C., Wang, Z. Y., Zhou, B. T., et al., 2019. Trends in Autumn Rain of West China from 1961 to 2014. Theoretical and Applied Climatology, 135(1): 533-544. https://doi.org/10.1007/s00704-017-2361-9
      Zhang, D. Y., Wu, Y. Q., Li, N., 2017. Analysis on Evolution Trend of Hydrological Variables in Niyanghe Basin Based on Mann-Kendall Test. China Rural Water and Hydropower, (12): 86-89 (in Chinese with English abstract).
      Zhang, X. D., Shi, R. Q., Wu, D., et al., 2021. Drought Characteristics of Haihe Plain Based on SPI and Cloud Model. Transactions of the Chinese Society for Agricultural Machinery, 52(7): 313-321 (in Chinese with English abstract)
      Zhang, Y. F., Zhai, L. N., Lin, P. R., et al., 2021. Variation Characteristics and Driving Factors of Drought and Flood and Their Abrupt Alternations in a Typical Basin in the Middle Reaches of Yangtze River. Engineering Journal of Wuhan University, 54(10): 887-897, 933 (in Chinese with English abstract).
      Zhao, D. S., Deng, S. Q., Zhang, J. C., 2022. Spatiotemporal Characteristics of Dry-Wet Abrupt Alternation Events in China during 1960-2018. International Journal of Climatology, 42(16): 9612-9625. https://doi.org/10.1002/joc.7850
      Zhou, C. H., Xiao, D. X., Yu, S. H., 2022. Comparison of the Structural Characteristics of the the Jiulong Vortex Continuing to Move Northeast and Stagnating in the Sichuan Basin. Plateau Meteorology, 41(5): 1220-1231 (in Chinese with English abstract).
      Zhou, P., Liu, Z. Y., 2018. Likelihood of Concurrent Climate Extremes and Variations over China. Environmental Research Letters, 13(9): 094023. https://doi.org/10.1088/1748-9326/aade9e
      陈桂亚, 郑静, 张潇, 2022. 2021年丹江口水库防洪与蓄水. 中国水利, (5): 24-27.
      陈剀, 钟霖浩, 华丽娟, 等, 2020. 华西秋雨趋势变化的年代际转折及其成因分析. 气候与环境研究, 25(1): 90-102.
      陈思奇, 徐峰, 李雅洁, 等, 2020. 近70 a北太平洋夏季SST及其与西太副高变化特征的相关. 热带气象学报, 36(6): 846-854.
      段明铿, 李欣, 王盘兴, 2020. 中国台站冬夏季气温、降水的气候变化特征及其显著性检验. 大气科学学报, 43(5): 888-896.
      郭生练, 李娜, 王俊, 等, 2023. 华西秋雨与梅雨对三峡水库蓄水调度影响分析. 人民长江, 54(7): 69-74.
      罗霄, 李栋梁, 王慧, 2013. 华西秋雨演变的新特征及其对大气环流的响应. 高原气象, 32(4): 1019-1031.
      马建华, 2020. 2020年长江流域防洪减灾工作实践及思考. 人民长江, 51(12): 1-7.
      闪丽洁, 张利平, 陈心池, 等, 2015. 长江中下游流域旱涝急转时空演变特征分析. 长江流域资源与环境, 24(12): 2100-2107.
      孙昭萱, 张强, 孙蕊, 等, 2022. 2022年西南地区极端高温干旱特征及其主要影响. 干旱气象, 40(5): 764-770.
      涂新军, 庞万宁, 陈晓宏, 等, 2022. 传统旱涝急转评估指数的局限和改进. 水科学进展, 33(4): 592-601.
      夏军, 陈进, 佘敦先, 2022. 2022年长江流域极端干旱事件及其影响与对策. 水利学报, 53(10): 1143-1153.
      杨家伟, 陈华, 侯雨坤, 等, 2019. 基于气象旱涝指数的旱涝急转事件识别方法. 地理学报, 74(11): 2358-2370.
      张东艳, 吴运卿, 李妮, 2017. 基于Mann-Kendall检验的尼洋河流域水文变量演变趋势分析. 中国农村水利水电(12): 86-89.
      张旭东, 石瑞强, 吴迪, 等, 2021. 基于SPI和云模型的海河平原区干旱特征研究. 农业机械学报, 52(7): 313-321.
      张云帆, 翟丽妮, 林沛榕, 等, 2021. 长江中下游典型流域旱涝与旱涝/涝旱急转演变规律及其驱动因子研究. 武汉大学学报(工学版), 54(10): 887-897, 933.
      周春花, 肖递祥, 郁淑华, 2022. 持续东北移和在四川盆地停滞的九龙涡结构特征比较. 高原气象, 41(5): 1220-1231.
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  5
    • HTML全文浏览量:  6
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-24
    • 网络出版日期:  2025-10-10
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回