• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西北太平洋热带气旋生成‒快速增强复合事件的对流及环境特征

    施东雷 李箭 李启华

    施东雷, 李箭, 李启华, 2025. 西北太平洋热带气旋生成‒快速增强复合事件的对流及环境特征. 地球科学, 50(9): 3382-3394. doi: 10.3799/dqkx.2024.094
    引用本文: 施东雷, 李箭, 李启华, 2025. 西北太平洋热带气旋生成‒快速增强复合事件的对流及环境特征. 地球科学, 50(9): 3382-3394. doi: 10.3799/dqkx.2024.094
    Shi Donglei, Li Jian, Li Qihua, 2025. Convective and Environmental Characteristics of Tropical Cyclone Genesis-Rapid Intensification Compound Events in the Western North Pacific. Earth Science, 50(9): 3382-3394. doi: 10.3799/dqkx.2024.094
    Citation: Shi Donglei, Li Jian, Li Qihua, 2025. Convective and Environmental Characteristics of Tropical Cyclone Genesis-Rapid Intensification Compound Events in the Western North Pacific. Earth Science, 50(9): 3382-3394. doi: 10.3799/dqkx.2024.094

    西北太平洋热带气旋生成‒快速增强复合事件的对流及环境特征

    doi: 10.3799/dqkx.2024.094
    基金项目: 

    国家自然科学基金项目 42305004

    国家自然科学基金项目 42005007

    中国博士后科学基金项目 2023M743283

    中国地质大学(武汉)“地大学者”人才岗位科研启动经费 2022123

    详细信息
      作者简介:

      施东雷(1994-),男,讲师,从事台风动力学与数值模拟相关研究及教学工作. ORCID:0000-0002-0566-2295. E-mail:shidonglei@cug.edu.cn

    • 中图分类号: P445

    Convective and Environmental Characteristics of Tropical Cyclone Genesis-Rapid Intensification Compound Events in the Western North Pacific

    • 摘要:

      作为业务预报中的主要难点,明晰热带气旋(TC)生成、快速增强(RI)及两者复合事件(RIFG)的成因对于防灾减灾具有重要意义.基于观测资料对西北太平洋RIFG事件和无RI生成事件(NRIG)的对流及环境特征进行了研究.结果表明,RIFG个例相比NRIG个例平均纬度更低,且逆切变左侧的内核降水更强,受到较弱的垂直风切变和背景相对涡度、较高的内核相对涡度、高层辐散、海温、中层相对湿度和海表潜热通量的影响,这些有利的动力、热力条件为RIFG事件的发生提供了基础.进一步对比弱风切变(W-VWS)和中等‒强风切变(MS-VWS)下的RIFG个例发现,MS-VWS个例的降水更强、更不对称,且W-VWS(MS-VWS)个例在逆切变、切变右侧(顺切变、切变左侧)有更为有利的环境热动力条件.

       

    • 图  1  RIFG和NRIG热带气旋个例的合成强度演变曲线(a),RIFG和NRIG事件的生成位置分布(b)

      图a中横坐标表示相对于TC生成时刻的小时数;图b中红色和蓝色+符号分别表示两类TC的平均生成位置

      Fig.  1.  The composite time series of TC intensity for the RIFG and NRIG cases (a), and the genesis locations of the two groups (b)

      图  2  RIFG(a)和NRIG(b)热带气旋个例在生成后12 h时段内的平均降水率(单位:mm/h),两类个例的降水率差异(c)

      黑色箭头表示垂直风切变方向,图c中斜线表示差异通过95%显著性检验

      Fig.  2.  Composite precipitation rates (unit: mm/h) during the 12 h period following TC genesis for RIFG (a) and NRIG (b) cases, and the difference in precipitation rate between RIFG and NRIG cases (c)

      图  3  RIFG和NRIG个例在生成后12 h时段内的垂直风切变量级(m/s)和海表面温度(SST,单位:℃)的箱线图

      虚线延伸至5%和95%百分位数,箱边界和中线分别代表 25%、75%百分位数和中位数,点代表均值

      Fig.  3.  Box-whisker plots of the vertical wind shear magnitude (m/s) and sea surface temperature (SST, unit: ℃) of the RIFG and NRIG cases during the 12 h period following TC genesis

      图  4  RIFG(a、d)和NRIG(b、e)个例在生成后12 h时段内的(上)850 hPa相对涡度(单位:1×10‒5 s‒1)和(下)200 hPa散度(单位:1×10‒6 s‒1)相对于垂直风切变的分布,两类个例的差值(RIFG-NRIG)(c、f)

      黑色箭头表示垂直风切变方向;图c中斜线表示差异通过95%显著性检验

      Fig.  4.  Composite shear-relative patterns of (upper) 850 hPa relative vorticity (unit: 1×10‒5 s‒1) and 200 hPa divergence (unit: 1×10‒6 s‒1) in RIFG (a, d), and NRIG (b, e) cases during the 12 h period following TC genesis, and their differences (RIFG-NRIG) (c, f)

      图  5  RIFG(a)和NRIG(b)个例在生成后12 h时段内的850 hPa大尺度背景环流场和生成位置

      深蓝色和灰色曲线分别表示季风槽和槽线

      Fig.  5.  Composite 850 hPa large-scale circulation fields (streamlines) during the 12 h period following TC genesis for RIFG (a) and NRIG (b) cases, with the dots denoting the genesis location of TCs

      图  6  RIFG(a、d)和NRIG(b、e)个例在生成后12 h时段内的(上)500 hPa相对湿度(单位:%)和(下)海表潜热通量(单位:W/m2)相对于垂直风切变的分布图,两类个例的差值(RIFG-NRIG)(c、f)

      黑色箭头表示垂直风切变方向;图c和图f中斜线表示差异通过95%显著性检验

      Fig.  6.  Composite shear-relative patterns of (upper) 500 hPa relative humidity (unit: %) and 200 hPa divergence (unit: W/m2) in (a, d) RIFG, and (b, e) NRIG cases during the 12 h period following TC genesis, and their differences (RIFG-NRIG) (c, f)

      图  7  W-VWS型(紫)和MS-VWS型(绿)RIFG热带气旋的快速增强起始位置(a),海表温度(SST;单位:℃)的箱线图(b)

      图a中绿色和紫色+符号分别表示两类TC的平均生成位置

      Fig.  7.  TC locations (a) at RI onset for (purple) W-VWS and (green) MS-VWS RIFG cases and the box-whisker plot (b) of SST (unit: ℃)

      图  8  (左)W-VWS和(右)MS-VWS型RIFG个例在RI启动前12~24 h时段内(a、b)和RI启动时刻(c、d)的平均降水率(单位:mm/h),两个时段的降水率差异(e、f)

      黑色箭头表示垂直风切变方向;图e和f中斜线表示差异通过95%显著性检验

      Fig.  8.  Composite precipitation rates (unit: mm/h) during 12‒24 h before RI onset (a, b) and at RI onset (c, d) for (left) W-VWS and (right) MS-VWS cases, and the difference (c) in precipitation rate between W-VWS and MS-VWS cases

      图  9  W-VWS(a、d)和MS-VWS(b、e)个例在快速增强启动时刻的(上)850 hPa相对涡度(单位:1×10‒5 s‒1)和(下)200 hPa散度(单位:1×10‒6 s‒1)相对于垂直风切变的分布,两类个例的差值(W-VWS减MS-VWS)(c、f)

      黑色箭头表示垂直风切变方向;图e和f中斜线表示差异通过95%显著性检验

      Fig.  9.  Composite shear-relative patterns of (upper) 850 hPa relative vorticity (unit: 1×10‒5 s‒1) and 200 hPa divergence (unit: 1×10‒6 s‒1) in W-VWS (a, d), and MS-VWS (b, e) cases at RI onset, and their differences (W-VWS minus MS-VWS) (c, f)

      图  10  W-VWS(a、d)和MS-VWS(b、e)个例在快速增强启动时刻的(上)500 hPa相对湿度(单位:%)和(下)海表潜热通量(单位:W/m2)相对于垂直风切变的分布,两类个例的差值(W-VWS减MS-VWS)(c、f)

      黑色箭头表示垂直风切变方向;图e和f中斜线表示差异通过95%显著性检验

      Fig.  10.  Composite shear-relative patterns of (upper) 500-hPa relative humidity (unit: %) and 200-hPa divergence (unit: W/m2) in W-VWS (a, d), and MS-VWS (b, e) cases at RI onse, and their differences (W-VWS minus MS-VWS) (c, f)

    • Alland, J. J., Davis, C. A., 2022. Effects of Surface Fluxes on Ventilation Pathways and the Intensification of Hurricane Michael (2018). Journal of the Atmospheric Sciences, 79(4): 1211-1229. https://doi.org/10.1175/JAS-D-21-0166.1
      Alland, J. J., Tang, B. H., Corbosiero, K. L., et al., 2021. Combined Effects of Midlevel Dry Air and Vertical Wind Shear on Tropical Cyclone Development. Part Ⅱ: Radial Ventilation. Journal of the Atmospheric Sciences, 78(3): 783-796. https://doi.org/10.1175/JAS-D-20-0055.1
      Chen, G. H., Chou, C. A., 2014. Joint Contribution of Multiple Equatorial Waves to Tropical Cyclogenesis over the Western North Pacific. Monthly Weather Review, 142(1): 79-93. https://doi.org/10.1175/MWR-D-13-00207.1
      Chen, G. H., Huang, R. H., 2009. Interannual Variations in Mixed Rossby-Gravity Waves and Their Impacts on Tropical Cyclogenesis over the Western North Pacific. Journal of Climate, 22(3): 535-549. https://doi.org/10.1175/2008jcli2221.1
      Chen, H., Zhang, D. L., 2013. On the Rapid Intensification of Hurricane Wilma (2005). Part Ⅱ: Convective Bursts and the Upper-Level Warm Core. Journal of the Atmospheric Sciences, 70(1): 146-162. https://doi.org/10.1175/jas-d-12-062.1
      Chen, S. S., Knaff, J. A., Marks, F. D. Jr, 2006. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Monthly Weather Review, 134(11): 3190-3208. https://doi.org/10.1175/mwr3245.1
      Chen, X. M., Xue, M., Fang, J., 2018. Rapid Intensification of Typhoon Mujigae (2015) under Different Sea Surface Temperatures: Structural Changes Leading to Rapid Intensification. Journal of the Atmospheric Sciences, 75(12): 4313-4335. https://doi.org/10.1175/jas-d-18-0017.1
      Corbosiero, K. L., Molinari, J., 2003. The Relationship between Storm Motion, Vertical Wind Shear, and Convective Asymmetries in Tropical Cyclones. Journal of the Atmospheric Sciences, 60(2): 366-376. https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2 doi: 10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2
      Emanuel, K. A., Nolan, D. S., 2004. Tropical Cyclone Activity and the Global Climate System. 26th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society, Miami.
      Fischer, M. S., Tang, B. H., Corbosiero, K. L., et al., 2018. Normalized Convective Characteristics of Tropical Cyclone Rapid Intensification Events in the North Atlantic and Eastern North Pacific. Monthly Weather Review, 146(4): 1133-1155. https://doi.org/10.1175/mwr-d-17-0239.1
      Gao, S. Z., Lyu, X. Y., 2023. Evolution of Environmental Circulation and Dynamic and Thermodynamic Conditions before and after the Onset of Typhoon Rapid Intensification. Acta Meteorologica Sinica, 81(5): 702-716 (in Chinese with English abstract).
      Gray, W. M., 1968. Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review, 96(10): 669-700. https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2 doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
      Gray, W. M., 1975. Tropical Cyclone Genesis in the Western North Pacific. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 55: 465-482. https://doi.org/10.2151/jmsj1965.55.5_465
      Hu, H., Duan, Y. H., 2016. Analysis of Environmental Variables of Rapidly Intensifying Tropical Cyclones in the South China Sea. Journal of Tropical Meteorology, 32(3): 299-310 (in Chinese with English abstract).
      Jiang, H. Y., 2012. The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection. Monthly Weather Review, 140(4): 1164-1176. https://doi.org/10.1175/mwr-d-11-00134.1
      Judt, F., Rios-Berrios, R., Bryan, G. H., 2023. Marathon versus Sprint: Two Modes of Tropical Cyclone Rapid Intensification in a Global Convection-Permitting Simulation. Monthly Weather Review, 151(10): 2683-2699. https://doi.org/10.1175/mwr-d-23-0038.1
      Kaplan, J., DeMaria, M., 2003. Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather and Forecasting, 18(6): 1093-1108. https://doi.org/10.1175/1520-0434(2003)0181093:lcorit>2.0.co;2 doi: 10.1175/1520-0434(2003)0181093:lcorit>2.0.co;2
      Knaff, J. A., Sampson, C. R., Strahl, B. R., 2020. A Tropical Cyclone Rapid Intensification Prediction Aid for the Joint Typhoon Warning Center's Areas of Responsibility. Weather and Forecasting, 35(3): 1173-1185. https://doi.org/10.1175/WAF-D-19-0228.1
      Li, T., Ge, X. Y., Peng, M., et al., 2012. Dependence of Tropical Cyclone Intensification on the Coriolis Parameter. Tropical Cyclone Research and Review, 1(2): 242-253. https://doi.org/10.6057/2012TCRR02.04
      Lyu, X. Y., Dong, L., Gao, S. Z., 2023. Analysis for the Rapid Intensification of Typhoon Mekkhala in Southern Taiwan Strait. Acta Meteorologica Sinica, 81(6): 866-878 (in Chinese with English abstract).
      Lyu, X. Y., Xu, Y. L., Huang, H. Q., 2021. Analysis on Environmental Factors of the Extremely Rapid Intensification of Typhoon "Rammasun" (1409) in the Northern South China Sea. Marine Forecasts, 38(3): 1-10 (in Chinese with English abstract).
      Mei, Y., Yu, J. H., 2016. Effect of Environment Field on Rapid Intensification Process of Tropical Cyclones over the Western North Pacific. Journal of the Meteorological Sciences, 36(6): 770-778 (in Chinese with English abstract).
      Nguyen, L. T., Rogers, R., Zawislak, J., et al., 2019. Assessing the Influence of Convective Downdrafts and Surface Enthalpy Fluxes on Tropical Cyclone Intensity Change in Moderate Vertical Wind Shear. Monthly Weather Review, 147(10): 3519-3534. https://doi.org/10.1175/mwr-d-18-0461.1
      Qin, L., Wu, Q. S., Zeng, X. T., et al., 2019. Analysis on Cause of Rapid Intensification of Asymmetrical Typhoon Hato(1713) over the Offshore of China. Torrential Rain and Disasters, 38(3): 212-220 (in Chinese with English abstract).
      Rao, G. V., MacArthur, P. D., 1994. The SSM/I Estimated Rainfall Amounts of Tropical Cyclones and Their Potential in Predicting the Cyclone Intensity Changes. Monthly Weather Review, 122(7): 1568-1574. https://doi.org/10.1175/1520-0493(1994)122<1568:tserao>2.0.co;2 doi: 10.1175/1520-0493(1994)122<1568:tserao>2.0.co;2
      Rios-Berrios, R., Torn, R. D., 2017. Climatological Analysis of Tropical Cyclone Intensity Changes under Moderate Vertical Wind Shear. Monthly Weather Review, 145(5): 1717-1738. https://doi.org/10.1175/MWR-D-16-0350.1
      Ryglicki, D. R., Cossuth, J. H., Hodyss, D., et al., 2018. The Unexpected Rapid Intensification of Tropical Cyclones in Moderate Vertical Wind Shear. Part Ⅰ: Overview and Observations. Monthly Weather Review, 146(11): 3773-3800. https://doi.org/10.1175/MWR-D-18-0020.1
      Schubert, W. H., Hack, J. J., 1982. Inertial Stability and Tropical Cyclone Development. Journal of the Atmospheric Sciences, 39(8): 1687-1697. https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2 doi: 10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2
      Shi, D. L., Chen, G. H., 2021. The Implication of Outflow Structure for the Rapid Intensification of Tropical Cyclones under Vertical Wind Shear. Monthly Weather Review, 149(12): 4107-4127. https://doi.org/10.1175/MWR-D-21-0141.1
      Shi, D. L., Chen, G. H., 2023. Modulation of Asymmetric Inner-Core Convection on Midlevel Ventilation Leading up to the Rapid Intensification of Typhoon Lekima (2019). Journal of Geophysical Research: Atmospheres, 128(7): e2022JD037952. https://doi.org/10.1029/2022JD037952
      Shi, D. L., Ge, X. Y., Peng, M., et al., 2020. Characterization of Tropical Cyclone Rapid Intensification under Two Types of El Niño Events in the Western North Pacific. International Journal of Climatology, 40(4): 2359-2372. https://doi.org/10.1002/joc.6338
      Tao, D. D., Zhang, F. Q., 2019. Evolution of Dynamic and Thermodynamic Structures before and during Rapid Intensification of Tropical Cyclones: Sensitivity to Vertical Wind Shear. Monthly Weather Review, 147(4): 1171-1191. https://doi.org/10.1175/mwr-d-18-0173.1
      Wang, B., Murakami, H., 2020. Dynamic Genesis Potential Index for Diagnosing Present-Day and Future Global Tropical Cyclone Genesis. Environmental Research Letters, 15(11): 114008. https://doi.org/10.1088/1748-9326/abbb01
      Wang, Z., 2018. What Is the Key Feature of Convection Leading up to Tropical Cyclone Formation? Journal of the Atmospheric Sciences, 75(5): 1609-1629. https://doi.org/10.1175/jas-d-17-0131.1
      Yang, L., Fei, J. F., Huang, X. G., et al., 2017. Effects of Vertical Wind Shear and Tropical Cyclone Motion on Asymmetric Distribution of Convective Clouds in TCs over the Western North Pacific. Acta Meteorologica Sinica, 75(6): 943-954 (in Chinese with English abstract).
      Zagrodnik, J. P., Jiang, H. Y., 2014. Rainfall, Convection, and Latent Heating Distributions in Rapidly Intensifying Tropical Cyclones. Journal of the Atmospheric Sciences, 71(8): 2789-2809. https://doi.org/10.1175/jas-d-13-0314.1
      Zawislak, J., Zipser, E. J., 2014. A Multisatellite Investigation of the Convective Properties of Developing and Nondeveloping Tropical Disturbances. Monthly Weather Review, 142(12): 4624-4645. https://doi.org/10.1175/MWR-D-14-00028.1
      Zhang, F. Q., Tao, D. D., 2013. Effects of Vertical Wind Shear on the Predictability of Tropical Cyclones. Journal of the Atmospheric Sciences, 70(3): 975-983. https://doi.org/10.1175/JAS-D-12-0133.1
      Zheng, X. L., Wu, L. G., Zhou, X. Y., et al., 2020. Comparison of inner-Core Structure Changes during Rapid Intensification between Typhoon Rammasun (2014) and Hurricane Wilma (2005). Journal of Tropical Meteorology, 36(2): 219-231 (in Chinese with English abstract).
      高拴柱, 吕心艳, 2023. 台风快速增强爆发前后的背景环流和热力动力条件的演变. 气象学报, 81(5): 702-716.
      胡皓, 端义宏, 2016. 南海热带气旋迅速加强环境场因子的影响分析. 热带气象学报, 32(3): 299-310.
      吕心艳, 董林, 高拴柱, 2023. 台风"米克拉" 在台湾海峡南部快速增强的原因分析. 气象学报, 81(6): 866-878.
      吕心艳, 许映龙, 黄焕卿, 2021. 台风"威马逊" (1409)在南海北部急剧增强的环境因子分析. 海洋预报, 38(3): 1-10.
      梅耀, 余锦华, 2016. 环境场对西北太平洋热带气旋快速增强过程的影响. 气象科学, 36(6): 770-778.
      覃丽, 吴启树, 曾小团, 等, 2019. 对流非对称台风"天鸽" (1713)近海急剧增强成因分析. 暴雨灾害, 38(3): 212-220.
      杨璐, 费建芳, 黄小刚, 等, 2017. 西北太平洋环境风垂直切变和热带气旋移动对涡旋内对流非对称分布影响的特征分析. 气象学报, 75(6): 943-954.
      郑秀丽, 吴立广, 周星阳, 等, 2020. 台风Rammasun(2014)与飓风Wilma(2005)快速增强过程的内核结构变化比较. 热带气象学报, 36(2): 219-231.
    • 加载中
    图(10)
    计量
    • 文章访问数:  14
    • HTML全文浏览量:  6
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-20
    • 网络出版日期:  2025-10-10
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回