Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers
-
摘要: 中国西南岩溶区水土漏失严重,表层土充填并堵塞含水层储水结构,改变了介质场水动力参数.为探讨溶洞堵塞对含水层渗流的影响,设计岩溶裂隙-溶洞三维物理模型,开展了不同堵塞率、不同降雨条件下岩溶裂隙储水-释水渗流实验.结果表明:基流衰退过程中,岩溶水流量呈三阶段下降模式.初始流量与衰退系数受含水层厚度,水位落差和介质场渗透系数影响.堵塞会延长储水时间,加快降雨结束时水位回落速度;在堵塞率超过50%时,蓄水空间大量减少,堵塞介质延缓排水的作用明显,使水位回落速度减慢.堵塞率与渗透系数K和储水系数S间为指数函数关系,堵塞初期两个参数快速减小.数值模拟结果表明参数K和S的减小,会引起地下水水位抬高,导致地下水位在降雨开始与结束时的不稳定,减弱岩溶含水层地下水的调控能力.Abstract: In the karst area of Southwest China, water and soil leakage is serious, and topsoil fills and plugs the aquifer storage structure, changing the hydrodynamic parameters of the media field. In order to explore the influence of cavern plugging on aquifer seepage, a three-dimensional physical model of karst fissure-cavern was designed, and experiments on water storage-release seepage from karst fissures under different plugging rates and rainfall conditions were carried out. The results show that the karst water flow shows a three-stage decline pattern during baseflow recession. The initial flow rate and recession coefficient are affected by aquifer thickness, water level drop and permeability coefficient of media field. Clogging prolongs the storage time and accelerates the rate of water level fallback at the end of rainfall; At a clogging rate of more than 50%, there is a large reduction in the storage space, and the clogging medium retards the drainage significantly, slowing down the rate of water level fallback. Clogging rate and permeability coefficient K and water storage coefficient S is an exponential function of the relationship between the two parameters at the beginning of the plugging rapid decrease. Numerical simulation results show that the decrease of parameters K and S will cause the groundwater level to be elevated, leading to the instability of the groundwater level at the beginning and the end of rainfall, and weakening the ability to regulate the groundwater in karst aquifers.
-
表 1 数值模型中设计月降雨量
Table 1. Design monthly rainfall in numerical models
时间(m) 1 2 3 4 5 6 7 8 9 10 11 12 降雨量(m/d) 0.015 0.02 0.03 0.04 0.03 0.018 0.02 0.015 0.01 0.008 0.008 0.005 表 2 岩溶退水实验监测点初始稳定水位
Table 2. Initial stabilized water level at experimental karst recession monitoring site
A(排泄)(cm) B(cm) C(cm) D(cm) E(cm) F(cm) G(cm) H(cm) I(cm) J(补给) (cm) 1 69.1 69.2 69.3 69.5 69.7 69.9 70.0 70.3 70.5 70.6 2 69.0 69.2 69.2 69.7 69.8 69.9 70.0 70.4 70.5 70.5 3 69.0 69.2 69.3 69.6 69.8 69.8 69.9 70.3 70.4 70.5 4 68.9 69.1 69.3 69.6 69.8 69.8 69.9 70.3 70.4 70.4 5 68.8 69.0 69.2 69.5 698 69.7 69.9 70.4 70.4 70.4 表 3 不同阶段退水试验Q0和ɑ拟合值
Table 3. The fitted values of Q0 and ɑ for different stages of water withdrawal tests
参数 0 20 50 80 Q0(L/s) ɑ(s-1) Q0(L/s) ɑ(s-1) Q0(L/s) ɑ(s-1) Q0(L/s) ɑ(s-1) 阶段1 0.037 31 0.001 269 0.028 14 0.001 318 0.027 25 0.001 309 0.035 53 0.001 518 阶段2 0.037 43 0.001 179 0.031 84 0.001 239 0.041 07 0.001 573 0.023 98 0.001 417 阶段3 0.019 58 0.002 020 0.026 33 0.001 590 0.005 43 0.005 081 0.005 43 0.005 082 阶段4 0.015 68 0.002 463 0.028 40 0.002 264 0.011 11 0.000 791 0.018 07 0.002 440 阶段5 0.015 01 0.002 669 0.015 54 0.001 904 0.020 30 0.002 093 0.007 73 0.002 228 阶段6 0.019 80 0.002 740 0.024 61 0.002 537 0.007 96 0.003 313 0.020 24 0.002 499 阶段7 0.010 62 0.003 310 0.011 80 0.003 245 0.013 08 0.002 574 0.014 12 0.003 242 注:0,20,50,80为堵塞率(%). 表 4 岩溶裂隙-溶洞介质退水实验各阶段H、h0
Table 4. Various stages of karst fissure-cavern media recession experiments H, h0
参数 0 20 50 80 H(dm) h0(dm) H(dm) h0(dm) H(dm) h0(dm) H(dm) h0(dm) 阶段1 6.12 0.62 6.35 0.40 6.12 0.61 6.08 0.70 阶段2 5.61 0.51 5.70 0.65 5.43 0.69 5.67 0.37 阶段3 5.08 0.53 5.13 0.57 4.88 0.55 5.14 0.53 阶段4 4.68 0.40 4.50 0.63 4.28 0.60 4.57 0.60 阶段5 4.24 0.44 4.05 0.45 3.80 0.48 4.18 0.40 阶段6 3.70 0.54 3.48 0.57 3.40 0.40 3.56 0.62 阶段7 3.27 0.43 3.06 0.42 2.93 0.47 3.10 0.46 注:0,20,50,80为堵塞率(%). 表 5 不同降雨条件下储水-释水实验流量衰退拟合的Q0与ɑ
Table 5. Q0 and ɑ for experimental flow recession fitting of water storage-release under different rainfall conditions
降雨 0 20 50 80 Q0 (L/s) ɑ(s-1) Q0 (L/s) ɑ(s-1) Q0 (L/s) ɑ(s-1) Q0 (L/s) ɑ(s-1) 1.5 mm/min 0.040 02 0.002 399 0.029 82 0.002 754 0.015 88 0.002 513 0.019 72 0.003 014 3.0 mm/min - - 0.066 77 0.002 284 0.035 29 0.002 448 0.025 58 0.002 213 4.5 mm/min 0.094 58 0.001 991 0.080 19 0.002 095 0.064 90 0.002 198 0.049 97 0.002 147 注:0,20,50,80为堵塞率(%). 表 6 不同降雨和堵塞率条件下拟合的渗透系数与储水系数的平均变化率
Table 6. Average rate of change of fitted infiltration coefficients versus storage coefficients for different rainfall and clogging rate conditions
堵塞率(%) 1.5 mm/min 3.0 mm/min 4.5 mm/min ΔK(%) ΔS(%) ΔK(%) ΔS(%) ΔK(%) ΔS(%) 20/0 0.94 5639 1.603 662 - - 0.760 129 0.956 991 50/20 1.55 439 1.474 463 1.261 566 1.484 123 0.486 103 0.628 664 80/50 -0.807 010 0.097 727 0.764 206 0.798 358 0.455 930 0.696 088 注:1.5 mm/min,3.0 mm/min,4.5 mm/min为降雨强度. 表 7 不同堵塞率岩溶介质参数
Table 7. Parameters for media with different clogging rates
堵塞率(%) 0 10 30 50 80 100 渗透系数K(m/d) 48.29 44.60 38.1 34.64 30.47 28.64 储水系数S(%) 3.07 2.78 2.32 1.98 1.62 1.45 -
Abusaada, M., Sauter, M., 2013. Studying the Flow Dynamics of a Karst Aquifer System with an Equivalent Porous Medium Model. Groundwater, 51(4): 641-650. https://doi.org/10.1111/j.1745⁃6584.2012.01003.x Aksoy, H., Wittenberg, H., 2011. Nonlinear Baseflow Recession Analysis in Watersheds with Intermittent Streamflow. Hydrological Sciences Journal, 56(2): 226-237. https://doi.org/10.1080/02626667.2011.553614 Alattar, M. H., Troy, T. J., 2023. A Proposed Composite Boussinesq Equation for Estimating Baseflow Recessions and Storage⁃Outflow Relationship. Journal of Hydrology, 626: 130321. https://doi.org/10.1016/j.jhydrol.2023.130321 Cao, J. H., Lu, S. L., Yang, D. S., et al., 2011. Process of Soil and Water Loss and Its Control Measures in Karst Regions, Southwestern China. Science of Soil and Water Conservation, 9(2): 52-56(in Chinese with English abstract). Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209(in Chinese with English abstract). Chang, Y., Wu, J. C., Liu, L., et al., 2016. On Recession Curve of Karst Spring. Journal of China Hydrology, 36(1): 15-21(in Chinese with English abstract). Chen, X., Zhang, Y. F., Xue, X. W., et al., 2012. Estimation of Baseflow Recession Constants and Effective Hydraulic Parameters in the Karst Basins of Southwest China. Hydrology Research, 43(1-2): 102-112. https://doi.org/10.2166/nh.2011.136 Chu, X. W., Ding, H. H., Zhang, X. M., 2021. Simulation of Solute Transport Behaviors in Saturated Karst Aquifer System. Scientific Reports, 11: 15614. https://doi.org/10.1038/s41598⁃021⁃94950⁃7 Dai, Q. H., Peng, X. D., Yang, Z., et al., 2017. Runoff and Erosion Processes on Bare Slopes in the Karst Rocky Desertification Area. CATENA, 152: 218-226. https://doi.org/10.1016/j.catena.2017.01.013 Denić⁃Jukić, V., Jukić, D., 2003. Composite Transfer Functions for Karst Aquifers. Journal of Hydrology, 274(1-4): 80-94. https://doi.org/10.1016/s0022-1694(02)00393⁃1 Dewandel, B., Lachassagne, P., Bakalowicz, M., et al., 2003. Evaluation of Aquifer Thickness by Analysing Recession Hydrographs. Application to the Oman Ophiolite Hard⁃Rock Aquifer. Journal of Hydrology, 274(1-4): 248-269. https://doi.org/10.1016/s0022⁃1694(02)00418⁃3 Fiorillo, F., 2009. Spring Hydrographs as Indicators of Droughts in a Karst Environment. Journal of Hydrology, 373(3-4): 290-301. https://doi.org/10.1016/j.jhydrol.2009.04.034 Fiorillo, F., 2014. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resources Management, 28(7): 1781-1805. https://doi.org/10.1007/s11269⁃014⁃0597⁃z Hall, F. R., 1968. Base⁃Flow Recessions: A Review. Water Resour. Res. , 4(5): 973-983. https://doi.org/10.1029/wr004i005p00973 He, Y. B., Li, H., Zhang, X. B., et al., 2009. 137Cs Method Study on Soil Erosion and Sediment Yield in Grass⁃Covered Peak Cluster Depression in Maolan, Guizhou. Carsologica Sinica, 28(2): 181-188(in Chinese with English abstract). Jiang, Z. C., Luo, W. Q., Deng, Y., et al., 2014. The Leakage of Water and Soil in the Karst Peak Cluster Depression and Its Prevention and Treatment. Acta Geoscientica Sinica, 35(5): 535-542(in Chinese with English abstract). Jiang, Z. C., Luo, W. Q., Deng, Y., et al., 2018. Features and Treatment of Soil Erosion in Karst Areas of Guangxi. Guangxi Sciences, 25(5): 449-455(in Chinese with English abstract). Lastennet, R., Mudry, J., 1997. Role of Karstification and Rainfall in the Behavior of a Heterogeneous Karst System. Environmental Geology, 32(2): 114-123. https://doi.org/10.1007/s002540050200 Li, Y. B., Wang, S. J., Wei, C. F., et al., 2006. The Spatial Distribution of Soil Loss Tolerance in Carbonate Area in Guizhou Province. Earth and Environment, 34(4): 36-40(in Chinese with English abstract). Loáiciga, H. A., Maidment, D. R., Valdes, J. B., 2000. Climate⁃Change Impacts in a Regional Karst Aquifer, Texas, USA. Journal of Hydrology, 227(1-4): 173-194. https://doi.org/10.1016/s0022⁃1694(99)00179⁃1 Luo, M. M., Chen, J., Ji, H. S., et al., 2023. Review of Solute Exchange between Karst Conduit and Matrix. Earth Science, 48(11): 4202-4213(in Chinese with English abstract). Ma, Z. L., Cai, D. S., Jiang, Z. C., 2009. About Karst Wetland Classification System. Journal of Guangxi Normal University (Natural Science Edition), 27(2): 101-106(in Chinese with English abstract). Maillet, E., 1905. Essais d'Hydraulique Souterraine et Fluviale. Nature, 72: 25-26. https://doi.org/10.1038/072025a0 Rodríguez, L., Vives, L., Gomez, A., 2013. Conceptual and Numerical Modeling Approach of the Guarani Aquifer System. Hydrology and Earth System Sciences, 17(1): 295-314. https://doi.org/10.5194/hess-17-295-201310.5194/hessd⁃9⁃9885⁃2012 Rorabaugh, M. I., 1964. Estimating Changes in Bank Storage and Ground Water Contribution to Stream Flow. International Association of Scientific Hydrology, 63: 432-441. https://doi.org/10.1029/2009wr008539 Schoeller, H., 1948. Le Regime Hydro⁃Geologique des Calcaires Eocenes Du Synclinal Du Dyr El Kef (Tunisie). Bulletin de la Société Géologique de France, S5⁃ⅩⅧ(1-3): 167-180. https://doi.org/10.2113/gssgfbull.s5⁃xviii.1⁃3.167 Shu, L. C., Zou, Z. K., Li, F. L., et al., 2020. Laboratory and Numerical Simulations of Spatio⁃Temporal Variability of Water Exchange between the Fissures and Conduitsin a Karstic Aquifer. Journal of Hydrology, 590: 125219. https://doi.org/10.1016/j.jhydrol.2020.125219 Silva, R., Bacellar, L., Fernandes, K. N., 2010. Aquifer Parameter Estimation through the Recession Coefficient in Basement Areas of Minas Gerais. Rem: Revista Escola De Minas, 63(3): 465-471. https://doi.org/10.1590/s0370⁃44672010000300007 Tallaksen, L. M., 1995. A Review of Baseflow Recession Analysis. Journal of Hydrology, 165(1-4): 349-370. https://doi.org/10.1016/0022⁃1694(94)02540⁃r Tang, R., Shu, L. C., Lu, C. P., et al., 2016. Laboratory Analog Analysis of Spring Recession Curve in a Karst Aquifer with Fracture and Conduit Domains. Journal of Hydrologic Engineering, 21(2): 06015013. https://doi.org/10.1061/(asce)he.1943-5584.0001271 Vogel, R. M., Kroll, C. N., 1992. Regional Geohydrologic-Geomorphic Relationships for the Estimation of Low-Flow Statistics. Water Resources Research, 28(9): 2451-2458. https://doi.org/10.1029/92WR01007 Wu, Q. L., Liang, H., Xiong, K. N., et al., 2021. Effectiveness of Monitoring Methods for Soil Leakage Loss in Karst Regions. Environmental Earth Sciences, 80(7): 278. https://doi.org/10.1007/s12665⁃021⁃09593⁃8 Yang, P., Tang, Y. Q., Zhou, N. Q., et al., 2011. Characteristics of Red Clay Creep in Karst Caves and Loss Leakage of Soil in the Karst Rocky Desertification Area of Puding County, Guizhou, China. Environmental Earth Sciences, 63(3): 543-549. https://doi.org/10.1007/s12665⁃010⁃0721⁃1 Yang, Z. H., Song, X. Q., Su, W. C., 2019. Slope Runoff Process and Its Utilization Technology in Southwest Karst Area. Earth Science, 44(9): 2931-2943(in Chinese with English abstract). Zhang, J. Y., Wang, L. C., Su, W. C., et al., 2014. Status and Prospect of the Hydrological Effects of Human Activities in the Karstarea. Progress in Geography, 33(8): 1125-1135(in Chinese with English abstract). Zhang, X. B., Wang, S. J., He, X. B., et al., 2007. Soil Creeping in Weathering Crusts of Carbonate Rocks and Underground Soil Losses on Karst Slopes. Earth and Environment, 35(3): 202-206(in Chinese with English abstract). Zhao, X. E., Chang, Y., Wu, J. C., et al., 2021. Investigating the Relationships between Parameters in the Transient Storage Model and the Pool Volume in Karst Conduits through Tracer Experiments. Journal of Hydrology, 593: 125825. https://doi.org/10.1016/j.jhydrol.2020.125825 曹建华, 鲁胜力, 杨德生, 等, 2011. 西南岩溶区水土流失过程及防治对策. 中国水土保持科学, 9(2): 52-56. 常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093 常勇, 吴吉春, 刘玲, 等, 2016. 岩溶泉流量衰减曲线分析. 水文, 36(1): 15-21. 何永彬, 李豪, 张信宝, 等, 2009. 贵州茂兰峰丛草地洼地小流域侵蚀产沙的137Cs法研究. 中国岩溶, 28(2): 181-188. 蒋忠诚, 罗为群, 邓艳, 等, 2014. 岩溶峰丛洼地水土漏失及防治研究. 地球学报, 35(5): 535-542. 蒋忠诚, 罗为群, 邓艳, 等, 2018. 广西岩溶区的水土流失特点及其防治. 广西科学, 25(5): 449-455. 李阳兵, 王世杰, 魏朝富, 等, 2006. 贵州省碳酸盐岩地区土壤允许流失量的空间分布. 地球与环境, 34(4): 36-40. 罗明明, 陈静, 季怀松, 等, 2023. 岩溶管道与裂隙介质间溶质交换研究进展. 地球科学, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003 马祖陆, 蔡德所, 蒋忠诚, 2009. 岩溶湿地分类系统研究. 广西师范大学学报(自然科学版), 27(2): 101-106. 杨振华, 宋小庆, 苏维词, 2019. 西南喀斯特地区坡地产流过程及其利用技术. 地球科学, 44(9): 2931-2943. doi: 10.3799/dqkx.2019.213 张军以, 王腊春, 苏维词, 等, 2014. 岩溶地区人类活动的水文效应研究现状及展望. 地理科学进展, 33(8): 1125-1135. 张信宝, 王世杰, 贺秀斌, 等, 2007. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失. 地球与环境, 35(3): 202-206. -