• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    溶洞填充对含水层渗流和水力参数的影响

    陈焕雄 李静 黄聪明 陈徵文 潘晓东 程瑞瑞

    陈焕雄, 李静, 黄聪明, 陈徵文, 潘晓东, 程瑞瑞, 2025. 溶洞填充对含水层渗流和水力参数的影响. 地球科学, 50(6): 2416-2427. doi: 10.3799/dqkx.2024.098
    引用本文: 陈焕雄, 李静, 黄聪明, 陈徵文, 潘晓东, 程瑞瑞, 2025. 溶洞填充对含水层渗流和水力参数的影响. 地球科学, 50(6): 2416-2427. doi: 10.3799/dqkx.2024.098
    Chen Huanxiong, Li Jing, Huang Chongming, Chen Zhiwen, Pan Xiaodong, Cheng Ruirui, 2025. Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers. Earth Science, 50(6): 2416-2427. doi: 10.3799/dqkx.2024.098
    Citation: Chen Huanxiong, Li Jing, Huang Chongming, Chen Zhiwen, Pan Xiaodong, Cheng Ruirui, 2025. Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers. Earth Science, 50(6): 2416-2427. doi: 10.3799/dqkx.2024.098

    溶洞填充对含水层渗流和水力参数的影响

    doi: 10.3799/dqkx.2024.098
    基金项目: 

    广西重点研发计划项目 桂科AB21196026

    国家自然科学基金项目 42377071

    国家自然科学基金项目 41977167

    详细信息
      作者简介:

      陈焕雄(1998-),男,在读博士,主要从事地下水渗流方面研究. ORCID:0009-0006-1446-0317. E-mail:chx785963@163.com

      通讯作者:

      李静,副教授,主要从事地下水动力学和地下水化学研究. ORCID:0000-0002-4361-9829. E-mail:lijing915@cug.edu.cn

    • 中图分类号: P641

    Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers

    • 摘要: 中国西南岩溶区水土漏失严重,表层土充填并堵塞含水层储水结构,改变了介质场水动力参数.为探讨溶洞堵塞对含水层渗流的影响,设计岩溶裂隙-溶洞三维物理模型,开展了不同堵塞率、不同降雨条件下岩溶裂隙储水-释水渗流实验.结果表明:基流衰退过程中,岩溶水流量呈三阶段下降模式.初始流量与衰退系数受含水层厚度,水位落差和介质场渗透系数影响.堵塞会延长储水时间,加快降雨结束时水位回落速度;在堵塞率超过50%时,蓄水空间大量减少,堵塞介质延缓排水的作用明显,使水位回落速度减慢.堵塞率与渗透系数K和储水系数S间为指数函数关系,堵塞初期两个参数快速减小.数值模拟结果表明参数KS的减小,会引起地下水水位抬高,导致地下水位在降雨开始与结束时的不稳定,减弱岩溶含水层地下水的调控能力.

       

    • 图  1  岩溶渗流槽实验装置示意

      Fig.  1.  Diagram of the experimental setup of karst seepage tank

      图  2  岩溶水渗流不同阶段水位示意

      Fig.  2.  Schematic diagram of water levels at different stages

      图  3  基流衰退概念模型示意

      Fig.  3.  Schematic diagram of the baseflow recession conceptual model

      图  4  实验监测点水位及排泄口流量过程曲线

      Fig.  4.  Process curves of water level and discharge outlet flow at experimental monitoring points

      图  5  退水实验堵塞率与初始流量Q0、衰退系数ɑ的关系

      Fig.  5.  Relationship between clogging rate and initial flow rate Q0, recession coefficient ɑ in recession experiments

      图  6  不同堵塞率与初始流量Q0、衰退系数ɑ关系

      Fig.  6.  Relationship between different clogging rates and initial flow rate Q0, recession coefficient ɑ

      图  7  降雨达到平衡期时间与堵塞率关系

      Fig.  7.  Relationship between time to equilibrium rainfall period and clogging rate

      图  8  堵塞率与含水层渗透系数K、储水系数S的关系

      Fig.  8.  Relationship between clogging rate and aquifer permeability coefficient K and water storage coefficient S

      图  9  不同堵塞率条件下数值模拟监测点水位

      Fig.  9.  Numerical simulation of water levels at monitoring points under different clogging rates

      表  1  数值模型中设计月降雨量

      Table  1.   Design monthly rainfall in numerical models

      时间(m) 1 2 3 4 5 6 7 8 9 10 11 12
      降雨量(m/d) 0.015 0.02 0.03 0.04 0.03 0.018 0.02 0.015 0.01 0.008 0.008 0.005
      下载: 导出CSV

      表  2  岩溶退水实验监测点初始稳定水位

      Table  2.   Initial stabilized water level at experimental karst recession monitoring site

      A(排泄)(cm) B(cm) C(cm) D(cm) E(cm) F(cm) G(cm) H(cm) I(cm) J(补给) (cm)
      1 69.1 69.2 69.3 69.5 69.7 69.9 70.0 70.3 70.5 70.6
      2 69.0 69.2 69.2 69.7 69.8 69.9 70.0 70.4 70.5 70.5
      3 69.0 69.2 69.3 69.6 69.8 69.8 69.9 70.3 70.4 70.5
      4 68.9 69.1 69.3 69.6 69.8 69.8 69.9 70.3 70.4 70.4
      5 68.8 69.0 69.2 69.5 698 69.7 69.9 70.4 70.4 70.4
      下载: 导出CSV

      表  3  不同阶段退水试验Q0ɑ拟合值

      Table  3.   The fitted values of Q0 and ɑ for different stages of water withdrawal tests

      参数 0 20 50 80
      Q0(L/s) ɑ(s-1) Q0(L/s) ɑ(s-1) Q0(L/s) ɑ(s-1) Q0(L/s) ɑ(s-1)
      阶段1 0.037 31 0.001 269 0.028 14 0.001 318 0.027 25 0.001 309 0.035 53 0.001 518
      阶段2 0.037 43 0.001 179 0.031 84 0.001 239 0.041 07 0.001 573 0.023 98 0.001 417
      阶段3 0.019 58 0.002 020 0.026 33 0.001 590 0.005 43 0.005 081 0.005 43 0.005 082
      阶段4 0.015 68 0.002 463 0.028 40 0.002 264 0.011 11 0.000 791 0.018 07 0.002 440
      阶段5 0.015 01 0.002 669 0.015 54 0.001 904 0.020 30 0.002 093 0.007 73 0.002 228
      阶段6 0.019 80 0.002 740 0.024 61 0.002 537 0.007 96 0.003 313 0.020 24 0.002 499
      阶段7 0.010 62 0.003 310 0.011 80 0.003 245 0.013 08 0.002 574 0.014 12 0.003 242
      注:0,20,50,80为堵塞率(%).
      下载: 导出CSV

      表  4  岩溶裂隙-溶洞介质退水实验各阶段Hh0

      Table  4.   Various stages of karst fissure-cavern media recession experiments H, h0

      参数 0 20 50 80
      H(dm) h0(dm) H(dm) h0(dm) H(dm) h0(dm) H(dm) h0(dm)
      阶段1 6.12 0.62 6.35 0.40 6.12 0.61 6.08 0.70
      阶段2 5.61 0.51 5.70 0.65 5.43 0.69 5.67 0.37
      阶段3 5.08 0.53 5.13 0.57 4.88 0.55 5.14 0.53
      阶段4 4.68 0.40 4.50 0.63 4.28 0.60 4.57 0.60
      阶段5 4.24 0.44 4.05 0.45 3.80 0.48 4.18 0.40
      阶段6 3.70 0.54 3.48 0.57 3.40 0.40 3.56 0.62
      阶段7 3.27 0.43 3.06 0.42 2.93 0.47 3.10 0.46
      注:0,20,50,80为堵塞率(%).
      下载: 导出CSV

      表  5  不同降雨条件下储水-释水实验流量衰退拟合的Q0ɑ

      Table  5.   Q0 and ɑ for experimental flow recession fitting of water storage-release under different rainfall conditions

      降雨 0 20 50 80
      Q0 (L/s) ɑ(s-1) Q0 (L/s) ɑ(s-1) Q0 (L/s) ɑ(s-1) Q0 (L/s) ɑ(s-1)
      1.5 mm/min 0.040 02 0.002 399 0.029 82 0.002 754 0.015 88 0.002 513 0.019 72 0.003 014
      3.0 mm/min - - 0.066 77 0.002 284 0.035 29 0.002 448 0.025 58 0.002 213
      4.5 mm/min 0.094 58 0.001 991 0.080 19 0.002 095 0.064 90 0.002 198 0.049 97 0.002 147
      注:0,20,50,80为堵塞率(%).
      下载: 导出CSV

      表  6  不同降雨和堵塞率条件下拟合的渗透系数与储水系数的平均变化率

      Table  6.   Average rate of change of fitted infiltration coefficients versus storage coefficients for different rainfall and clogging rate conditions

      堵塞率(%) 1.5 mm/min 3.0 mm/min 4.5 mm/min
      ΔK(%) ΔS(%) ΔK(%) ΔS(%) ΔK(%) ΔS(%)
      20/0 0.94 5639 1.603 662 - - 0.760 129 0.956 991
      50/20 1.55 439 1.474 463 1.261 566 1.484 123 0.486 103 0.628 664
      80/50 -0.807 010 0.097 727 0.764 206 0.798 358 0.455 930 0.696 088
      注:1.5 mm/min,3.0 mm/min,4.5 mm/min为降雨强度.
      下载: 导出CSV

      表  7  不同堵塞率岩溶介质参数

      Table  7.   Parameters for media with different clogging rates

      堵塞率(%) 0 10 30 50 80 100
      渗透系数K(m/d) 48.29 44.60 38.1 34.64 30.47 28.64
      储水系数S(%) 3.07 2.78 2.32 1.98 1.62 1.45
      下载: 导出CSV
    • Abusaada, M., Sauter, M., 2013. Studying the Flow Dynamics of a Karst Aquifer System with an Equivalent Porous Medium Model. Groundwater, 51(4): 641-650. https://doi.org/10.1111/j.1745⁃6584.2012.01003.x
      Aksoy, H., Wittenberg, H., 2011. Nonlinear Baseflow Recession Analysis in Watersheds with Intermittent Streamflow. Hydrological Sciences Journal, 56(2): 226-237. https://doi.org/10.1080/02626667.2011.553614
      Alattar, M. H., Troy, T. J., 2023. A Proposed Composite Boussinesq Equation for Estimating Baseflow Recessions and Storage⁃Outflow Relationship. Journal of Hydrology, 626: 130321. https://doi.org/10.1016/j.jhydrol.2023.130321
      Cao, J. H., Lu, S. L., Yang, D. S., et al., 2011. Process of Soil and Water Loss and Its Control Measures in Karst Regions, Southwestern China. Science of Soil and Water Conservation, 9(2): 52-56(in Chinese with English abstract).
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209(in Chinese with English abstract).
      Chang, Y., Wu, J. C., Liu, L., et al., 2016. On Recession Curve of Karst Spring. Journal of China Hydrology, 36(1): 15-21(in Chinese with English abstract).
      Chen, X., Zhang, Y. F., Xue, X. W., et al., 2012. Estimation of Baseflow Recession Constants and Effective Hydraulic Parameters in the Karst Basins of Southwest China. Hydrology Research, 43(1-2): 102-112. https://doi.org/10.2166/nh.2011.136
      Chu, X. W., Ding, H. H., Zhang, X. M., 2021. Simulation of Solute Transport Behaviors in Saturated Karst Aquifer System. Scientific Reports, 11: 15614. https://doi.org/10.1038/s41598⁃021⁃94950⁃7
      Dai, Q. H., Peng, X. D., Yang, Z., et al., 2017. Runoff and Erosion Processes on Bare Slopes in the Karst Rocky Desertification Area. CATENA, 152: 218-226. https://doi.org/10.1016/j.catena.2017.01.013
      Denić⁃Jukić, V., Jukić, D., 2003. Composite Transfer Functions for Karst Aquifers. Journal of Hydrology, 274(1-4): 80-94. https://doi.org/10.1016/s0022-1694(02)00393⁃1
      Dewandel, B., Lachassagne, P., Bakalowicz, M., et al., 2003. Evaluation of Aquifer Thickness by Analysing Recession Hydrographs. Application to the Oman Ophiolite Hard⁃Rock Aquifer. Journal of Hydrology, 274(1-4): 248-269. https://doi.org/10.1016/s0022⁃1694(02)00418⁃3
      Fiorillo, F., 2009. Spring Hydrographs as Indicators of Droughts in a Karst Environment. Journal of Hydrology, 373(3-4): 290-301. https://doi.org/10.1016/j.jhydrol.2009.04.034
      Fiorillo, F., 2014. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resources Management, 28(7): 1781-1805. https://doi.org/10.1007/s11269⁃014⁃0597⁃z
      Hall, F. R., 1968. Base⁃Flow Recessions: A Review. Water Resour. Res. , 4(5): 973-983. https://doi.org/10.1029/wr004i005p00973
      He, Y. B., Li, H., Zhang, X. B., et al., 2009. 137Cs Method Study on Soil Erosion and Sediment Yield in Grass⁃Covered Peak Cluster Depression in Maolan, Guizhou. Carsologica Sinica, 28(2): 181-188(in Chinese with English abstract).
      Jiang, Z. C., Luo, W. Q., Deng, Y., et al., 2014. The Leakage of Water and Soil in the Karst Peak Cluster Depression and Its Prevention and Treatment. Acta Geoscientica Sinica, 35(5): 535-542(in Chinese with English abstract).
      Jiang, Z. C., Luo, W. Q., Deng, Y., et al., 2018. Features and Treatment of Soil Erosion in Karst Areas of Guangxi. Guangxi Sciences, 25(5): 449-455(in Chinese with English abstract).
      Lastennet, R., Mudry, J., 1997. Role of Karstification and Rainfall in the Behavior of a Heterogeneous Karst System. Environmental Geology, 32(2): 114-123. https://doi.org/10.1007/s002540050200
      Li, Y. B., Wang, S. J., Wei, C. F., et al., 2006. The Spatial Distribution of Soil Loss Tolerance in Carbonate Area in Guizhou Province. Earth and Environment, 34(4): 36-40(in Chinese with English abstract).
      Loáiciga, H. A., Maidment, D. R., Valdes, J. B., 2000. Climate⁃Change Impacts in a Regional Karst Aquifer, Texas, USA. Journal of Hydrology, 227(1-4): 173-194. https://doi.org/10.1016/s0022⁃1694(99)00179⁃1
      Luo, M. M., Chen, J., Ji, H. S., et al., 2023. Review of Solute Exchange between Karst Conduit and Matrix. Earth Science, 48(11): 4202-4213(in Chinese with English abstract).
      Ma, Z. L., Cai, D. S., Jiang, Z. C., 2009. About Karst Wetland Classification System. Journal of Guangxi Normal University (Natural Science Edition), 27(2): 101-106(in Chinese with English abstract).
      Maillet, E., 1905. Essais d'Hydraulique Souterraine et Fluviale. Nature, 72: 25-26. https://doi.org/10.1038/072025a0
      Rodríguez, L., Vives, L., Gomez, A., 2013. Conceptual and Numerical Modeling Approach of the Guarani Aquifer System. Hydrology and Earth System Sciences, 17(1): 295-314. https://doi.org/10.5194/hess-17-295-201310.5194/hessd⁃9⁃9885⁃2012
      Rorabaugh, M. I., 1964. Estimating Changes in Bank Storage and Ground Water Contribution to Stream Flow. International Association of Scientific Hydrology, 63: 432-441. https://doi.org/10.1029/2009wr008539
      Schoeller, H., 1948. Le Regime Hydro⁃Geologique des Calcaires Eocenes Du Synclinal Du Dyr El Kef (Tunisie). Bulletin de la Société Géologique de France, S5⁃ⅩⅧ(1-3): 167-180. https://doi.org/10.2113/gssgfbull.s5⁃xviii.1⁃3.167
      Shu, L. C., Zou, Z. K., Li, F. L., et al., 2020. Laboratory and Numerical Simulations of Spatio⁃Temporal Variability of Water Exchange between the Fissures and Conduitsin a Karstic Aquifer. Journal of Hydrology, 590: 125219. https://doi.org/10.1016/j.jhydrol.2020.125219
      Silva, R., Bacellar, L., Fernandes, K. N., 2010. Aquifer Parameter Estimation through the Recession Coefficient in Basement Areas of Minas Gerais. Rem: Revista Escola De Minas, 63(3): 465-471. https://doi.org/10.1590/s0370⁃44672010000300007
      Tallaksen, L. M., 1995. A Review of Baseflow Recession Analysis. Journal of Hydrology, 165(1-4): 349-370. https://doi.org/10.1016/0022⁃1694(94)02540⁃r
      Tang, R., Shu, L. C., Lu, C. P., et al., 2016. Laboratory Analog Analysis of Spring Recession Curve in a Karst Aquifer with Fracture and Conduit Domains. Journal of Hydrologic Engineering, 21(2): 06015013. https://doi.org/10.1061/(asce)he.1943-5584.0001271
      Vogel, R. M., Kroll, C. N., 1992. Regional Geohydrologic-Geomorphic Relationships for the Estimation of Low-Flow Statistics. Water Resources Research, 28(9): 2451-2458. https://doi.org/10.1029/92WR01007
      Wu, Q. L., Liang, H., Xiong, K. N., et al., 2021. Effectiveness of Monitoring Methods for Soil Leakage Loss in Karst Regions. Environmental Earth Sciences, 80(7): 278. https://doi.org/10.1007/s12665⁃021⁃09593⁃8
      Yang, P., Tang, Y. Q., Zhou, N. Q., et al., 2011. Characteristics of Red Clay Creep in Karst Caves and Loss Leakage of Soil in the Karst Rocky Desertification Area of Puding County, Guizhou, China. Environmental Earth Sciences, 63(3): 543-549. https://doi.org/10.1007/s12665⁃010⁃0721⁃1
      Yang, Z. H., Song, X. Q., Su, W. C., 2019. Slope Runoff Process and Its Utilization Technology in Southwest Karst Area. Earth Science, 44(9): 2931-2943(in Chinese with English abstract).
      Zhang, J. Y., Wang, L. C., Su, W. C., et al., 2014. Status and Prospect of the Hydrological Effects of Human Activities in the Karstarea. Progress in Geography, 33(8): 1125-1135(in Chinese with English abstract).
      Zhang, X. B., Wang, S. J., He, X. B., et al., 2007. Soil Creeping in Weathering Crusts of Carbonate Rocks and Underground Soil Losses on Karst Slopes. Earth and Environment, 35(3): 202-206(in Chinese with English abstract).
      Zhao, X. E., Chang, Y., Wu, J. C., et al., 2021. Investigating the Relationships between Parameters in the Transient Storage Model and the Pool Volume in Karst Conduits through Tracer Experiments. Journal of Hydrology, 593: 125825. https://doi.org/10.1016/j.jhydrol.2020.125825
      曹建华, 鲁胜力, 杨德生, 等, 2011. 西南岩溶区水土流失过程及防治对策. 中国水土保持科学, 9(2): 52-56.
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
      常勇, 吴吉春, 刘玲, 等, 2016. 岩溶泉流量衰减曲线分析. 水文, 36(1): 15-21.
      何永彬, 李豪, 张信宝, 等, 2009. 贵州茂兰峰丛草地洼地小流域侵蚀产沙的137Cs法研究. 中国岩溶, 28(2): 181-188.
      蒋忠诚, 罗为群, 邓艳, 等, 2014. 岩溶峰丛洼地水土漏失及防治研究. 地球学报, 35(5): 535-542.
      蒋忠诚, 罗为群, 邓艳, 等, 2018. 广西岩溶区的水土流失特点及其防治. 广西科学, 25(5): 449-455.
      李阳兵, 王世杰, 魏朝富, 等, 2006. 贵州省碳酸盐岩地区土壤允许流失量的空间分布. 地球与环境, 34(4): 36-40.
      罗明明, 陈静, 季怀松, 等, 2023. 岩溶管道与裂隙介质间溶质交换研究进展. 地球科学, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003
      马祖陆, 蔡德所, 蒋忠诚, 2009. 岩溶湿地分类系统研究. 广西师范大学学报(自然科学版), 27(2): 101-106.
      杨振华, 宋小庆, 苏维词, 2019. 西南喀斯特地区坡地产流过程及其利用技术. 地球科学, 44(9): 2931-2943. doi: 10.3799/dqkx.2019.213
      张军以, 王腊春, 苏维词, 等, 2014. 岩溶地区人类活动的水文效应研究现状及展望. 地理科学进展, 33(8): 1125-1135.
      张信宝, 王世杰, 贺秀斌, 等, 2007. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失. 地球与环境, 35(3): 202-206.
    • 加载中
    图(9) / 表(7)
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  5
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-24
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回