• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    洪湖湿地-地下水系统中氮来源与转化过程的水化学和多同位素解析

    张彦鹏 严克涛 陈晨

    张彦鹏, 严克涛, 陈晨, 2024. 洪湖湿地-地下水系统中氮来源与转化过程的水化学和多同位素解析. 地球科学, 49(11): 3946-3959. doi: 10.3799/dqkx.2024.093
    引用本文: 张彦鹏, 严克涛, 陈晨, 2024. 洪湖湿地-地下水系统中氮来源与转化过程的水化学和多同位素解析. 地球科学, 49(11): 3946-3959. doi: 10.3799/dqkx.2024.093
    Zhang Yanpeng, Yan Ketao, Chen Chen, 2024. Hydrochemical and Multi-Isotope Analysis of Nitrogen Sources and Transformation Processes in the Wetland-Groundwater System of Honghu Lake. Earth Science, 49(11): 3946-3959. doi: 10.3799/dqkx.2024.093
    Citation: Zhang Yanpeng, Yan Ketao, Chen Chen, 2024. Hydrochemical and Multi-Isotope Analysis of Nitrogen Sources and Transformation Processes in the Wetland-Groundwater System of Honghu Lake. Earth Science, 49(11): 3946-3959. doi: 10.3799/dqkx.2024.093

    洪湖湿地-地下水系统中氮来源与转化过程的水化学和多同位素解析

    doi: 10.3799/dqkx.2024.093
    基金项目: 

    湖北省自然科学基金项目 2023AFD216

    国家地质调查项目 DD20230076

    详细信息
      作者简介:

      张彦鹏(1985-),男,高级工程师,从事环境水文地质方面的研究. ORCID:0000-0002-1563-268X. E-mail:yanpeng1028@126.com

      通讯作者:

      严克涛, ORCID: 0000-0003-1770-0348. E-mail: yanktwork@gmail.com

    • 中图分类号: P641

    Hydrochemical and Multi-Isotope Analysis of Nitrogen Sources and Transformation Processes in the Wetland-Groundwater System of Honghu Lake

    • 摘要: 为研究地表水-地下水相互作用如何影响湿地-地下水系统中氮的赋存形态与来源,以洪湖湿地为研究区,基于地下水流场、水化学和稳定同位素手段,对湿地-地下水系统中氮的赋存形态、来源与转化过程进行分析.结果表明,硝态氮(NO3-)和铵态氮(NH4+)分别是洪湖湿地地表水和地下水中氮的主要赋存形态.地表水中的NO3-主要来自外部河渠输入,地下水中的NH4+可能来自有机质降解与自养硝酸盐异化还原为铵(DNRA),后者为主要来源.富营养化湖水-地下水相互作用可向地下水输入NO3-,并在DNRA作用下形成局部高NH4+地下水,湿地地表水-地下水相互作用是影响地下水质的重要驱动力.

       

    • 图  1  洪湖湿地水样采集点位

      Fig.  1.  Location of water samples from Honghu Lake wetland

      图  2  洪湖湿地地下水等值线

      a. 2023年5月底;b. 2023年10月底

      Fig.  2.  Contour map of groundwater levels in Honghu Lake wetland

      图  3  洪湖湿地水样品Piper三线图

      Fig.  3.  Piper diagram of the water samples from Honghu Lake wetland

      图  4  洪湖湿地水样品聚类热图

      a. 为地表水;b. 为地下水

      Fig.  4.  Cluster heatmap of water samples from Honghu Lake wetland

      图  5  洪湖湿地水样品Gibbs图

      Fig.  5.  Gibbs diagram of the water samples from Honghu Lake wetland

      图  6  水化学指标Spearman相关性热图

      a. 为地表水;b. 为地下水

      Fig.  6.  Spearman correlation heatmap of hydrochemical indices for water samples

      图  7  洪湖湿地样品中N的形态与分布

      颜色斑块反映地表水或地下水的聚类特征

      Fig.  7.  Speciation and distribution of N in surface water and groundwater samples from Honghu Lake wetland

      图  8  洪湖湿地水样品氢氧同位素分析

      a. 氢氧同位素分布;b. 地表水中TN与d-excess关系

      Fig.  8.  Hydrogen and oxygen isotope analysis of water samples from Honghu Lake wetland

      图  9  地下水中NH4+浓度与氮同位素关系

      Fig.  9.  Relationship between NH4-N concentration and δ15N-NH4 in groundwater

      图  10  地下水中NH4+浓度与δ13C-DOC (a)和δ13C-DIC (b)关系

      Fig.  10.  Relationship between NH4-N concentration and δ13C-DOC(a), δ13C-DIC(b) in groundwater

      图  11  洪湖湿地主要氮形态富集与转化概念模型

      Fig.  11.  Conceptual model for the enrichment and transformation of primary N species in Honghu Lake wetland

      表  1  样品水化学类型与氮形态统计

      Table  1.   Statistical table of sample water chemical types and nitrogen species

      类型 采样深度
      (m)
      水化学类型 NO3-N (mg/L) NO2-N (mg/L) NH4-N (mg/L)
      范围 均值 范围 均值 范围 均值
      地下水 2~65 HCO3-Ca·Mg; HCO3·Cl-Ca·Mg; HCO3-Ca;
      Cl·HCO3-Ca;
      Cl-Ca·Mg
      n.d.~5.85 0.49 n.d.~0.06 0.01 n.d.~2.46 0.79
      地表水 - HCO3-Ca·Mg;
      HCO3-Ca·Mg·Na;
      HCO3-Ca;
      HCO3-Ca·Na·Mg
      n.d.~1.98 0.91 0.01~0.26 0.1 n.d.~0.74 0.2
      下载: 导出CSV

      表  2  洪湖湿地水样品主要水化学参数统计

      Table  2.   Statistical table of major hydrochemical parameters of the water samples from Honghu Lake wetland

      参数 地表水 地下水
      最大值 最小值 平均值 最大值 最小值 平均值
      pH 8.76 7.3 7.79 7.51 6.8 7.28
      ORP (mV) 268 95.8 189 193 ‒149 ‒9.69
      TDS (mg/L) 322 229 289 962 403 578
      K+ (mg/L) 5.72 2.82 4.74 3.6 0.73 1.76
      Na+ (mg/L) 30.8 15.4 22.3 47.8 7.78 22.9
      Ca2+ (mg/L) 58.8 40.4 51.2 198 85.4 119
      Mg2+ (mg/L) 18.4 11.1 16.4 55.6 15.1 31.9
      Cl (mg/L) 34.2 21 29.3 69.3 0.55 11.8
      SO42‒ (mg/L) 46.1 25.9 36.4 84.0 8.35 23.8
      HCO3 (mg/L) 245 149 213 930 395 627
      PO4‒P (mg/L) 0.09 n.d. 0.04 1.32 n.d. 0.27
      TP (mg/L) 0.09 0.01 0.05 1.64 0.01 0.29
      NO3-N (mg/L) 1.98 n.d. 0.91 5.85 n.d. 0.49
      NO2-N (mg/L) 0.26 0.01 0.10 0.06 n.d. 0.01
      NH4+-N (mg/L) 0.74 n.d. 0.20 2.46 n.d. 0.79
      TN (mg/L) 2.58 0.66 1.41 5.99 0.09 1.35
      Si (mg/L) 10.2 2.26 6.02 28.4 9.15 19.7
      Fe2+ (mg/L) n.d. n.d. n.d. 4.70 n.d. 1.52
      Fe3+ (mg/L) 0.47 n.d. 0.09 0.27 n.d. 0.08
      S2‒ (mg/L) n.d. n.d. n.d. 0.40 n.d. 0.03
      Sr (μg/L) 304 210 256 761 275 414
      F (mg/L) 0.48 0.15 0.30 0.69 0.05 0.26
      Br (μg/L) 0.94 n.d. 0.60 1.38 n.d. 0.48
      I (μg/L) 36.4 2.10 17.2 147 n.d. 51.4
      As (μg/L) 6.69 1.63 4.47 126 0.31 21.0
      下载: 导出CSV
    • Cheng, C., He, Q., Zhang, J., et al., 2022. New Insight into Ammonium Oxidation Processes and Mechanisms Mediated by Manganese Oxide in Constructed Wetlands. Water Research, 215: 118251. https://doi.org/10.1016/j.watres.2022.118251
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Deng, Z. M., Zhang, X., Pan, G. Y., 2016. Variations of Hydrogen and Oxygen Isotopes in Meteoric Precipitation in Wuhan, China. Journal of Yangtze River Scientific Research Institute, 33(7): 12-17, 22 (in Chinese).
      Du, Y., Deng, Y. M., Ma, T., et al., 2020. Enrichment of Geogenic Ammonium in Quaternary Alluvial-Lacustrine Aquifer Systems: Evidence from Carbon Isotopes and DOM Characteristics. Environmental Science & Technology, 54(10): 6104-6114. https://doi.org/10.1021/acs.est.0c00131
      Fan, X. F., Gao, S. S., Ding, S. M., 2023. Millimeter-Scale Vertical Distribution of Bacterial Groups Involved in Nitrogen, Iron and Sulfur Cycling and Its Potential Influence on the Migration and Transformation of Nitrogen and Phosphorus in Sediments of Meiliang Bay, Lake Taihu. Journal of Lake Sciences, 35(3): 854-862 (in Chinese). doi: 10.18307/2023.0309
      Gao, Z. P., Weng, H. C., Guo, H. M., 2021. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi-Isotopic Approaches. Journal of Hydrology, 595: 125981. https://doi.org/10.1016/j.jhydrol.2021.125981
      Gan, Y. Q., Sun, X. L., Wu, J., et al., 2024. Spatio-Temporal Variations of Lacustrine Groundwater Discharge and Related Nutrient Fluxes in a Typical Lake in Front of Hillocks. Journal of Hydrology, 635: 131166. https://doi.org/10.1016/j.jhydrol.2024.131166
      Gu, X. M., Xue, M. Y., Ye, C. H., et al., 2024. Evaluating Heterogeneous Lacustrine Groundwater Discharge of Hulun Lake Using Radium Isotopes in Inner Mongolia, China. Journal of Hydrology: Regional Studies, 51: 101650. https://doi.org/10.1016/j.ejrh.2023.101650
      Guo, H. M., Gao, Z. P., Xiu, W., 2022. Research Status and Trend of Coupling Between Nitrogen Cycle and Arsenic Migration and Transformation in Groundwater System. Hydrogeology & Engineering Geology, 49(3): 153-163 (in Chinese).
      He, Z. J., Cai, J. J., Ni, Z. K., et al., 2018. Seasonal Characteristics of Nitrogen Sources from Different Ways and Its Contribution to Water Nitrogen in Lake Erhai. Acta Scientiae Circumstantiae, 38(5): 1939-1948 (in Chinese).
      Jahangir, M. M. R., Fenton, O., Müller, C., et al., 2017. In Situ Denitrification and DNRA Rates in Groundwater beneath an Integrated Constructed Wetland. Water Research, 111: 254-264. https://doi.org/10.1016/j.watres.2017.01.015
      Kayabali, K., Çelik, M., Karatosun, H., et al., 1999. The Influence of a Heavily Polluted Urban River on the Adjacent Aquifer Systems. Environmental Geology, 38(3): 233-243. https://doi.org/10.1007/s002540050420
      Knights, D., Parks, K. C., Sawyer, A. H., et al., 2017. Direct Groundwater Discharge and Vulnerability to Hidden Nutrient Loads along the Great Lakes Coast of the United States. Journal of Hydrology, 554: 331-341. https://doi.org/10.1016/j.jhydrol.2017.09.001
      Korbel, K. L., Rutlidge, H., Hose, G. C., et al., 2022. Dynamics of Microbiotic Patterns Reveal Surface Water Groundwater Interactions in Intermittent and Perennial Streams. Science of the Total Environment, 811: 152380. https://doi.org/10.1016/j.scitotenv.2021.152380
      Li, X. W., Deng, Q. H., Zhang, Z. M., et al., 2022. The Role of Sulfur Cycle and Enzyme Activity in Dissimilatory Nitrate Reduction Processes in Heterotrophic Sediments. Chemosphere, 308: 136385. https://doi.org/10.1016/j.chemosphere.2022.136385
      Li, X. F., Hou, L. J., Liu, M., et al., 2015. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland. Environmental Science & Technology, 49(19): 11560-11568. https://doi.org/10.1021/acs.est.5b03419
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Marandi, A., Shand, P., 2018. Groundwater Chemistry and the Gibbs Diagram. Applied Geochemistry, 97: 209-212. https://doi.org/10.1016/j.apgeochem.2018.07.009
      Negi, D., Verma, S., Singh, S., et al., 2022. Nitrogen Removal via Anammox Process in Constructed Wetland-A Comprehensive Review. Chemical Engineering Journal, 437: 135434. https://doi.org/10.1016/j.cej.2022.135434
      Nikolenko, O., Jurado, A., Borges, A. V., et al., 2018. Isotopic Composition of Nitrogen Species in Groundwater under Agricultural Areas: A Review. Science of the Total Environment, 621: 1415-1432. https://doi.org/10.1016/j.scitotenv.2017.10.086
      Pang, Y. M., Ji, G. D., 2019. Biotic Factors Drive Distinct DNRA Potential Rates and Contributions in Typical Chinese Shallow Lake Sediments. Environmental Pollution, 254: 112903. https://doi.org/10.1016/j.envpol.2019.07.071
      Robertson, E. K., Roberts, K. L., Burdorf, L. D. W., et al., 2016. Dissimilatory Nitrate Reduction to Ammonium Coupled to Fe(Ⅱ) Oxidation in Sediments of a Periodically Hypoxic Estuary. Limnology and Oceanography, 61(1): 365-381. https://doi.org/10.1002/lno.10220
      Robinson, C., 2015. Review on Groundwater as a Source of Nutrients to the Great Lakes and Their Tributaries. Journal of Great Lakes Research, 41(4): 941-950. https://doi.org/10.1016/j.jglr.2015.08.001
      Smith, R. L., Repert, D. A., Underwood, J. C., et al., 2024. Spatial, Seasonal, and Diel Controls of Nitrogen-Carbon-Oxygen Cycling during Lake-Water Infiltration to an Aquifer. Journal of Geophysical Research: Biogeosciences, 129(4): e2023JG007659. https://doi.org/10.1029/2023jg007659
      Sun, X. L., Du, Y., Deng, Y. M., et al., 2022. Contrasting Nutrients Input along with Groundwater Discharge to East Dongting Lake, Central China: A Geological Perspective. Ecological Indicators, 145: 109658. https://doi.org/10.1016/j.ecolind.2022.109658
      Sun, X. L., Du, Y., Deng, Y. M., et al., 2021. Contribution of Groundwater Discharge and Associated Contaminants Input to Dongting Lake, Central China, Using Multiple Tracers (222Rn, 18O, Cl-). Environmental Geochemistry and Health, 43(3): 1239-1255. https://doi.org/10.1007/s10653-020-00687-z
      Wang, C. R., Zheng, C. X., Zhang, M. M., et al., 2023. Research Progress in Ammonium Production from Microbial Dissimilatory Reduction of Nitrate and Nitrite. Acta Microbiologica Sinica, 63(4): 1340-1355 (in Chinese).
      Wang, Y. X., Du, Y., Deng, Y. M., et al., 2022. Lacustrine Groundwater Discharge and Lake Water Quality Evolution. Bulletin of Geological Science and Technology, 41(1): 1-10 (in Chinese).
      Wu, H. W., Wu, J. L., Song, F., et al., 2019. Spatial Distribution and Controlling Factors of Surface Water Stable Isotope Values (δ18O and δ2H) across Kazakhstan, Central Asia. Science of the Total Environment, 678: 53-61. https://doi.org/10.1016/j.scitotenv.2019.03.389
      Wu, Y., Zhang, B. C., Wan, Y. X., et al., 2023. Fe(0)-Dissimilatory Nitrate Reduction to Ammonium for Autotrophic Recovery of Reactive Nitrogen. Environmental Science & Technology, 57(45): 17353-17362. https://doi.org/10.1021/acs.est.3c06280
      Wu, X. C., Ma, T., Wang, Y. X., 2020. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 31(5): 1016-1028. https://doi.org/10.1007/s12583-020-1333-7
      Xia, Y., Xiao, J., Wang, W. Z., et al., 2024. Nitrate Dynamics in the Streamwater-Groundwater Interaction System: Sources, Fate, and Controls. Science of the Total Environment, 918: 170574. https://doi.org/10.1016/j.scitotenv.2024.170574
      Xiong, Y. J., Du, Y., Liu, M. H., et al., 2024. Revealing Degradation Pathways of Soluble and Dissolved Organic Matter in Alluvial-Lacustrine Aquifer Systems Impacted by High Levels of Geogenic Ammonium. Water Research, 264: 122215. https://doi.org/10.1016/j.watres.2024.122215
      Yang, F., He, B. Y., Zhou, Y. D., et al., 2023. Trophic Status Observations for Honghu Lake in China from 2000 to 2021 Using Landsat Satellites. Ecological Indicators, 146: 109898. https://doi.org/10.1016/j.ecolind.2023.109898
      Zhang, A. G., Liang, Y., Ma, R., 2024. Adsorption/ Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Effect on N Migration and Transformation. Earth Science, 49(10): 3761-3772 (in Chinese).
      Zhang, Q. Y., Zhao, Y. Q., Li, Y. J., et al. 2024. Application of Radon-222 to Assess Groundwater Discharge and Associated Nutrients Input in the Karst Wetland. China Environmental Science, 44(6): 3226-3239 (in Chinese).
      Zhu, Z. C., Liu, H., Mao S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843 (in Chinese).
      邓志民, 张翔, 潘国艳, 2016. 武汉市大气降水的氢氧同位素变化特征. 长江科学院院报, 33(7): 12-17, 22.
      范献方, 高帅帅, 丁士明, 2023. 太湖梅梁湾沉积物中氮铁硫转化细菌的毫米级垂向分布及对氮磷迁移转化的潜在影响. 湖泊科学, 35(3): 854-862.
      郭华明, 高志鹏, 修伟, 2022. 地下水氮循环与砷迁移转化耦合的研究现状和趋势. 水文地质工程地质, 49(3): 153-163.
      何宗建, 蔡静静, 倪兆奎, 等, 2018. 洱海不同途径氮来源季节性特征及对水体氮贡献. 环境科学学报, 38(5): 1939-1948.
      王侧容, 郑春霞, 张漫漫, 等, 2023. 微生物异化硝酸盐和亚硝酸盐产铵研究进展. 微生物学报, 63(4): 1340-1355.
      王焰新, 杜尧, 邓娅敏, 等, 2022. 湖底地下水排泄与湖泊水质演化. 地质科技通报, 41(1): 1-10.
      张安广, 梁莹, 马瑞, 2024. 地表水-地下水相互作用下NH4-N的吸附/解吸行为及其对N迁移转化的影响. 地球科学, 49(10): 3761-3772.
      张启元, 赵雨晴, 李远俊, 等, 2024. 222Rn示踪岩溶湿地地下水排泄及氮磷营养盐输入. 中国环境科学, 44(6): 3226-3239.
      朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843.
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  429
    • HTML全文浏览量:  141
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-16
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回