The Mitigation of SOA and O3 by VOCs Emission Reduction
-
摘要:
挥发性有机物(VOCs)是臭氧(O3)和二次有机气溶胶(SOA)的重要前体物.然而,目前关于VOCs排放控制对SOA和O3缓解作用的研究仍然不足.本研究总结了四大排放源的精细化VOCs减排潜力,进一步利用WRF-Chem模型量化了中国主要大气污染区污染事件期间VOCs减排对SOA和O3缓解的效益.结果表明,通过精细化VOCs减排,华北、长三角、华中、珠三角和四川盆地的SOA浓度分别降低了89.2%、81.2%、74.5%、72.0%和77.3%.其中,工业VOCs减排是SOA缓解的主要贡献因素.然而,由于O3及其前体物的非线性光化学过程,这种VOCs减排只能使O3浓度降低不到10%.华北、长三角、华中、珠三角和四川盆地的O3浓度分别降低了7.55、9.05、7.29、4.31和3.15 μg/m3.减少工业、交通和居民VOCs排放分别使臭氧平均浓度降低了3.6%(3.48 μg/m3)、2.2%(2.07 μg/m3)和1.1%(0.98 μg/m3).
-
关键词:
- 臭氧 /
- 二次有机气溶胶 /
- 挥发性有机物(VOCs) /
- 大气污染缓解 /
- VOCs减排 /
- WRF-Chem模拟
Abstract:Volatile organic compounds (VOCs) are the important precursors of ozone (O3) and secondary organic aerosols (SOA). However, current research on the mitigation of SOA and O3 by VOCs emission reduction is still insufficient. In this study, based on previous research and policies, a refined VOCs emission reduction potential covering four major emission sources was summarized. The benefits of VOCs emission reduction on SOA and ozone mitigation during the pollution events for five major air pollution regions in China were quantified using the WRF-Chem model. The results showed that the refined VOCs emission reduction strategy could reduce the SOA concentrations by 89.2%, 81.2%, 74.5%, 72.0%, and 77.3% in the North China Plain region, Yangtze River Delta, Central China, Pearl River Delta and Sichuan Basin, respectively. The reduction potential of industrial VOCs emissions is the main contributor to the SOA mitigation in these five regions. Nevertheless, such VOCs emission reduction could only reduce ozone concentration by less than 10%, due to the nonlinear photochemical processes of ozone and its precursors. The refined VOCs emission reduction strategy could reduce the O3 concentrations by 7.55, 9.05, 7.29, 4.31, and 3.15 μg/m3 in five areas, respectively. VOCs emission reduction of industry, transportation and residential could reduce the ozone concentration by 3.6% (3.48 μg/m3), 2.2% (2.07 μg/m3) and 1.1% (0.98 μg/m3), respectively, on average in the five main air pollution regions.
-
图 2 5个城市地区PM2.5(a~e)及O3(f~j)模拟结果与观测的相关性及平均偏差
图a、f对应NCP地区,图b、g对应YRD地区,图c、h对应CC地区,图d、i对应PRD地区,图e、j对应SCB地区;(a~e)模拟时间段为2017年2月11日至17日,(f~j)模拟时间段为2017年6月1日至9日;图中横坐标是PM2.5和O3的观测浓度值,纵坐标是模拟浓度值,单位为μg/m3
Fig. 2. The correlation and average deviation between observation and simulation for PM2.5 (a-e) and O3 (f-j) in 5 urban areas
表 1 WRF-Chem物理和化学方案的配置
Table 1. Configuration of the WRF-Chem physical and chemical program
参数方案 WRF-Chem具体选项 参考来源 微物理 Lin微物理过程方案 Lin et al., 1983 长波辐射 RRTM长波辐射方案 Gallus and Bresch, 2006 短波辐射 Goddard短波辐射方案 Chou and Suarez, 1999 地表参数化方案 MM5地表参数化方案 Jiménez et al., 2012 陆面模型 Noah陆面模型 Ek et al., 2003 边界层方案 YSU边界层方案 Noh et al., 2003 积云参数化方案 Grell 3D积云参数化方案 Grell and Dévényi, 2002 化学方案 CB05机制和SAPRC-99机制 Sarwar et al., 2008和Carter, 1990 表 2 WRF-Chem模型敏感性试验的描述
Table 2. Description of sensitivity test of WRF-Chem model
减排方案 描述 CON 应用原始的排放情况 C20 全国人为VOCs污染源排放量减少20% C40 全国人为VOCs污染源排放量减少40% C60 全国人为VOCs污染源排放量减少60% C80 全国人为VOCs污染源排放量减少80% C100 全国人为VOCs污染源排放量设置为零 AGR 农业VOCs排放量设置为零 IND 工业VOCs排放量设置为零 POW 发电部门VOCs排放量设置为零 TRA 交通运输VOCs排放量设置为零 RES 居民住宅VOCs排放量设置为零 REAL 根据实际文献和政策总结计算出的减排比例 表 3 各行业VOCs减排策略和减排潜力
Table 3. VOCs emission reduction strategies and emission reduction potential
部门 行业 VOCs排放控制策略 VOCs减排潜力 参考文献 工业 石油化工 对失控排放的有效控制(包括泄漏检测与修复系统(LDAR)、过程控制、源头排放控制) 40% Simayi et al., 2021和Wang et al., 2023a 溶剂 油漆 绿色涂料替代 70%~80% Shi et al., 2023 工业粘合剂 实施更严格的VOCs排放限制 60% Gao et al., 2021b 印刷 使用VOCs含量低的原材料 46%~66% You et al., 2023 农药 吸附/冷凝分离/催化燃烧 70%~90% Zheng et al., 2017 干洗 冷凝分离 70%~85% Zheng et al., 2017 制药行业 使用LDAR技术 55%~72% Zhang et al., 2021 交通运输 道路车辆 摩托车:安装排放控制装置 45%~88% Dhital et al., 2019 乘用车:加强排放监测和执法,并结合车辆数量的监管限制 51% Wu et al., 2023 非道路车辆 船舶:更换燃料 67% Wu et al., 2019 居民住宅 固体燃料(煤、生物质燃料等) 清洁供暖技术 90% He et al., 2023和Sun et al., 2019 表 4 气象因子模拟结果的对比结果,包括观测和模拟结果的平均偏差(MB)、平均归一化偏差(NMB)、平均误差(ME)和平均归一化误差(NME)
Table 4. Detailed statistics of meteorological factors. Mean bias (MB), normalized mean bias (NMB), mean error (ME) and normalized mean error (NME) of observation and simulation results.
R MB ME NMB(%) NME(%) PM2.5模拟时段(2017年2月11日至17日) U10 0.80 0.02(m/s) 0.82(m/s) 1.28 2.21 V10 0.86 ‒0.45(m/s) 1.05(m/s) 0.78 0.80 T2 0.95 0.90(K) 1.79(K) ‒0.002 0.007 RH2 0.86 ‒5.18(%) 11.67(%) ‒0.06 0.21 O3模拟时段(2017年6月1日至9日) U10 0.80 ‒0.28(m/s) 0.85(m/s) 0.31 ‒2.93 V10 0.87 ‒0.02(m/s) 0.96(m/s) 2.19 ‒1.79 T2 0.90 ‒0.15(K) 1.21(K) ‒0.000 6 0.004 RH2 0.89 ‒2.52(%) 5.91(%) ‒0.04 0.08 -
Azmi, S., Sharma, M., 2022. Preventing Biogenic Secondary Organic Aerosols Formation in India. Atmospheric Environment, 290: 119352. https://doi.org/10.1016/j.atmosenv.2022.119352 Bai, X. X., Liu, W., Wu, B. B., et al., 2023. Emission Characteristics and Inventory of Volatile Organic Compounds from the Chinese Cement Industry Based on Field Measurements. Environmental Pollution, 316: 120600. https://doi.org/10.1016/j.envpol.2022.120600 Batterman, S., Xu, L. Z., Chen, F., et al., 2016. Characteristics of PM2.5 Concentrations across Beijing during 2013-2015. Atmospheric Environment, 145: 104-114. https://doi.org/10.1016/j.atmosenv.2016.08.060 Carter, W. P. L., 1990. A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds. Atmospheric Environment Part A General Topics, 24(3): 481-518. https://doi.org/10.1016/0960-1686(90)90005-8 Chou, M. D., Suarez, M. J., 1999. A Solar Radiation Parameterization for Atmospheric Studies. NASA Technical Reports Server, 15: 104606. Dhital, N. B., Yang, H. H., Wang, L. C., et al., 2019. VOCs Emission Characteristics in Motorcycle Exhaust with Different Emission Control Devices. Atmospheric Pollution Research, 10(5): 1498-1506. https://doi.org/10.1016/j.apr.2019.04.007 Duan, C. S., Liao, H., Wang, K. D., et al., 2023. The Research Hotspots and Trends of Volatile Organic Compound Emissions from Anthropogenic and Natural sources: A Systematic Quantitative Review. Environmental Research, 216: 114386. https://doi.org/10.1016/j.envres.2022.114386 Ek, M. B., Mitchell, K. E., Lin, Y., et al., 2003. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. Journal of Geophysical Research: Atmospheres, 108(D22): 8851. https://doi.org/10.1029/2002JD003296 Emery, C., Liu, Z., Russell, A. G., et al., 2017. Recommendations on Statistics and Benchmarks to Assess Photochemical Model Performance. Journal of the Air & Waste Management Association, 67(5): 582-598. https://doi.org/10.1080/10962247.2016.1265027 Epping, R., Koch, M., 2023. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules, 28(4): 1598. https://doi.org/10.3390/molecules28041598 Gallus, W. A. Jr, Bresch, J. F., 2006. Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts. Monthly Weather Review, 134(9): 2632-2641. https://doi.org/10.1175/mwr3198.1 Gao, L. B., Wang, T. J., Ren, X. J., et al., 2021a. Subseasonal Characteristics and Meteorological Causes of Surface O3 in Different East Asian Summer Monsoon Periods over the North China Plain during 2014-2019. Atmospheric Environment, 264: 118704. https://doi.org/10.1016/j.atmosenv.2021.118704 Gao, M. P., Liu, W. W., Wang, H. L., et al., 2021b. Emission Factors and Characteristics of Volatile Organic Compounds (VOCs) from Adhesive Application in Indoor Decoration in China. Science of The Total Environment, 779: 145169. https://doi.org/10.1016/j.scitotenv.2021.145169 Gao, M., Gao, J. H., Zhu, B., et al., 2020. Ozone Pollution over China and India: Seasonality and Sources. Atmospheric Chemistry and Physics, 20(7): 4399-4414. https://doi.org/10.5194/acp-20-4399-2020 Grell, G. A., Dévényi, D., 2002. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophysical Research Letters, 29(14): 38-1-38-4. https://doi.org/10.1029/2002GL015311 Guo, H., Ling, Z. H., Cheng, H. R., et al., 2017. Tropospheric Volatile Organic Compounds in China. Science of The Total Environment, 574: 1021-1043. https://doi.org/10.1016/j.scitotenv.2016.09.116 Hallquist, M., Wenger, J. C., Baltensperger, U., et al., 2009. The Formation, Properties and Impact of Secondary Organic Aerosol: current and Emerging Issues. Atmospheric Chemistry and Physics, 9(14): 5155-5236. https://doi.org/10.5194/acp-9-5155-2009 He, K., Fu, T., Zhang, B., et al., 2023. Examination of Long-Time Aging Process on Volatile Organic Compounds Emitted from Solid Fuel Combustion in a Rural Area of China. Chemosphere, 333: 138957. https://doi.org/10.1016/j.chemosphere.2023.138957 Huang, R. J., Zhang, Y. L., Bozzetti, C., et al., 2014. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature, 514(7521): 218-222. https://doi.org/10.1038/nature13774 Huang, Y. S., Hsieh, C. C., 2019. Ambient Volatile Organic Compound Presence in the Highly Urbanized City: source Apportionment and Emission Position. Atmospheric Environment, 206: 45-59. https://doi.org/10.1016/j.atmosenv.2019.02.046 Hui, L. R., Liu, X. G., Tan, Q. W., et al., 2020. VOC Characteristics, Chemical Reactivity and Sources in Urban Wuhan, Central China. Atmospheric Environment, 224: 117340. https://doi.org/10.1016/j.atmosenv.2020.117340 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., et al., 2009. Evolution of Organic Aerosols in the Atmosphere. Science, 326(5959): 1525-1529. https://doi.org/10.1126/science.1180353 Jiménez, P. A., Dudhia, J., González-Rouco, J. F., et al., 2012. A Revised Scheme for the WRF Surface Layer Formulation. Monthly Weather Review, 140(3): 898-918. https://doi.org/10.1175/mwr-d-11-00056.1 Jiménez-López, A. M., Hincapié-Llanos, G. A., 2022. Identification of Factors Affecting the Reduction of VOC Emissions in the Paint industry: Systematic Literature Review-SLR. Progress in Organic Coatings, 170: 106945. https://doi.org/10.1016/j.porgcoat.2022.106945 Li, J. X., Wang, Z. X., Chen, L. L., et al., 2020. WRF-Chem Simulations of Ozone Pollution and Control Strategy in Petrochemical Industrialized and Heavily Polluted Lanzhou City, Northwestern China. Science of The Total Environment, 737: 139835. https://doi.org/10.1016/j.scitotenv.2020.139835 Li, J., Han, Z. W., Wu, J., et al., 2022a. Secondary Organic Aerosol Formation and Source Contributions over East China in Summertime. Environmental Pollution, 306: 119383. https://doi.org/10.1016/j.envpol.2022.119383 Li, M. M., Wang, T. J., Shu, L., et al., 2021. Rising Surface Ozone in China from 2013 to 2017: A Response to the Recent Atmospheric Warming or Pollutant Controls? Atmospheric Environment, 246: 118130. https://doi.org/10.1016/j.atmosenv.2020.118130 Li, M., Liu, H., Geng, G. N., et al., 2017. Anthropogenic Emission Inventories in China: A Review. National Science Review, 4(6): 834-866. https://doi.org/10.1093/nsr/nwx150 Li, X. B., Yuan, B., Wang, S. H., et al., 2022b. Variations and Sources of Volatile Organic Compounds (VOCs) in Urban Region: Insights from Measurements on a Tall Tower. Atmospheric Chemistry & Physics, 22(16): 10567-10587. https://doi.org/10.5194/acp-22-10567-2022 Li, Y. F., Wu, Z. H., Ji, Y. Y., et al., 2024. Comparison of the Ozone Formation Mechanisms and VOCs Apportionment in Different Ozone Pollution Episodes in Urban Beijing in 2019 and 2020: Insights for Ozone Pollution Control Strategies. Science of The Total Environment, 908: 168332. https://doi.org/10.1016/j.scitotenv.2023.168332 Lin, Y. L., Farley, R. D., Orville, H. D., 1983. Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22(6): 1065-1092. https://doi.org/10.1175/1520-0450(1983)0221065:bpotsf>2.0.co;2 doi: 10.1175/1520-0450(1983)0221065:bpotsf>2.0.co;2 Liu, J. W., Li, X., Tan, Z. F., et al., 2021. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3-NOx-VOC Sensitivity. Environmental Science & Technology, 55(16): 10935-10945. https://doi.org/10.1021/acs.est.0c07506 Liu, Y. M., Hong, Y. Y., Fan, Q., et al., 2017. Source-Receptor Relationships for PM2.5 during Typical Pollution Episodes in the Pearl River Delta City Cluster, China. Science of The Total Environment, 596: 194-206. https://doi.org/10.1016/j.scitotenv.2017.03.255 Ma, W., Feng, Z. M., Zhan, J. L., et al., 2022. Influence of Photochemical Loss of Volatile Organic Compounds on Understanding Ozone Formation Mechanism. Atmospheric Chemistry and Physics, 22(7): 4841-4851. https://doi.org/10.5194/acp-22-4841-2022 Mo, Z. W., Shao, M., Lu, S. H., 2016. Compilation of a Source Profile Database for Hydrocarbon and OVOC Emissions in China. Atmospheric Environment, 143: 209-217. https://doi.org/10.1016/j.atmosenv.2016.08.025 Moeller, D., 2004. The Tropospheric Ozone Problem. Archives of Industrial Hygiene and Toxicology, 55(1): 11-23. Noh, Y., Cheon, W. G., Hong, S. Y., et al., 2003. Improvement of the K-Profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data. Boundary-Layer Meteorology, 107(2): 401-427. https://doi.org/10.1023/A:1022146015946 Pan, R. X., Wang, F. T., Zhao, X. Y., et al., 2024. Modeling Study on Ozone Pollution Event Control Pathways in a Typical Industrial City. Acta Scientiae Circumstantiae, 44(9): 21-31 (in Chinese with English abstract). Pan, W. J., Gong, S. L., Lu, K. D., et al., 2023. Multi-Scale Analysis of the Impacts of Meteorology and Emissions on PM2.5 and O3 Trends at Various Regions in China from 2013 to 2020 3. Mechanism Assessment of O3 Trends by a Model. Science of The Total Environment, 857: 159592. https://doi.org/10.1016/j.scitotenv.2022.159592 Qi, S. H., Sheng, G. Y., Fu, J. M., et al., 2001. PAHs in Aerosols at Dinghushan Natural Protection Zone. Earth Science, 26(1): 83-87 (in Chinese with English abstract). Sarwar, G., Luecken, D., Yarwood, G., et al., 2008. Impact of an Updated Carbon Bond Mechanism on Predictions from the CMAQ Modeling System: Preliminary Assessment. Journal of Applied Meteorology and Climatology, 47(1): 3-14. doi: 10.1175/2007JAMC1393.1 Sharma, S., Chatani, S., Mahtta, R., et al., 2016. Sensitivity Analysis of Ground Level Ozone in India Using WRF-CMAQ Models. Atmospheric Environment, 131: 29-40. https://doi.org/10.1016/j.atmosenv.2016.01.036 Shen, L. J., Hu, W. Y., Zhao, T. L., et al., 2021. Changes in the Distribution Pattern of PM2.5 Pollution over Central China. Remote Sensing, 13(23): 4855. https://doi.org/10.3390/rs13234855 Shi, Y. Q., Xi, Z. Y., Lyu, D. Q., et al., 2023. Sector-Based Volatile Organic Compound Emission Characteristics and Reduction Perspectives for Coating Materials Manufacturing in China. Journal of Cleaner Production, 394: 136407. https://doi.org/10.1016/j.jclepro.2023.136407 Simayi, M., Hao, Y. F., Li, J., et al., 2021. Historical Volatile Organic Compounds Emission Performance and Reduction Potentials in China's Petroleum Refining Industry. Journal of Cleaner Production, 292: 125810. https://doi.org/10.1016/j.jclepro.2021.125810 Simayi, M., Shi, Y. Q., Xi, Z. Y., et al., 2022. Emission Trends of Industrial VOCs in China since the Clean Air Action and Future Reduction Perspectives. Science of The Total Environment, 826: 153994. https://doi.org/10.1016/j.scitotenv.2022.153994 Stevenson, D. S., Dentener, F. J., Schultz, M. G., et al., 2006. Multimodel Ensemble Simulations of Present-Day and Near-Future Tropospheric Ozone. Journal of Geophysical Research: Atmospheres, 111(D8): D08301. https://doi.org/10.1029/2005JD006338 Sun, J., Shen, Z. X., Zhang, L. M., et al., 2019. Volatile Organic Compounds Emissions from Traditional and Clean Domestic Heating Appliances in Guanzhong Plain, China: Emission Factors, Source Profiles, and Effects on Regional Air Quality. Environment International, 133: 105252. https://doi.org/10.1016/j.envint.2019.105252 Veld, M. I., Seco, R., Reche, C., et al., 2024. Identification of Volatile Organic Compounds and Their Sources Driving Ozone and Secondary Organic Aerosol Formation in NE Spain. Science of The Total Environment, 906: 167159. https://doi.org/10.1016/j.scitotenv.2023.167159 Wang, H. L., Sun, S. M., Nie, L., et al., 2023a. A Review of Whole-Process Control of Industrial Volatile Organic Compounds in China. Journal of Environmental Sciences, 123: 127-139. https://doi.org/10.1016/j.jes.2022.02.037 Wang, J. Y., Gao, A. F., Li, S. R., et al., 2023b. Regional Joint PM2.5-O3 Control Policy Benefits Further Air Quality Improvement and Human Health Protection in Beijing-Tianjin-Hebei and Its Surrounding Areas. Journal of Environmental Sciences, 130: 75-84. https://doi.org/10.1016/j.jes.2022.06.036 Wang, P. F., Qiao, X., Zhang, H. L., 2020. Modeling PM2.5 and O3 with Aerosol Feedbacks Using WRF/Chem over the Sichuan Basin, Southwestern China. Chemosphere, 254: 126735. https://doi.org/10.1016/j.chemosphere.2020.126735 Wang, R. P., Wang, X. Q., Cheng, S. Y., et al., 2022. Emission Characteristics and Reactivity of Volatile Organic Compounds from Typical High-Energy-Consuming Industries in North China. Science of The Total Environment, 809: 151134. https://doi.org/10.1016/j.scitotenv.2021.151134 Wang, R. Y., Wang, L. L., Xue, M., et al., 2023c. New Insight into Formation Mechanism, Source and Control Strategy of Severe O3 pollution: The Case from Photochemical Simulation in the Wuhan Metropolitan Area, Central China. Atmospheric Research, 284: 106605. https://doi.org/10.1016/j.atmosres.2023.106605 Wang, T., Xue, L. K., Brimblecombe, P., et al., 2017. Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Science of The Total Environment, 575: 1582-1596. https://doi.org/10.1016/j.scitotenv.2016.10.081 Wei, J., Li, Z. Q., Li, K., et al., 2022a. Full-Coverage Mapping and Spatiotemporal Variations of Ground-Level Ozone (O3) Pollution from 2013 to 2020 across China. Remote Sensing of Environment, 270: 112775. https://doi.org/10.1016/j.rse.2021.112775 Wei, W., Li, Y., Ren, Y. T., et al., 2019. Sensitivity of Summer Ozone to Precursor Emission Change over Beijing during 2010-2015: A WRF-Chem Modeling Study. Atmospheric Environment, 218: 116984. https://doi.org/10.1016/j.atmosenv.2019.116984 Wei, W., Lv, Z. F., Li, Y., et al., 2018. A WRF-Chem Model Study of the Impact of VOCs Emission of a Huge Petro-Chemical Industrial Zone on the Summertime Ozone in Beijing, China. Atmospheric Environment, 175: 44-53. https://doi.org/10.1016/j.atmosenv.2017.11.058 Wei, W., Wang, S. X., Hao, J. M., et al., 2011. Projection of Anthropogenic Volatile Organic Compounds (VOCs) Emissions in China for the Period 2010-2020. Atmospheric Environment, 45(38): 6863-6871. https://doi.org/10.1016/j.atmosenv.2011.01.013 Wei, W., Wang, X. F., Wang, X. Q., et al., 2022b. Attenuated Sensitivity of Ozone to Precursors in Beijing-Tianjin-Hebei Region with the Continuous NOx Reduction within 2014-2018. Science of The Total Environment, 813: 152589. https://doi.org/10.1016/j.scitotenv.2021.152589 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., et al., 2011. The Fire Inventory from Ncar (Finn): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geoscientific Model Development, 4(3): 625-641. doi: 10.5194/gmd-4-625-2011 Wu, D., Ding, X., Li, Q., et al., 2019. Pollutants Emitted from Typical Chinese Vessels: Potential Contributions to Ozone and Secondary Organic Aerosols. Journal of Cleaner Production, 238: 117862. https://doi.org/10.1016/j.jclepro.2019.117862 Wu, T. R., Cui, Y. Y., Lian, A. P., et al., 2023. Vehicle Emissions of Primary Air Pollutants from 2009 to 2019 and Projection for the 14th Five-Year Plan Period in Beijing, China. Journal of Environmental Sciences, 124: 513-521. https://doi.org/10.1016/j.jes.2021.11.038 Wu, W. J., Zhao, B., Wang, S. X., et al., 2017. Ozone and Secondary Organic Aerosol Formation Potential from Anthropogenic Volatile Organic Compounds Emissions in China. Journal of Environmental Sciences, 53: 224-237. https://doi.org/10.1016/j.jes.2016.03.025 Xuan, L. C., Ma, Y. N., Xing, Y. F., et al., 2021. Source, Temporal Variation and Health Risk of Volatile Organic Compounds (VOCs) from Urban Traffic in Harbin, China. Environmental Pollution, 270: 116074. https://doi.org/10.1016/j.envpol.2020.116074 Xue, Y. F., Tian, H. Z., Yan, J., et al., 2016. Temporal Trends and Spatial Variation Characteristics of Primary Air Pollutants Emissions from Coal-Fired Industrial Boilers in Beijing, China. Environmental Pollution, 213: 717-726. https://doi.org/10.1016/j.envpol.2016.03.047 Yang, J. H., Kang, S. C., Ji, Z. M., et al., 2020. Investigation of Variations, Causes and Component Distributions of PM2.5 Mass in China Using a Coupled Regional Climate-Chemistry Model. Atmospheric Pollution Research, 11(2): 319-331. https://doi.org/10.1016/j.apr.2019.11.005 Yin, D. J., Song, Q., Guo, Y. X., et al., 2025. Regional Transport Characteristics of PM2.5 Pollution Events in Beijing during 2018-2021. Journal of Environmental Sciences, 152: 503-515. https://doi.org/10.1016/j.jes.2024.05.044 You, G. Y., Liu, H. F., Sun, R., et al., 2023. Characterizing VOCs Emissions of Five Packaging and Printing Enterprises in China and the Emission Reduction Potential of This Industry. Journal of Cleaner Production, 420: 138445. https://doi.org/10.1016/j.jclepro.2023.138445 Young, P. J., Archibald, A. T., Bowman, K. W., et al., 2013. Pre-Industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(4): 2063-2090. https://doi.org/10.5194/acp-13-2063-2013 Zhai, S. X., Jacob, D. J., Wang, X., et al., 2019. Fine Particulate Matter (PM2.5) Trends in China, 2013-2018: separating Contributions from Anthropogenic Emissions and Meteorology. Atmospheric Chemistry and Physics, 19(16): 11031-11041. https://doi.org/10.5194/acp-19-11031-2019 Zhang, G. F., Fei, B., Xiu, G. L., 2021. Characteristics of Volatile Organic Compound Leaks from Equipment Components: A Study of the Pharmaceutical Industry in China. Sustainability, 13(11): 6274. https://doi.org/10.3390/su13116274 Zhang, X. Y., Wang, X. Q., Wang, C. D., et al., 2023. Ozone Sensitivity and Precursor Emission Reduction Scheme in Baoding City in Summer. China Environmental Science, 43(6): 2703-2713 (in Chinese with English abstract). Zheng, B., Tong, D., Li, M., et al., 2018. Trends in China's Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmospheric Chemistry & Physics, 18(19): 14095-14111. https://doi.org/10.5194/acp-18-14095-2018 Zheng, C. H., Shen, J. L., Zhang, Y. X., et al., 2017. Quantitative Assessment of Industrial VOC Emissions in China: Historical Trend, Spatial Distribution, Uncertainties, and Projection. Atmospheric Environment, 150: 116-125. https://doi.org/10.1016/j.atmosenv.2016.11.023 Zhou, D. R., Liu, Y., Gao, J., et al., 2023. Assessment of Ozone Sensitivity and Emission Reduction Scenarios in Typical Pollution Processes in Eastern China. Transactions of Atmospheric Sciences, 46(5): 667-678 (in Chinese with English abstract). Zhu, B., Han, Y., Wang, C., et al., 2019. Understanding Primary and Secondary Sources of Ambient Oxygenated Volatile Organic Compounds in Shenzhen Utilizing Photochemical Age-Based Parameterization Method. Journal of Environmental Sciences, 75: 105-114. https://doi.org/10.1016/j.jes.2018.03.008 Zhu, J. L., Penner, J. E., Lin, G. X., et al., 2017. Mechanism of SOA Formation Determines Magnitude of Radiative Effects. Proceedings of the National Academy of Sciences of the United States of America, 114(48): 12685-12690. https://doi.org/10.1073/pnas.1712273114 Ziemann, P. J., Atkinson, R., 2012. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chemical Society Reviews, 41(19): 6582-6605. https://doi.org/10.1039/C2CS35122F 潘瑞欣, 王芳婷, 赵秀颖, 等, 2024. 典型工业城市臭氧污染事件调控路径模拟研究. 环境科学学报, 44(9): 21-31. 祁士华, 盛国英, 傅家谟, 等, 2001. 鼎湖山自然保护区大气气溶胶中的PAHs. 地球科学, 26(1): 83-87. http://www.earth-science.net/article/id/814 张新宇, 王晓琦, 王传达, 等, 2023. 保定市夏季臭氧生成敏感性及前体物减排方案. 中国环境科学, 43(6): 2703-2713. 周德荣, 刘祎, 高健, 等, 2023. 中国东部地区典型臭氧污染过程防控敏感性及减排情景研究. 大气科学学报, 46(5): 667-678. -