New Progresses in Analytical Methods of in situ S Isotope Measurement
-
摘要: 综述了十余年来激光剥蚀等离子体质谱(LA-MC-ICP-MS)和二次离子质谱(SIMS)测定硫化物硫同位素的新进展,着重介绍了质谱干扰和同位素质量分馏效应的关键技术难点和校正方案.LA-MC-ICP-MS和SIMS都可实现黄铁矿、黄铜矿、闪锌矿、方铅矿、磁黄铁矿、镍黄铁矿、辉钼矿的微区δ34S准确测定,测试准确度和传统的整体分析测试技术相当,测试精密度(重现性)在0.17‰~0.45‰.目前硫化物硫同位素标准物质主要是黄铁矿、黄铜矿、磁黄铁矿、闪锌矿等矿物,缺乏其他硫化物类型的标准物质.改进仪器设备硬件或关键部件,系统深入调查仪器中的同位素质量分馏和基体效应,开发新的高质量硫化物硫同位素标准物质将是未来微区原位硫化物硫同位素测试主要发展方向.Abstract: The new progresses in analytical methods of in situ S isotope measurement by using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS) have been reviewed in this paper. The review is focused on the key technical difficulties, correction schemes of mass spectrum interference, and mass fractionation effects in the two instruments. As it suggested, both LA-MC-ICP-MS and SIMS can accurately determine the δ34S of various minerals, such as pyrite, chalcopyrite, sphalerite, galenite, pyrrhotite, pentlandite, molybdenite etc. The analytical accuracy is comparable to the traditional bulk analysis. The analytical precision (reproducibility) is ranges of from 0.17‰ to 0.45‰. There are a large number of reference materials of S isotope analysis in sulfides. However, the main reference materials are pyrite, chalcopyrite, pyrrhotite, and sphalerite. Other sulfides also lack the reference materials for microanalysis. It is suggested that improving the hardwares or key equipments, resolving the isotope fractionation and the matrix effect, developing the new sulfide reference materials will be the major development directions for the in situ S isotopic measurement by LA-MC-ICP-MS and SIMS.
-
Key words:
- S /
- isotopes /
- LA⁃MC⁃ICP⁃MS /
- SIMS /
- microanalysis /
- reference materials /
- geochemistry
-
表 1 硫同位素微区固体标准物质汇总
Table 1. Summary of solid reference materials for microanalysis of S isotope ratios
IRMS/SN⁃MC LA⁃MC⁃ICP⁃MS SIMS 参考文献 平均值 不确定度* 平均值 不确定度* 平均值 不确定度* Pyrite(黄铁矿) GAV-18 天然矿物 9.62 0.27 Craddock et al., 2008 10th-1 PSPT 5.33 0.27 5.22 0.22 Feng et al., 2018 PSPT-2 PSPT 32.48 0.29 32.65 0.26 Bao et al., 2017, GBW07267 RPP 3.46 0.18 3.56 0.43 Chen et al., 2022a PAS-Py600 PAS 18.22 0.07 18.06 0.25 Feng et al., 2022 RPPY RPP 3.65 0.29 3.58 0.31 Lv et al., 2022 Py1 天然矿物 ‒0.6 0.6 ‒1 1.2 Molnár et al., 2016 Py2 天然矿物 ‒0.4 1 ‒0.4 0.4 Molnár et al., 2016 IGGPy-1 天然矿物 17.09 0.09 17.05 0.15 17.01 0.15 Xie et al., 2024 PPP-1 天然矿物 5.1 0.6 5.3 0.3 Gilbert et al., 2014 UWPy-1 天然矿物 16.39 0.4 17.4 0.17 Kozdon et al., 2010 Py-1117 天然矿物 0.3 0.02 0.2 0.4 Zhang et al., 2014 CS01 天然矿物 4.6 0.08 4.3 0.4 Zhang et al., 2014 Balmat 天然矿物 15.1 0.2 Crowe and Vaughan, 1996 Ruttan 天然矿物 1.2 0.1 Crowe and Vaughan, 1996 CAR 123 天然矿物 1.4 0.4 Mojzsis et al., 2003 Sierra 天然矿物 2.17 0.28 0.25 LaFlamme et al., 2016 NWU-Py PAS 3.39 0.07 3.48 0.26 Peng et al., 2024 Chalcopyrite(黄铜矿) CCP 天然矿物 ‒0.7 1 ‒0.2 0.8 Molnár et al., 2016 PSPT-1 PSPT ‒0.73 0.09 ‒0.9 0.41 Bao et al., 2017 YN411-m Glass 0.37 0.24 0.6 0.3 Chen et al., 2017 GC 天然矿物 ‒0.79 0.24 ‒0.7 0.2 Chen et al., 2017 Cpy-1 天然矿物 4.12 0.23 4.4 0.3 Chen et al., 2017 TC1725 天然矿物 12.78 0.16 12.74 0.38 Bao et al., 2021 PAS-Cpy600 PAS 10.58 0.33 10.43 0.29 Feng et al., 2022 GBW07268 RPP ‒0.57 0.24 ‒0.38 0.43 Chen et al., 2022a HTS4-6 天然矿物 0.63 0.16 0.58 0.38 Li et al., 2020 CPY-1 天然矿物 1.4 0.4 1.4 0.93 Li et al., 2020 GC-1 RPP ‒0.65 0.28 ‒0.68 0.32 Lv et al., 2022 Norilsk 天然矿物 8 0.2 Crowe and Vaughan, 1996 Trout Lake 天然矿物 0.3 0.2 Crowe and Vaughan, 1996 IGSD 天然矿物 4.21 0.23 4.10 0.30 4.0 0.10 Chen, 2023 Nifty-b 天然矿物 ‒3.58 0.44 0.23 LaFlamme et al., 2016 Sphalerite(闪锌矿) NBS123 PPP 17.09 0.19 Pribil et al., 2015 PSPT-3 PSPT 26.4 0.21 26.23 0.23 Bao et al., 2017 PAS-GBW07270 PAS ‒5.44 0.15 ‒5.44 0.2 Nie et al., 2023 SPH-1 RPP ‒7.13 0.41 ‒7.22 0.47 Lv et al., 2022 BT-4 天然矿物 15.42 0.14 15.3 0.58 Kozdon et al., 2010 JC-14 天然矿物 4.9 0.08 5 0.6 Zhang et al., 2014 MY09-12 天然矿物 3.1 0.12 3.6 0.8 Zhang et al., 2014 Balmat 天然矿物 14.3 0.2 Crowe and Vaughan, 1996 Chisel 天然矿物 1.5 0.1 Crowe and Vaughan, 1996 Galena(方铅矿) RPP-Gn RPP ‒0.94 0.36 ‒0.82 0.39 Chen et al., 2022a NWU-GN RPP 28.27 0.17 28.44 0.45 Lv et al., 2022 UWGal-1 天然矿物 16.61 0.16 16.6 0.76 Kozdon et al., 2010 Pyrrhotite(磁黄铁矿) Po-10 天然矿物 6.1 0.6 5.9 0.3 Gilbert et al., 2014 Po 天然矿物 5.6 1.2 6.8 1 Molnár et al., 2016 Anderson 天然矿物 1.4 0.2 Crowe and Vaughan, 1996 Alexo 天然矿物 5.23 0.4 0.3 LaFlamme et al., 2016 YP136 天然矿物 1.5 0.1 1.5 0.3 Li et al., 2019 JC-Po 天然矿物 0.06 0.33 ‒0.09 0.27 Chen et al., 2021 Pentlandite(镍黄铁矿) Norilsk 天然矿物 7.9 0.2 Crowe and Vaughan, 1996 VMSo 天然矿物 3.22 0.51 0.33 LaFlamme et al., 2016 JC-Pn 天然矿物 ‒0.09 0.15 0.19 Chen et al., 2021 Arsenopyrite(毒砂) RPP-Apy RPP ‒1.05 0.15 ‒1.04 0.42 Chen et al., 2022a NWU-Apy PAS 18.17 0.16 18.19 0.32 Peng et al., 2024 Bornite(斑铜矿) N-11 天然矿物 ‒4.4 0.6 Gilbert et al., 2014 Barite(重晶石) NWU-Brt 天然矿物 14.17 0.42 14.27 0.23 Lv et al., 2024 Molybdenite(辉钼矿) Mo-H8 HTHP ‒0.22 0.1 Tian et al., 2024 Mo-P RHP ‒0.22 0.1 Tian et al., 2024 Stibnite(辉锑矿) BJ-Snt 天然矿物 ‒0.71 0.32 ‒0.78 0.36 Dai et al., 2024 Gypsum(石膏) NWU-Gy PAS ‒0.20 0.05 ‒0.19 0.32 Peng et al., 2024 -
Agatemor, C., Beauchemin, D., 2011. Matrix Effects in Inductively Coupled Plasma Mass Spectrometry: A Review. Analytica Chimica Acta, 706(1): 66-83. https://doi.org/10.1016/j.aca.2011.08.027 Amrani, A., Deev, A., Sessions, A. L., et al., 2012. The Sulfur⁃Isotopic Compositions of Benzothiophenes and Dibenzothiophenes as a Proxy for Thermochemical Sulfate Reduction. Geochimica et Cosmochimica Acta, 84: 152-164. https://doi.org/10.1016/j.gca.2012.01.023 Bao, Z. A., Chen, K. Y., Zong, C. L., et al., 2021. TC1725: A Proposed Chalcopyrite Reference Material for LA⁃MC⁃ICP⁃MS Sulfur Isotope Determination. Journal of Analytical Atomic Spectrometry, 36(8): 1657-1665. https://doi.org/10.1039/D1JA00168J Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in Situ Sulfur and Lead Isotope Measurement Using LA⁃MC⁃ICP⁃MS. International Journal of Mass Spectrometry, 421: 255-262. https://doi.org/10.1016/j.ijms.2017.07.015 Bendall, C., Lahaye, Y., Fiebig, J., et al., 2006. In Situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICPMS. Applied Geochemistry, 21(5): 782-787. https://doi.org/10.1016/j.apgeochem.2006.02.012 Bleiner, D., Lienemann, P., Vonmont, H., 2005. Laser⁃ Induced Particulate as Carrier of Analytical Information in LA⁃ICP⁃MS Direct Solid Microanalysis. Talanta, 65(5): 1286-1294. https://doi.org/10.1016/j.talanta.2004.09.004 Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45⁃Billion⁃Year⁃Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 109(38): 15146-15151. https://doi.org/10.1073/pnas.1207491109 Bühn, B., Santos, R. V., Dardenne, M. A., et al., 2012. Mass⁃Dependent and Mass⁃Independent Sulfur Isotope Fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic Sulfide Deposits by Laser Ablation Multi⁃Collector ICP⁃MS. Chemical Geology, 312: 163-176. https://doi.org/10.1016/j.chemgeo.2012.04.003 Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur⁃Isotope Studies. Nature, 382(6587): 127-132. https://doi.org/10.1038/382127a0 Cao, H. L., Li, W., Su, C. L., et al., 2023. Indication of Hydrochemistry and δ34S⁃SO42‒ on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443. Cheatham, M. M., Sangrey, W. F., White, W. M., 1993. Sources of Error in External Calibration ICP⁃MS Analysis of Geological Samples and an Improved Non⁃Linear Drift Correction Procedure. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(3): 487-506. https://doi.org/10.1016/0584⁃8547(93)80054⁃X Chen, K. Y., Bao, Z. A., Liang, P., et al., 2022a. Preparation of Sulfur⁃Bearing Reference Materials for in Situ Sulfur Isotope Measurements Using Laser Ablation Multicollector Inductively Coupled Plasma⁃Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 188: 106344. https://doi.org/10.1016/j.sab.2021.106344 Chen, Y. W., Xie, Z. J., Dong, S. H., et al., 2022b. High Spatial Resolution and Precision NanoSIMS for Sulfur Isotope Analysis. Journal of Analytical Atomic Spectrometry, 37(12): 2529-2536. https://doi.org/10.1039/D2JA00248E Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for in situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 32(1): 107-116. https://doi.org/10.1039/C6JA00270F Chen, L., Liu, Y., Li, Y., et al., 2021. New Potential Pyrrhotite and Pentlandite Reference Materials for Sulfur and Iron Isotope Microanalysis. Journal of Analytical Atomic Spectrometry, 36(7): 1431-1440. https://doi.org/10.1039/D1JA00029B Chen, Y. W., 2023. A Quantity Chalcopyrite Reference Material for in Situ Sulfur Isotope Analysis. Atomic Spectroscopy, 44(3): 131-141. https://doi.org/10.46770/as.2023.141 Craddock, P. R., Rouxel, O. J., Ball, L. A., et al., 2008. Sulfur Isotope Measurement of Sulfate and Sulfide by High⁃Resolution MC⁃ICP⁃MS. Chemical Geology, 253(3-4): 102-113. https://doi.org/10.1016/j.chemgeo.2008.04.017 Crowe, D. E., Valley, J. W., Baker, K. L., 1990. Micro⁃Analysis of Sulfur⁃Isotope Ratios and Zonation by Laser Microprobe. Geochimica et Cosmochimica Acta, 54(7): 2075-2092. https://doi.org/10.1016/0016⁃7037(90)90272⁃M Crowe, D. E., Vaughan, R. G., 1996. Characterization and Use of Isotopically Homogeneous Standards for in Situ Laser Microprobe Analysis of 34 Ratios. American Mineralogist, 81(1-2): 187-193. https://doi.org/10.2138/am⁃1996⁃1⁃223 Dai, Z. H., Fu, S. L., Liu, Y. F., et al., 2024. A Potential Stibnite Reference Material for Sulfur Isotope Determination by LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(1): 216-226. https://doi.org/10.1039/d3ja00308f Ding, T. P., Bai, R. M., Li, Y. H., et al., 1998. The Absolute Ratio of 32S/34S of IAEA⁃S⁃1 Reference Material and V⁃CDT Sulfur Isotope Standard. Scientia Sinica (Terrae), 28(6): 546-551 (in Chinese). Ding, T. P., Valkiers, S, Wang, D. F., et al., 2001. The δ33S and δ34S Values and Absolute 32S/33S and 32S/34S Ratios of IAEA and Chinese Sulfur Isotope Reference Materials. Bulletin of Meneralogy, Petrology and Geochemistry, 4: 425-427 (in Chinese). Eiler, J. M., Graham, C., Valley, J. W., 1997. SIMS Analysis of Oxygen Isotopes: Matrix Effects in Complex Minerals and Glasses. Chemical Geology, 138(3-4): 221-244. https://doi.org/10.1016/S0009⁃2541(97)00015⁃6 Farquhar, J., Bao, H. M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756 Farquhar, J., Peters, M., Johnston, D. T., et al., 2007. Isotopic Evidence for Mesoarchaean Anoxia and Changing Atmospheric Sulphur Chemistry. Nature, 449(7163): 706-709. https://doi.org/10.1038/nature06202 Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S⁃Pb Isotope Analyses by LA⁃(MC)⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172-2183. https://doi.org/10.1039/c8ja00305j Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022. A New Synthesis Scheme of Pyrite and Chalcopyrite Reference Materials for in situ Iron and Sulfur Isotope Analysis Using LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 37(3): 551-562. https://doi.org/10.1039/d1ja00392e Fietzke, J., Frische, M., 2016. Experimental Evaluation of Elemental Behavior during LA⁃ICP⁃MS: Influences of Plasma Conditions and Limits of Plasma Robustness. Journal of Analytical Atomic Spectrometry, 31(1): 234-244. https://doi.org/10.1039/c5ja00253b Fontboté, L., Kouzmanov, K., Chiaradia, M., et al., 2017. Sulfide Minerals in Hydrothermal Deposits. Elements, 13(2): 97-103. https://doi.org/10.2113/gselements.13.2.97 Fu, J. L., Hu, Z. C., Li, J. W., et al., 2017. Accurate Determination of Sulfur Isotopes (δ33S and δ34S) in Sulfides and Elemental Sulfur by Femtosecond Laser Ablation MC⁃ICP⁃MS with Non⁃Matrix Matched Calibration. Journal of Analytical Atomic Spectrometry, 32(12): 2341-2351. https://doi.org/10.1039/c7ja00282c Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC⁃ICP⁃MS. Analytica Chimica Acta, 911: 14-26. https://doi.org/10.1016/j.aca.2016.01.026 Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP⁃MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042-1051. https://doi.org/10.1039/C4JA00011K Hao, J. L., Zhang, L. P., Yang, W., et al., 2023. NanoSIMS Sulfur Isotopic Analysis at 100 nm Scale by Imaging Technique. Frontiers in Chemistry, 11: 1120092. https://doi.org/10.3389/fchem.2023.1120092 Hauri, E. H., Papineau, D., Wang, J. H., et al., 2016. High⁃Precision Analysis of Multiple Sulfur Isotopes Using NanoSIMS. Chemical Geology, 420: 148-161. https://doi.org/10.1016/j.chemgeo.2015.11.013 Horn, I., von Blanckenburg, F., 2007. Investigation on Elemental and Isotopic Fractionation during 196 nm Femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(4): 410-422. https://doi.org/10.1016/j.sab.2007.03.034 Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP⁃MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/B804760J Hulston, J. R., Thode, H. G., 1965. Variations in the S33, S34, and S36 Contents of Meteorites and Their Relation to Chemical and Nuclear Effects. Journal of Geophysical Research, 70(14): 3475-3484. https://doi.org/10.1029/jz070i014p03475 Ireland, T. R., Schram, N., Holden, P., et al., 2014. Charge⁃Mode Electrometer Measurements of S⁃Isotopic Compositions on SHRIMP⁃SI. International Journal of Mass Spectrometry, 359: 26-37. https://doi.org/10.1016/j.ijms.2013.12.020 Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth's Surface Sulfur Cycle. Earth⁃Science Reviews, 106(1/2): 161-183. https://doi.org/10.1016/j.earscirev.2011.02.003 Kita, N. T., Huberty, J. M., Kozdon, R., et al., 2011. High⁃Precision SIMS Oxygen, Sulfur and Iron Stable Isotope Analyses of Geological Materials: Accuracy, Surface Topography and Crystal Orientation. Surface and Interface Analysis, 43(1/2): 427-431. https://doi.org/10.1002/sia.3424 Kita, N. T., Ushikubo, T., Fu, B., et al., 2009. High Precision SIMS Oxygen Isotope Analysis and the Effect of Sample Topography. Chemical Geology, 264(1-4): 43-57. https://doi.org/10.1016/j.chemgeo.2009.02.012 Kozdon, R., Kita, N. T., Huberty, J. M., et al., 2010. In Situ Sulfur Isotope Analysis of Sulfide Minerals by SIMS: Precision and Accuracy, with Application to Thermometry of ~3.5 Ga Pilbara Cherts. Chemical Geology, 275(3/4): 243-253. https://doi.org/10.1016/j.chemgeo.2010.05.015 LaFlamme, C., Martin, L., Jeon, H., et al., 2016. In Situ Multiple Sulfur Isotope Analysis by SIMS of Pyrite, Chalcopyrite, Pyrrhotite, and Pentlandite to Refine Magmatic Ore Genetic Models. Chemical Geology, 444: 1-15. https://doi.org/10.1016/j.chemgeo.2016.09.032 Li, R. C., Wang, X. L., Guan, Y., et al., 2023. The Feasibility of Using a Pyrite Standard to Calibrate the Sulfur Isotope Ratio of Marcasite during SIMS Analysis. Journal of Analytical Atomic Spectrometry, 38(5): 1016-1020. https://doi.org/10.1039/D3JA00009E Li, R. C., Xia, X. P., Chen, H. Y., et al., 2020. A Potential New Chalcopyrite Reference Material for Secondary Ion Mass Spectrometry Sulfur Isotope Ratio Analysis. Geostandards and Geoanalytical Research, 44(3): 485-500. https://doi.org/10.1111/ggr.12330 Li, R. C., Xia, X. P., Yang, S. H., et al., 2019. Off⁃Mount Calibration and One New Potential Pyrrhotite Reference Material for Sulfur Isotope Measurement by Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 43(1): 177-187. https://doi.org/10.1111/ggr.12244 Lu, J., Chen, W., 2020. In⁃Situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Atomic Spectroscopy, 41(6): 223-233. https://doi.org/10.46770/as.2020.208 Lv, N., Bao, Z. A., Chen, K. Y., et al., 2022. New Potential Sphalerite, Chalcopyrite, Galena and Pyrite Reference Materials for Sulfur Isotope Determination by Laser Ablation⁃MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 46(3): 451-463. https://doi.org/10.1111/ggr.12440 Lv, N., Bao, Z. A., Nie, X. J., et al., 2024. Development of a Matrix⁃Matched Barite Reference Material (NWU⁃Brt) for Calibration of in situ S Isotope Measurements by Laser Ablation Multi⁃Collector Inductively Coupled Plasma⁃Mass Spectrometry. Geostandards and Geoanalytical Research, 48(2): 411-421. https://doi.org/10.1111/ggr.12544 Mandeville, C. W., 2010. Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences. Elements, 6(2): 75-80. https://doi.org/10.2113/gselements.6.2.75 Mason, P. R. D., Košler, J., de Hoog, J. C. M., et al., 2006. In situ Determination of Sulfur Isotopes in Sulfur⁃Rich Materials by Laser Ablation Multiple⁃Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 21(2): 177-186. https://doi.org/10.1039/B510883G Mojzsis, S. J., Coath, C. D., Greenwood, J. P., et al., 2003. Mass⁃Independent Isotope Effects in Archean (2.5 to 3.8 Ga) Sedimentary Sulfides Determined by Ion Microprobe Analysis. Geochimica et Cosmochimica Acta, 67(9): 1635-1658. https://doi.org/10.1016/S0016⁃7037(03)00059⁃0 Molnár, F., Mänttäri, I., O'Brien, H., et al., 2016. Boron, Sulphur and Copper Isotope Systematics in the Orogenic Gold Deposits of the Archaean Hattu Schist Belt, Eastern Finland. Ore Geology Reviews, 77: 133-162. https://doi.org/10.1016/j.oregeorev.2016.02.012 Nie, X. J., Bao, Z. A., Zong, C. L., et al., 2023. A Newly Synthesized Reference Material for in situ Sulfur Isotope Measurement of Sphalerite Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(5): 1065-1075. https://doi.org/10.1039/D2JA00394E Ohmoto, H., Watanabe, Y., Ikemi, H., et al., 2006. Sulphur Isotope Evidence for an Oxic Archaean Atmosphere. Nature, 442(7105): 908-911. https://doi.org/10.1038/nature05044 Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024 Peng, D. Y., Bao, Z. A., Chen, K. Y., et al., 2024. Three New Potential Sulfur Reference Materials (Pyrite, Gypsum, and Arsenopyrite) for in situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(9): 2235-2244. https://doi.org/10.1039/D4JA00200H Pribil, M. J., Ridley, W. I., Emsbo, P., 2015. Sulfate and Sulfide Sulfur Isotopes (δ34S and δ33S) Measured by Solution and Laser Ablation MC⁃ICP⁃MS: An Enhanced Approach Using External Correction. Chemical Geology, 412: 99-106. https://doi.org/10.1016/j.chemgeo.2015.07.014 Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of Light Stable Isotope Ratios by SIMS: Matrix Effects for Oxygen, Carbon, and Sulfur Isotopes in Minerals. International Journal of Mass Spectrometry, 178(1-2): 81-112. https://doi.org/10.1016/S1387⁃3806(98)14088⁃5 Robinson, B. W., Kusakabe, M., 1975. Quantitative Preparation of Sulfur Dioxide, for Sulfur⁃34/Sulfur⁃32 Analyses, from Sulfides by Combustion with Cuprous Oxide. Analytical Chemistry, 47(7): 1179-1181. https://doi.org/10.1021/ac60357a026 Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12 Stern, R. A., Fletcher, I. R., Rasmussen, B., et al., 2005. Ion Microprobe (NanoSIMS 50) Pb⁃Isotope Geochronology at < 5 μm Scale. International Journal of Mass Spectrometry, 244(2-3): 125-134. https://doi.org/10.1016/j.ijms.2005.05.005 Thode, H. G., Monster, J., Dunford, H. B., 1961. Sulphur Isotope Geochemistry. Geochimica et Cosmochimica Acta, 25(3): 159-174. https://doi.org/10.1016/0016⁃7037(61)90074⁃6 Tian, J., Bao, Z. A., Chen, K. Y., et al., 2024. Synthesis of Molybdenite Reference Materials for in situ Molybdenum and Sulfur Isotope Measurement Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(6): 1503-1513. https://doi.org/10.1039/D4JA00008K Ushikubo, T., Williford, K. H., Farquhar, J., et al., 2014. Development of in Situ Sulfur Four⁃Isotope Analysis with Multiple Faraday Cup Detectors by SIMS and Application to Pyrite Grains in a Paleoproterozoic Glaciogenic Sandstone. Chemical Geology, 383: 86-99. https://doi.org/10.1016/j.chemgeo.2014.06.006 Wang, W., Hu, Y. L., Muscente, A. D., et al., 2021. Revisiting Ediacaran Sulfur Isotope Chemostratigraphy with in Situ nanoSIMS Analysis of Sedimentary Pyrite. Geology, 49(6): 611-616. https://doi.org/10.1130/G48262.1 Whitehouse, M. J., 2013. Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S. Geostandards and Geoanalytical Research, 37(1): 19-33. https://doi.org/10.1111/j.1751⁃908x.2012.00188.x Williford, K. H., van Kranendonk, M. J., Ushikubo, T., et al., 2011. Constraining Atmospheric Oxygen and Seawater Sulfate Concentrations during Paleoproterozoic Glaciation: In Situ Sulfur Three⁃Isotope Microanalysis of Pyrite from the Turee Creek Group, Western Australia. Geochimica et Cosmochimica Acta, 75(19): 5686-5705. https://doi.org/10.1016/j.gca.2011.07.010 Winterholler, B., Hoppe, P., Andreae, M. O., et al., 2006. Measurement of Sulfur Isotope Ratios in Micrometer⁃Sized Samples by NanoSIMS. Applied Surface Science, 252(19): 7128-7131. https://doi.org/10.1016/j.apsusc.2006.02.150 Winterholler, B., Hoppe, P., Foley, S., et al., 2008. Sulfur Isotope Ratio Measurements of Individual Sulfate Particles by NanoSIMS. International Journal of Mass Spectrometry, 272(1): 63-77. https://doi.org/10.1016/j.ijms.2008.01.003 Xie, L. W., Wang, X. J., Yu, H. M., et al., 2024. A Study on a Natural Pyrite Sample as a Potential Reference Material for Simultaneous Measurement of Sulfur and Iron Isotopes Using Fs⁃LA⁃MC⁃ICP⁃MSs. Journal of Analytical Atomic Spectrometry, 39(3): 723-734. https://doi.org/10.1039/D3JA00351E Xie, Y. H., Wu, G., Xian, W. D., et al., 2023. Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications. Earth Science, 48(8): 2837-2850. Yang, W., Hu, S., Zhang, J. C., et al., 2015. NanoSIMS Analytical Technique and Its Applications in Earth Sciences. Science China Earth Sciences, 58(10): 1758-1767. https://doi.org/10.1007/s11430⁃015⁃5106⁃6 Zhang, J. C., Lin, Y. T., Yan, J., et al., 2017. Simultaneous Determination of Sulfur Isotopes and Trace Elements in Pyrite with a NanoSIMS 50L. Analytical Methods, 9(47): 6653-6661. https://doi.org/10.1039/C7AY01440F Zhang, J. C., Lin, Y. T., Yang, W., et al., 2014. Improved Precision and Spatial Resolution of Sulfur Isotope Analysis Using NanoSIMS. Journal of Analytical Atomic Spectrometry, 29(10): 1934-1943. https://doi.org/10.1039/C4JA00140K Zhu, Z. Y., Jiang, S. Y., Ciobanu, C. L., et al., 2017. Sulfur Isotope Fractionation in Pyrite during Laser Ablation: Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping. Chemical Geology, 450: 223-234. https://doi.org/10.1016/j.chemgeo.2016.12.037 丁悌平, 白瑞梅, 李延河, 等, 1998. IAEA⁃S⁃1参考物质及V⁃CDT硫同位素标准的32S/34S绝对比值. 中国科学(D辑: 地球科学), 28(6): 546-551. 丁悌平, Valkiers, S., 万德芳, 等, 2001. IAEA和中国的硫同位素参考物质的δ33S、δ34S值与32S/33S、32S/34S绝对比值. 矿物岩石地球化学通报, 4: 425-427. -