Bafertisite Mineralogy and Occurrence State of Niobium in Bayan Obo Deposit
-
摘要: 钡铁钛石,白云鄂博矿床中发现的第一个新矿物,而关于其形貌特征、共生组合、矿物成因等研究相对较为薄弱.基于近年来发现的一些晶型完整的粗粒钡铁钛石晶体,利用偏反光显微镜、场发射扫描电镜、场发射电子探针等分析测试仪器对其开展了详细的矿物学及矿物化学研究.结果表明:钡铁钛石颜色为褐红色至黄红色,粒径在0.3~1.0 mm左右,呈板状、放射状和柱状3种形态赋存于霓石型、闪石-云母型、白云石型矿石和H9板岩中,主要共生矿物为霓石和钠闪石.同时受后期热液影响,矿物晶体发生了不同程度的蚀变交代,重新沉淀结晶出了钛铁矿、菱铁矿和重晶石等矿物.由于碱性热液流体中Nb5+和Ti4+、Fe3+等发生不同程度的类质同象替换,钡铁钛石晶体中含有一定量的Nb2O5,且放射状钡铁钛石中的铌含量最高,达到1.72%,除包头矿、铌包头矿外,钡铁钛石是矿区另外一种典型的含铌Ba、Ti、Fe硅酸盐矿物.综上,初步认为钡铁钛石的结晶分布主要受矿区钠质流体作用控制,板状钡铁钛石、放射状和柱状钡铁钛石分别代表了矿体霓长岩化的早晚两阶段产物.此外矿体中含有Ti元素的矿物是值得关注的重要铌矿物和含铌矿物,后续研究中需引起重视.Abstract: Bafertisite, the first new mineral found in the Bayan Obo deposit, is relatively weakly studied in terms of its morphological features, symbiotic assemblages, and mineralogical genesis. Based on some coarse-grained bafertisite crystals with complete crystal form found in recent years, a detailed mineralogical and mineral chemical study was carried out using polarized reflectance microscope, field emission scanning electron microscope, field emission electron microprobe and other analytical test instruments. The results show that: the color of bafertisite is brownish red to yellowish red, and the grain size is around 0.3-1.0 mm, which is in tabular, radial and columnar forms in aegirine type ore, riebeckite-mica type ore, dolomite type ore, and H9 slate, and the main co-occurring minerals are aegirine and riebeckite, meanwhile, by the influence of late hydrothermal fluids, the mineral crystals underwent different degrees of alteration and accounted for, and the ilmenite, siderite, and barite and other minerals. Due to the alkaline hydrothermal fluid Nb5+ and Ti4+, Fe3+, etc. occurred to varying degrees of homogeneous substitution of analogs, bafertisite crystals contain a certain amount of Nb2O5, and radial bafertisite has the highest content of niobium, 1.72%, in addition to baotite, niobobaotite, bafertisite is another typical niobium-containing Ba, Ti, Fe silicate minerals. In summary, it is initially believed that the crystalline distribution of bafertisite is mainly controlled by the action of sodic fluids in the ore area, and that tabular bafertisite, radial and columnar bafertisite represent the early and late fentization process in the orebody, respectively. In addition, Ti-bearing minerals in the orebody are important niobium minerals and niobium-bearing minerals that deserve attention in subsequent studies.
-
Key words:
- Bayan Obo deposit /
- bafertisite /
- niobium /
- scanning electron microscope /
- electron microprobe /
- mineral deposits
-
图 1 白云鄂博白云鄂博矿区地质简图(a)及矿体影像图(b)
图a据Yang et al.(2011)修改
Fig. 1. Regional geological map (a) and image map (b) of Bayan Obo deposit
图 5 钡铁钛石EMPA面扫描图像
a. 与磁铁矿、铌铁矿共生的钡铁钛石 BSE 图像;a-1~a-7.Ba,Fe,Na,Ti,Mn,Nb,Th 元素面扫描图,其中铌元素在矿物中呈不均匀分布(a-7); b. 与氟碳钙铈矿共生的放射状钡铁钛石 BSE 图像;b-1~b-7.Ba,Fe,Na,Ti,Mn,Nb,Th 元素面扫描图,其中铌元素含量较高,在矿物中呈不均 匀分布(b-7),铁含量较高,分布相对均匀(b-2);c. 呈溶蚀结构的板状钡铁钛石;c-1~c-7.Ba,Fe,Na,Ti,Mn,Nb,Th 元素面扫描图,铌元素含 量较低(b-7).Aeg. 霓石;Ank. 铁白云石;Bft. 钡铁钛石;Brt. 重晶石;Clb. 铌铁矿;Mag. 磁铁矿;Mnz. 独居石;Par. 氟碳钙铈矿
Fig. 5. The major elemental surface scanning images of bafertisite analysed by EMPA
表 1 白云鄂博矿石中钡铁钛石电子探针分析数据(%)
Table 1. Electron microprobe analysis (EMPA) data of bafertisite in Bayan Obo deposit
SiO2 TiO2 Al2O3 FeO MnO MgO CaO BaO Na2O K2O ThO2 Nb2O5 F O=F2 Cl O=Cl2 Total DK-48霓石型矿石中板状钡铁钛石 1 23.67 14.61 b.d.l. 24.26 1.88 b.d.l. b.d.l. 29.13 0.08 0.07 0.04 0.17 3.25 -1.37 b.d.l. b.d.l. 95.79 2 22.56 13.95 0.02 24.00 2.24 0.02 b.d.l. 29.97 0.13 0.05 b.d.l. 0.44 2.03 -0.85 0.02 b.d.l. 94.55 3 22.90 15.68 0.02 23.77 2.06 0.01 b.d.l. 28.77 0.14 0.05 b.d.l. 0.16 3.22 -1.36 0.01 b.d.l. 95.42 4 23.02 14.23 b.d.l. 24.53 1.82 0.02 0.01 28.79 0.13 0.06 0.01 0.43 3.26 -1.37 0.01 b.d.l. 94.93 5 23.14 14.25 0.03 23.86 1.84 0.03 b.d.l. 28.72 0.07 0.08 b.d.l. 0.31 3.21 -1.35 b.d.l. b.d.l. 94.18 6 22.82 13.96 b.d.l. 23.80 1.88 0.07 b.d.l. 28.98 0.08 0.11 b.d.l. 0.44 3.29 -1.38 0.01 b.d.l. 94.05 7 23.24 14.04 0.01 23.90 1.92 0.05 b.d.l. 28.82 0.12 0.06 0.01 0.17 3.29 -1.39 b.d.l. b.d.l. 94.23 8 23.12 14.00 0.03 24.28 1.91 0.01 b.d.l. 28.92 0.08 0.09 b.d.l. 0.31 3.22 -1.36 0.01 b.d.l. 94.61 9 23.66 14.72 0.03 24.36 1.89 0.03 b.d.l. 28.67 0.11 0.07 0.06 0.22 3.41 -1.44 0.01 b.d.l. 95.81 average 23.12 14.38 0.02 24.08 1.94 0.03 0.01 28.97 0.10 0.07 0.03 0.29 3.13 -1.32 0.01 0.00 94.84 DK-7霓石型矿石中板状钡铁钛石 1 23.52 14.32 0.01 20.41 5.59 0.01 b.d.l. 28.73 0.08 0.08 b.d.l. 0.17 3.19 -1.34 b.d.l. b.d.l. 94.77 2 23.44 14.01 0.01 20.82 5.43 0.03 0.01 29.02 0.08 0.07 b.d.l. 0.21 3.33 -1.40 0.01 b.d.l. 95.06 3 23.65 14.96 0.01 22.88 3.53 0.04 b.d.l. 29.35 0.07 0.04 b.d.l. 0.12 3.21 -1.35 b.d.l. b.d.l. 96.49 4 23.53 14.50 b.d.l. 23.10 3.73 0.05 b.d.l. 29.10 0.07 0.06 b.d.l. 0.13 3.30 -1.39 b.d.l. b.d.l. 96.18 5 23.52 13.73 b.d.l. 22.41 3.34 0.02 0.01 29.25 0.10 0.07 0.01 0.15 3.14 -1.32 0.01 b.d.l. 94.42 6 22.90 15.08 0.01 23.38 3.18 0.04 0.04 28.83 0.13 0.07 b.d.l. 0.22 3.38 -1.42 b.d.l. b.d.l. 95.82 average 23.42 14.43 0.01 22.17 4.13 0.03 0.02 29.04 0.09 0.06 0.01 0.17 3.26 -1.37 0.01 b.d.l. 95.46 XK-303白云石型矿石中放射状钡铁钛石 1 22.90 14.45 b.d.l. 23.75 0.73 0.20 0.11 29.64 0.10 b.d.l. 0.03 0.31 3.35 -1.41 b.d.l. b.d.l. 94.17 2 23.11 14.88 b.d.l. 23.84 0.65 0.15 0.18 29.59 0.09 b.d.l. b.d.l. 0.38 3.34 -1.41 b.d.l. b.d.l. 94.80 3 22.89 14.60 0.01 24.29 0.68 0.19 0.20 29.02 0.11 0.01 b.d.l. 0.35 3.33 -1.40 b.d.l. b.d.l. 94.27 4 23.14 14.32 0.03 24.04 0.64 0.17 0.03 29.18 0.08 0.02 b.d.l. 0.51 3.37 -1.42 b.d.l. b.d.l. 94.10 5 23.35 14.32 b.d.l. 24.11 0.67 0.16 0.22 28.88 0.08 b.d.l. b.d.l. 0.31 3.44 -1.45 b.d.l. b.d.l. 94.08 6 23.21 13.60 0.02 25.02 0.41 0.08 0.04 28.70 0.10 0.06 b.d.l. 1.02 3.20 -1.35 0.02 b.d.l. 94.10 7 23.51 13.97 0.02 24.79 0.57 0.10 0.02 29.13 0.09 0.07 b.d.l. 0.81 3.02 -1.27 0.02 b.d.l. 94.84 8 23.28 14.81 0.02 24.24 0.53 0.13 0.08 29.27 0.07 0.01 0.01 0.30 3.29 -1.39 0.02 b.d.l. 94.66 9 23.57 14.01 b.d.l. 24.48 0.63 0.18 0.10 29.12 0.08 b.d.l. b.d.l. 0.41 3.24 -1.37 0.01 b.d.l. 94.46 10 23.45 13.02 b.d.l. 25.12 0.44 0.09 0.02 28.52 0.06 0.07 b.d.l. 1.72 3.10 -1.31 0.01 b.d.l. 94.30 11 23.63 13.68 b.d.l. 25.39 0.35 0.04 0.02 27.65 0.06 0.08 b.d.l. 1.20 3.32 -1.40 0.00 b.d.l. 94.01 12 23.56 13.79 0.03 25.21 0.39 0.09 b.d.l. 28.54 0.10 0.05 b.d.l. 0.57 3.15 -1.33 0.01 b.d.l. 94.13 13 23.57 13.86 0.01 24.57 0.63 0.13 0.11 29.01 0.10 0.02 b.d.l. 0.85 3.25 -1.37 0.01 b.d.l. 94.75 average 23.32 14.10 0.02 24.53 0.56 0.13 0.09 28.94 0.08 0.04 0.02 0.67 3.26 -1.37 0.01 b.d.l. 94.36 XK-303白云石型矿石中柱状钡铁钛石 1 23.30 14.25 0.02 23.30 1.18 0.21 0.19 29.54 0.06 0.03 0.01 0.19 3.41 -1.44 b.d.l. b.d.l. 94.25 2 23.65 15.16 b.d.l. 23.63 1.20 0.21 0.19 28.80 0.07 0.02 0.06 0.21 3.36 -1.42 0.01 b.d.l. 95.15 3 23.48 14.09 b.d.l. 23.42 1.19 0.20 0.14 29.03 0.12 0.04 0.06 0.38 3.35 -1.41 0.01 b.d.l. 94.10 4 23.54 14.20 0.01 23.61 1.21 0.18 0.18 29.08 0.12 0.04 0.01 0.38 3.38 -1.42 0.01 b.d.l. 94.52 5 23.53 14.05 0.05 23.43 1.20 0.19 0.53 28.56 0.08 0.08 b.d.l. 0.49 3.24 -1.36 b.d.l. b.d.l. 94.06 6 23.66 13.79 b.d.l. 23.36 1.13 0.16 0.01 29.30 0.08 0.03 0.02 0.68 3.30 -1.39 0.02 b.d.l. 94.13 7 23.59 13.89 0.01 24.00 1.24 0.15 0.02 28.98 0.10 b.d.l. 0.03 0.14 3.27 -1.38 0.01 b.d.l. 94.04 8 23.54 14.63 0.01 24.51 1.87 0.04 b.d.l. 29.03 0.11 0.06 b.d.l. 0.14 3.26 -1.37 0.01 b.d.l. 95.84 average 23.54 14.26 0.02 23.66 1.28 0.17 0.18 29.04 0.09 0.04 0.03 0.33 3.32 -1.40 0.01 b.d.l. 94.51 白云鄂博(1) 23.68 15.39 0.29 23.64 1.62 0.50 0.37 29.98 0.49 0.12 0.84 0.63 -0.14 97.41* 白云鄂博(2) 23.48 14.15 22.81 3.18 0.60 27.56 0.15 0.89 3.94 -1.66 95.10** 江苏东海(3) 23.40 14.38 0.15 23.39 3.72 0.10 29.09 0.41 0.31 3.35 -1.41 0.28 -0.06 97.11* 普里贝加尔(2) 23.71 15.06 0.31 22.41 3.87 0.12 0.04 26.82 0.10 0.34 4.42 -1.86 95.34** 普里贝加尔(3) 25.18 14.27 1.00 14.49 12.77 0.30 26.59 0.38 0.33 0.32 3.50 1.47 100.60** 塔吉克斯坦(2) 23.17 14.44 15.27 10.88 0.06 27.68 0.07 1.08 4.07 -1.71 95.01* 哈萨克斯坦(3) 24.40 14.06 1.43 24.76 2.82 0.10 0.16 26.61 0.42 0.50 0.81 3.46 99.53** 注:*化学法测得的结果;**电子探针(EMPA)测得的结果;b.d.l低于电子探针检测限;(1)来自文献Semenov and Chang,1959;(2)来自文献 Cámara et al.,2016 ;(3)来自文献张淑君等,1982.表 2 钡铁钛石族矿物的晶体化学式及晶胞参数
Table 2. Crystal chemical formulae and cell parameters of bafertisite group minerals
矿物 钡铁钛石(Bafertisite) 化学式 BaFe2Ti
[Si2O7]
O(OH)2BaFe2TiO
[Si2O7]
(OH)2Ba(Fe,Mn)2
Ti[Si2O7]
O(OH,Cl)2Ba(Fe,Mn)2
TiO[Si2O7]
(OH,F)2BaFe2+2Ti
[Si2O7]
(O,H2O)
(O,OH)2Ba2Fe2+4Ti2(Si2O7)2O2(OH)2F2 产地 白云鄂博 白云鄂博 白云鄂博 江苏东海 江苏东海 白云鄂博 白云鄂博 俄罗斯 塔吉克斯坦 空间群 P21/m Cm Cm Cm P21/m P21/m C$ \overline{1} $ C$ \overline{1} $ C$ \overline{1} $ 晶胞参数Å a 10.98 10.60 10.612(3) 10.633(6) 5.324 9(17) 5.382 40 10.665(2) 10.677(6) 10.685(8) b 6.80 13.64 13.637(7) 13.670(1) 6.866 9(22) 6.941 00 13.743(2) 13.767(7) 13.788(10) c 5.36 12.47 12.464(2) 12.465(5) 10.870 9(36) 1.105 41 11.721(3) 11.737(2) 11.758(7) α 90 90 90.30(4) 90.12(1) 90.22(1) β 94.00 119.50 119.490(2) 119.550(4) 94.740 0(6) 94.658 70 112.27(2) 112.28(4) 112.22(5) γ 90 90 90.00(3) 90.02(1) 90.01(1) V 411.607 1 589.8(8) 1 596(3) 1 605(3) Z 2 8 2 2 2 4 4 4 来源 彭志忠和沈今川(1963) Guan et al.(1963) Yang et al.(1999) Li et al.(2011) 沈敢富等(2012) Cámara et al.(2016) 钡铁钛石族矿物(Bafertisite group minerals) 矿物 鲍勃香农石 羟氟碳硅钛铁
钡钠石卡马拉石 海特曼石 金沙江石 皮诺特石 硅钛锰钡石 Bobshannonite Bussenite Cámaraite Hejtmanite Jinshajiangite Perraultite Yoshimuraite 化学式 Na2KBa
(Mn7Na)Nb4
(Si2O7)4O4
(OH)4O2Ba4(Na,□)2
(Fe2+,Na)2Ti2
(Si2O7)2(CO3)2
O2(OH)2(H2O)2F2Ba3NaFe2+8Ti4
(Si2O7)4O4
(OH)4F3Ba2Mn2+4Ti2
(Si2O7)2O2
(OH)2F2NaBaFe2+4Ti2
(Si2O7)2O2
(OH)2FBaNaMn4Ti2
(Si2O7)2O2
(OH)2FBa4Mn2+4Ti2
(Si2O7)2(PO4)2
O2(OH)2产地 加拿大 俄罗斯科拉半岛 哈萨克斯坦, 赞比亚 四川 乌克兰 日本 空间群 C$ \overline{1} $ P$ \overline{1} $ C$ \overline{1} $ C$ \overline{1} $ P$ \overline{1} $ C$ \overline{1} $ P$ \overline{1} $ 晶胞参数Å a 10.839(6) 5.399(3) 10.6965(7) 10.716(2) 8.7331 (2) 10.741 (6) 5.386(1) b 13.912(8) 7.016(9) 13.7861(9) 13.795(3) 8.7366 (2) 13.841 (8) 6.999(1) c 20.98(1) 16.254(14) 21.478(2) 11.778(2) 1.0404 (3) 11.079 (6) 14.748(3) α 89.99(1) 102.44(8) 99.345(1)º 90.07(3) 1.477 (1) 108.174(6) 89.98(1) β 95.05(2) 93.18(6)° 92.315(2)º, 112.24(3) 110.184 (1) 99.186 (6) 93.62(2) γ 89.998(9) 90.10(7) 89.993(2)º 90.03(3) 104.384 (1) 89.99 (1) 95.50(2) V 3 152(5) 600.3 3 122.6(4) 1 612(2) 764.03 (3) 1 542.7 (2.7) 552.3(1) Z 4 2 4 4 8 4 2 来源 Sokolova et al.(2015) Zhou et al.(2002) Cámara et al.(2009) Sokolova et al.(2016) Jin et al.(2018) Sokolova et al.(2021) McDonald et al. (2000) -
Cámara, F. , Sokolova, E. , Abdu, Y. A. , et al. , 2016. From Structure Topology to Chemical Composition. XIX. Titanium Silicates: Revision of the Crystal Structure and Chemical Formula of Bafertisite, Ba2Fe2+4Ti2(Si2O7)2O2(OH)2F2, a Group-II TS-Block Mineral. The Canadian Mineralogist, 54(1): 49-63. https://doi.org/10.3749/canmin.1500059 Cámara, F. , Sokolova, E. , Nieto, F. , 2009. Cámaraite, Ba3NaTi4(Fe2+, Mn)8(Si2O7)4O4(OH, F)7. II. The Crystal Structure and Crystal Chemistry of a New Group-II Ti-Disilicate Mineral. Mineralogical Magazine, 73(5): 855-870. https://doi.org/10.1180/minmag.2009.073.5.855 Chang, S. R. , Su, J. H. , Qin, Z. J. , et al. , 2022. Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province. Earth Science, 47(4): 1316-1332(in Chinese with English abstract). Feng, X. X. , Teng, X. M. , Geng, J. Z. , 2024. Influence of Alkali Metasomatic Mineralization on Liushuwan Uranium Deposit in Lushi Wulichuan Area, West Henan Province. Earth Science, 49(4): 1189-1206(in Chinese with English abstract). Fan, H. R. , Yang, K. F. , Hu, F. F. , et al. , 2016. The Giant Bayan Obo REE-Nb-Fe Deposit, China: Controversy and Ore Genesis. Geoscience Frontiers, 7(3): 335-344. https://doi.org/10.1016/j.gsf.2015.11.005 Ganzeev, A. A. , Efimov, A. F. , Lyubomilova, G. V. , 1971. Manganiferous Bafertisite from the Burpala Massif (Northern Baikal). Trudy Mineralogicheskogo Muzeya A. E. Fesmana Akademii Nauk SSSR, 20: 195-197(in Russian). Ge, X. K. , Fan, G. , Li, T. , et al. , 2024. Niobobaotite, IMA 2022-127a. CNMNC Newsletter 76. Mineralogical Magazine, 88(1), 105-109. https://doi.org/10.1180/mgm.2023.89. Guan, Y. S. , Simonov, V. I. , Belov, N. V. , 1963. The Crystal Structure of Bafertisite, BaFe2TiO(Si2O7)(OH)2. Doklady AN SSSR. , 149: 1416-1419 (in Russian). Institute of Geochemistry, Chinese Academy of Sciences, 1989. The Geochemical Composition and Mineralization Regularity of Bayan Obo Deposit, Inner Mongolia. Science Press, Beijing, 203-205 (in Chinese). Jin, S. Y. , Xu, H. F. , Lee, S. , et al. , 2018. Jinshajiangite: Structure, Twinning and Pseudosymmetry. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 74(Pt. 4): 325-336.https://doi.org/10.1107/S2052520618006753 Kan, X. M. , Zhang, E. L. , Li, Y. R. , 1982. Mössbauer Study of Bafertisite and Jinshajiangite. Acta Mineralogica Sinica, 2(2): 150-153 (in Chinese with English abstract). Kullerud, K. , Zozulya, D. , Ravna, E. J. K. , 2012. Formation of Baotite: A Cl-Rich Silicate-Together with Fluorapatite and F-Rich Hydrous Silicates in the Kvaløya Lamproite Dyke, North Norway. Mineralogy and Petrology, 105(3): 145-156. https://doi.org/10.1007/s00710-012-0208-8 Le Bas, M. J. , 2008. Fenites Associated with Carbonatites. The Canadian Mineralogist, 46(4): 915-932. https://doi.org/10.3749/canmin.46.4.915 Li, G. W. , Xiong, M. , Shi, N. C. , et al. , 2011. A New Three-Dimensional Superstructure in Bafertisite. Acta Geologica Sinica, 85(5): 1028-1035. https://doi.org/10.1111/j.1755-6724.2011.00238.x Li, X. C. , Yang, K. F. , Spandler, C. , et al. , 2021. The Effect of Fluid-Aided Modification on the Sm-Nd and Th-Pb Geochronology of Monazite and Bastnäsite: Implication for Resolving Complex Isotopic Age Data in REE Ore Systems. Geochimica et Cosmochimica Acta, 300: 1-24. https://doi.org/10.1016/j.gca.2021.02.028 Liu, S. , Fan, H. R. , Yang, K. F. , et al. , 2018. Fenitization in the Giant Bayan Obo REE-Nb-Fe Deposit: Implication for REE Mineralization. Ore Geology Reviews, 94: 290-309. https://doi.org/10.1016/j.oregeorev.2018.02.006 McDonald, A. M. , Grice, J. D. , Chao, G. Y. , 2000. The Crystal Structure of Yoshimuraite, a Layered Ba-Mn-Ti Silicophosphate, with Comments on Five-Coordinated Ti4+. The Canadian Mineralogist: 38: 649-656. https://doi.org/10.2113/gscanmin.38.3.649. Mitchell, R. H. , 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010 Peng, Z. Z. , Shen, J. C. , 1963. Crystal Structure of Bafertisite. Chinese Science Bulletin, 14(6): 66-68 (in Chinese). doi: 10.1360/csb1963-8-6-66 Semenov, E. I. , Chang P. S. , 1959. New Mineral—Bafertisite. Science Record (Beijing), Newser, 3(12): 652-655 (in Russian). Shen, G. F. , Li, G. W. , Wang, K. Y. , et al. , 2012. Advances in Crystal-Chemistry Study of Type Bafertisite from Bayan Obo, China. Acta Geologica Sinica, 86(5): 829-836(in Chinese with English abstract). Sokolova, E. , Cámara, F. , 2017. The Seidozerite Supergroup of TS-Block Minerals: Nomenclature and Classification, with Change of the Following Names: Rinkite to Rinkite-(Ce), Mosandrite to Mosandrite-(Ce), Hainite to Hainite-(Y) and Innelite-1T to Innelite-1A. Mineralogical Magazine, 81(6): 1457-1484. https://doi.org/10.1180/minmag.2017.081.010 Sokolova, E. , Cámara, F. , Abdu, Y. A. , et al. , 2015. Bobshannonite, Na2KBa(Mn, Na)8(Nb, Ti)4(Si2O7)4O4(OH)4(O, F)2, a New TS-Block Mineral from Mont Saint-Hilaire, Québec, Canada: Description and Crystal Structure. Mineralogical Magazine, 79(7): 1791-1811. https://doi.org/10.1180/minmag.2015.079.7.06 Sokolova, E. , Cámara, F. , Hawthorne, F. C. , et al. , 2016. From Structure Topology to Chemical Composition. XX. Titanium Silicates: The Crystal Structure of Hejtmanite, Ba2Mn4Ti2(Si2O7)2O2(OH)2F2, a Group-II TS-Block Mineral. Mineralogical Magazine, 80(5): 841-853. https://doi.org/10.1180/minmag.2016.080.026 Sokolova, E. , Day, M. C. , Hawthorne, F. C. , et al. , 2021. From Structure Topology to Chemical Composition. XXIX. Revision of the Crystal Structure of Perraultite, NaBaMn4Ti2(Si2O7)2O2(OH)2F, a Seidozerite-Supergroup TS-Block Mineral from the Oktyabr’skii Massif, Ukraine, and Discreditation of Surkhobite. The Canadian Mineralogist, 59(2): 365-379. https://doi.org/10.3749/canmin.2000066 Wang, K. Y. , Fan, H. R. , Xie, Y. H. , 2002. Geochemistry of REE and other Trace Elements of the Carbonatite Dykes at Bayan Obo: Implication for Its Formation. Acta Petrologica Sinica, 18(3): 340-34(in Chinese with English abstract). Wang, K. Y. , Fang, A. M. , Zhang, J. E. , et al. , 2019. Genetic Relationship between Fenitized Ores and Hosting Dolomite Carbonatite of the Bayan Obo REE Deposit, Inner Mongolia, China. Journal of Asian Earth Sciences, 174: 189-204. https://doi.org/10.1016/j.jseaes.2018.12.007 Wang, K. Y. , Zhang, J. E. , Fang, A. M. , et al. , 2018. Genesis of the Bayan Obo Deposit, Inner Mongolia: The Fenitized Mineralization in the Ore Bodies and Its Relation to the Ore-Bearing Dolomite. Acta Petrologica Sinica, 34(3): 785-798(in Chinese with English abstract). Wu, G. B. , Wang, Y. T. , Zhang, S. J. , et al. , 1982. Mdssbauer Study of Bafertisite. Rock and Mineral Analysis, 1(1): 23-29(in Chinese with English abstract). Xie, Y. L. , Qu, Y. W. , Yang, Z. F. , et al. , 2019. Giant Bayan Obo Fe-Nb-REE Deposit: Progresses, Controversaries and New Understandings. Mineral Deposits, 38(5): 983-1003(in Chinese with English abstract). Yakovlevskaya, T. A. , Mineev, D. A. , 1965. On Crystals and Optical Orientation of Bafertisite. Trudy Mineralogicheskogo Muzeya A. E. Fesmana Akademii Nauk SSSR, N16: 293-294 (in Russian). Yang, Z. M. , Cressey, G. , Welch, M. , 1999. Reappraisal of the Space Group of Bafertisite. Powder Diffraction, 14(1): 22-24. https://doi.org/10.1017/s0885715600010253 Yang, K. F. , Fan, H. R. , Santosh, M. , et al. , 2011. Mesoproterozoic Carbonatitic Magmatism in the Bayan Obo Deposit, Inner Mongolia, North China: Constraints for the Mechanism of Super Accumulation of Rare Earth Elements. Ore Geology Reviews, 40(1): 122-131. https://doi.org/10.1016/j.oregeorev.2011.05.008 Yu, Y. , Li, Y. , Liu, Y. , et al. , 2024. Three-Stage Niobium Mineralization at Bayan Obo, China. National Science Review, 11(4): nwae063. https://doi.org/10.1093/nsr/nwae063 Zhang, P. S. , Tao, K. J. , 1985. Mineralogy of Bayan Obo Deposit, Inner Mongolia. Science Press, Beijing, 141-143 (in Chinese). Zhang, P. S. , Tao, K. J. , Yang, Z. M. , 1998. Rare Earth Mineralogy in China. Science Press, Beijing (in Chinese). Zhang, S. J. , Ding, H. H. , Guo, Z. S. , et al. , 1982. New Data on Bafertisite. Geological Review, 28(3): 250-257(in Chinese with English abstract). Zhou, H. , Rastsvetaeva, R. K. , Khomyakov, A. P. , et al. , 2002. Crystal Structure of New Micalike Titanosilicate—Bussenite, Na2Ba2Fe2+[TiSi2O7][CO3]O(OH)(H2O)F. Crystallography Reports, 47(1): 43-46. https://doi.org/10.1134/1.1446908 苌笙任, 苏建辉, 秦志军, 等, 2022. 鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示. 地球科学, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134 冯晓曦, 滕雪明, 耿建珍, 2024. 豫西卢氏五里川地区柳树湾铀矿碱交代成矿作用. 地球科学, 49(4): 1189-1206. doi: 10.3799/dqkx.2022.282 阚学敏, 张恩林, 李宜荣, 1982. 钡铁钛石与金沙江石的穆斯鲍尔谱研究. 矿物学报, 2(2): 150-153. 彭志忠, 沈今川, 1963. 钡铁钛石的晶体结构. 科学通报, 14(6): 66-68. 沈敢富, 李国武, 王凯怡, 等, 2012. 白云鄂博原型钡铁钛石晶体化学研究的新进展. 地质学报, 86(5): 829-836. 王凯怡, 范宏瑞, 谢奕汉, 2002. 白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示. 岩石学报, 25(11): 2933-2938. 王凯怡, 张继恩, 方爱民, 等, 2018. 白云鄂博矿床成因: 矿体内霓长岩化成矿作用与赋矿白云岩的联系. 岩石学报, 34(3): 785-798. 吴功保, 王友桐, 张淑君, 等, 1982. 硅钡铁钛石的穆斯堡尔研究. 岩矿测试, 1(1): 23-29. 谢玉玲, 曲云伟, 杨占峰, 等, 2019. 白云鄂博铁、铌、稀土矿床: 研究进展、存在问题和新认识. 矿床地质, 38(5): 983-1003. 张培善, 陶克捷, 1985. 白云鄂博矿床矿物学. 北京: 科学出版社, 141-143. 张培善, 陶克捷, 杨主明, 等, 1998. 中国稀土矿物学. 北京: 科学出版社. 张淑君, 丁浩华, 郭宗山, 等, 1982. 硅钡铁钛石的新资料. 地质论评, 28(3): 250-257. 中国科学院地球化学研究所, 1988. 白云鄂博矿床地球化学. 北京: 科学出版社. -