Subduction-Induced Sedimentary Metasomatism of Orogenic Lithospheric Mantle: Insights from Potassium Isotope in Lamprophyres of Sanjiang Region
-
摘要: 碰撞后富钾岩浆通常被认为是造山带岩石圈地幔中俯冲沉积物再循环的证据,钾同位素则是示踪再循环俯冲沉积物的良好指示剂.以三江地区煌斑岩为例,在主微量元素和常规同位素的基础上,开展了钾同位素研究,以探究三江地区岩石圈地幔源区特征.本研究发现剑川、北衙、盐源和姚安4个地区的煌斑岩样品均能代表地幔源区特征,与风化蚀变、分离结晶、地壳混染和动力学分馏过程无关,样品总体呈现较正常地幔偏轻的钾同位素特征((-0.61±0.02)‰~(-0.31±0.01)‰),表明可能与俯冲沉积物交代有关,而与通常富集重钾同位素的流体无关.进一步通过蒙特卡洛模型端元混合模拟计算表明,4个地区表现出不同程度的俯冲沉积物混入,且姚安地区的沉积物比例可达到10%.这一结论进一步证实了钾同位素作为一种敏感的示踪剂,能够有效示踪地幔中再循环的俯冲沉积物组分.Abstract: Post-collisional potassic magmas are commonly regarded as evidence for the recycling of subducted sediments in the lithospheric mantle of orogenic belts, with potassium isotope serving as an excellent tracer for these recycled sediments. This study takes the lamprophyres from the Sanjiang region as an example, conducting potassium isotope analysis based on major and trace elements and Sr-Nd-Pb isotopes, to explore the characteristics of the lithospheric mantle source in the Sanjiang region.This study reveals that the lamprophyres from four distinct regions-Jianchuan, Beiya, Yanyuan, and Yao'an-collectively represent the characteristics of the mantle source. These samples exhibit no association with weathering alteration, fractional crystallization, crustal contamination, and dynamic fractionation processes. Overall, compared to the mantle, the samples display slightly lighter potassium isotopic compositions from (-0.61±0.02)‰ to (-0.31±0.01)‰, suggesting a correlation with subducted sediment metasomatism rather than with fluids typically enriched in heavier potassium isotopes.Further simulations utilizing the Monte Carlo model for end-member mixing calculations indicate varying degrees of subducted sediment incorporation in the four regions, with the sediment proportion in the Yao'an area potentially reaching up to 10%. This conclusion further substantiates the efficacy of potassium isotope as a sensitive tracer, capable of effectively tracking the recycled subduction sediment components within the mantle.
-
Key words:
- potassium /
- isotopes /
- sedimentary metasomatism /
- Sanjiang region /
- lamprophyres /
- orogenic lithospheric mantle /
- geochemistry
-
图 1 青藏高原及三江地区构造格架示意(a.据Yin and Harrison, 2000; Chung et al., 2005; Shen et al., 2021; Geng et al., 2024修改),三江地区始新世‒渐新世钾质岩的分布(b.据Guo et al., 2005; Deng et al., 2014; Miao et al., 2023修改)和三江地区煌斑岩的显微镜下照片(c)
JS.金沙江缝合带;BNS.班公湖‒怒江缝合带;IYS.印度河‒雅鲁藏布江缝合带;MBT.主边界逆冲断裂;ARSZ.哀牢山‒红河剪切带;KF.喀喇昆仑断裂带;ATF.阿尔金断裂带;KLF.昆仑断裂带;QF.秦岭断裂带;LSF.龙门山断裂带;IBS.印度‒缅甸缝合带;SB.山界;CMS.昌宁‒孟连缝合带;ASS.哀牢山缝合带;SMS.Song Ma缝合带;Phl.金云母;Cpx.单斜辉石;Ol.橄榄石
Fig. 1. Schematic of the tectonic framework of the Tibetan plateau and the Sanjiang region (a, modified after Yin and Harrison, 2000; Chung et al., 2005; Shen et al., 2021; Geng et al., 2024), distribution of Eocene-Oligocene potassic rocks in the Sanjiang region (b, modified after Guo et al., 2005; Deng et al., 2014; Miao et al., 2023) and representative photomicrographs of lamprophyres from the Sanjiang region (c)
图 2 三江地区煌斑岩(Na2O+K2O)-SiO2分类命名图解,其中灰色虚线为碱性(上部)和亚碱性(下部)系列的分界线(a. Irvine and Baragar, 1971)、K2O-Na2O系列判别图解(b)、微量元素原始地幔标准化蛛网图(c)和稀土元素球粒陨石标准化配分图(d)
图a和b底图分别引自Middlemost(1994)和Le Maitre(2002),剑川、北衙、盐源和姚安煌斑岩数据引自Geng et al.(2024),N-MORB、E-MORB、OIB引自前人数据(Sun and McDonough,1989)
Fig. 2. Classification diagram of Na2O+K2O vs. SiO2, with the gray dashed line dividing the alkaline (above) and sub-alkaline (below) fields (a, Irvine and Baragar, 1971), K2O vs. Na2O diagram (b), primitive mantle-normalized incompatible element patterns (c), and chondrite-normalized REE patterns for lamprophyres from the Sanjiang region (d)
图 3 三江地区煌斑岩样品与前人报道的不同地区岩浆岩样品的钾同位素变化
前人数据引自文献(Parendo et al., 2017;Hille et al., 2019;Li et al., 2019b,2022,2024;Tuller-Ross et al., 2019a;Hu et al., 2020,2021a;Huang et al., 2020,2023;Santiago Ramos et al., 2020;Sun et al., 2020;Wang et al., 2020, 2021b;Liu et al., 2021;Miao et al., 2023;Du et al., 2024)
Fig. 3. Potassium isotope variation diagram comparing lamprophyres from the Sanjiang region with magmatic rocks from different areas as previously reported
图 4 三江地区煌斑岩的LOI与δ41K(a)、SiO2与δ41K(b)、SiO2与143Nd/144Nd(c)、SiO2与87Sr/86Sr(d)、SiO2与207Pb/204Pb(e)和MgO与δ41K(f)关系
Fig. 4. Plots of LOI vs. δ41K (a), SiO2 vs. δ41K (b), SiO2 vs. 143Nd/144Nd (c), SiO2 vs. 87Sr/86Sr (d), SiO2 vs. 207Pb/204Pb (e), and MgO vs. δ41K (f) for lamprophyres from the Sanjiang region
图 5 三江地区煌斑岩的δ41K与K2O(a)、K2O/Na2O(b)、Rb/Sr(c)、Al2O3(d)关系
图a模拟端元中,上地壳和富钾岩浆的δ41K值分别为-0.68‰和-0.42‰(Huang et al., 2020;Hu et al., 2021b),K2O值分别为2.14%和8.29%(Liu et al., 2017)
Fig. 5. Plots of δ41K vs. K2O (a), K2O/Na2O (b), Rb/Sr (c), and Al2O3 (d) for lamprophyres from the Sanjiang region
图 7 三江地区煌斑岩蒙特卡洛模型端元混合模拟
我们运用蒙特卡洛模拟计算来进一步评估不同比例的沉积物对地幔源区钾同位素的影响.按照质量平衡,沉积物和地幔混合后的钾同位素组成计算公式为:δ41Kmix={[K2O]sediment×f×δ41Ksediment+ [K2O]mantle×(1-f)×δ41Kmantle}/[K2O]mix.其中f为混入地幔的沉积物比例,δ41Ksediment代表沉积物端元的钾同位素组成,数据来自于Hu et al.(2020);δ41Kmantle代表平均地幔组成,数据来源于Hu et al.(2021b).ɛNd(t)的计算采用同样的方法计算得到.地幔和全球沉积物的钕同位素组成引用自Workman and Hart(2005)和Plank(2014).因沉积物钾同位素组成极为不均一,因此为了尽可能地表征沉积物端元的钾同位素组成,我们随机选择3个沉积物作为端元,按照随机的比例组成一个新的组合端元,计算出整个新的组合端元的钾和钕同位素组成,最后将新的组合端元的钾同位素和地幔混合,沉积物的混入比例为0.1%、0.5%、1%、5%、10%和50%来进行模拟计算,每个比例的沉积物与地幔的混合我们进行了10 000次的模拟,不同色彩的小圆圈构成的区域代表上述各个比例的沉积物和地幔混合后的钾同位素范围
Fig. 7. Monte Carlo model end-member mixing simulation for lamprophyres from the Sanjiang region
图 8 三江地区煌斑岩岩石圈地幔源区改造示意(据Lu et al., 2013; Shen et al., 2021; Sun et al., 2021修改)
Fig. 8. Schematic diagrams of the lithospheric mantle source modification for lamprophyres from the Sanjiang region (modified after Lu et al., 2013; Shen et al., 2021; Sun et al., 2021)
表 1 三江地区煌斑岩主量元素(%)、微量元素(10‒6)和Sr-Nd-Pb-K同位素(‰)地球化学分析测试结果
Table 1. Whole-rock major elements (%), trace elements (10‒6) and Sr-Nd-Pb-K isotopes (‰) geochemical analysis results of lamprophyres from the Sanjiang region
样品编号 MgO SiO2 K2O Al2O3 CaO K2O/
Na2OK2O+
Na2OMg# LOI Cr Ni Rb/Sr Ba/Rb K/Th JC20-3-1 3.96 51.9 4.83 12.27 7.45 2.06 7.17 0.50 7.51 57 31 0.13 9.24 2 864 JC20-3-2 4.68 53.4 4.95 12.46 6.79 2.05 7.35 0.53 5.05 56 37 0.14 8.66 2 959 JC20-3-3 5.12 54.1 5.59 13.33 5.65 2.21 8.11 0.54 2.78 69 32 0.17 8.41 3 027 JC20-3-4 4.99 52.8 4.83 12.40 6.62 2.02 7.22 0.53 5.17 59 37 0.13 8.87 2 817 JC20-3-5 4.53 53.1 4.97 12.54 6.86 2.02 7.44 0.51 4.81 54 31 0.13 9.02 2 908 JC20-3-6 3.92 55.9 5.22 13.67 6.13 1.84 8.06 0.50 2.34 61 33 0.24 7.56 2 929 BY20-1-3 6.30 56.3 5.44 14.03 3.86 1.97 8.20 0.67 2.75 225 171 0.47 5.45 3 183 BY20-1-4 5.97 50.4 4.37 14.02 7.51 1.43 7.42 0.60 4.71 259 158 0.30 5.96 4 058 BY20-1-5 5.84 51.1 4.25 13.83 6.92 1.37 7.35 0.61 5.69 253 159 0.27 6.25 3 989 BY20-1-6 5.79 50.4 4.29 14.16 7.07 1.37 7.42 0.61 5.22 258 158 0.28 6.18 3 894 BY20-1-7 5.74 53.4 5.43 13.17 5.22 2.40 7.68 0.66 6.59 254 167 0.39 5.60 3 035 BY20-1-8 5.93 52.3 5.35 12.94 5.90 2.40 7.58 0.68 7.64 239 159 0.50 5.21 2 955 YY20-2-1 8.25 49.5 4.39 12.72 9.41 1.48 7.36 0.68 0.98 363 254 0.11 17.95 1 246 YY20-2-2 8.83 47.4 4.07 12.02 10.64 1.43 6.92 0.69 1.63 397 277 0.36 4.78 1 330 YY20-2-3 8.76 48.6 4.00 12.44 9.67 1.45 6.77 0.68 1.25 355 257 0.25 6.58 1 156 YY20-2-4 13.04 41.6 5.88 8.45 12.22 6.07 6.85 0.76 2.16 564 474 0.15 13.72 1 734 YY20-2-5 8.87 47.6 4.88 11.92 10.48 1.62 7.88 0.69 0.90 394 282 0.22 6.81 1 574 YA20-1-1 6.01 49.2 6.71 11.27 8.09 5.35 7.96 0.63 6.04 142 60 0.18 18.67 7 290 YA20-1-2 6.67 49.0 7.02 11.17 8.32 5.79 8.24 0.66 6.06 163 67 0.17 14.80 2 179 YA20-1-3 6.25 49.0 7.33 11.35 7.90 11.29 7.97 0.63 5.74 145 60 0.12 20.97 5 463 YA20-1-6 6.23 48.9 6.05 11.35 8.55 5.60 7.13 0.64 6.61 151 62 0.14 23.35 4 389 YA20-1-7 2.04 60.6 8.27 15.45 2.73 3.35 10.74 0.47 2.58 78 29 0.25 7.26 1 514 样品编号 87Sr/86Sr 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb ɛNd(t) δ41K 2SD JC20-3-1 0.708 125 0.512 398 18.693 9 15.650 2 38.841 6 -4.23 -0.45 0.04 JC20-3-2 0.708 084 0.512 392 18.695 9 15.649 8 38.843 2 -4.34 -0.43 0.02 JC20-3-3 0.708 159 0.512 399 18.688 4 15.651 0 38.838 7 -4.21 -0.45 0.03 JC20-3-4 0.708 127 0.512 383 18.701 9 15.650 2 38.850 0 -4.51 -0.45 0.00 JC20-3-5 0.708 099 0.512 388 18.691 2 15.650 8 38.839 9 -4.43 -0.45 0.01 JC20-3-6 0.708 540 0.512 353 18.713 3 15.657 0 38.881 2 -5.09 -0.49 0.03 BY20-1-3 0.708 669 0.512 388 18.667 8 15.712 3 39.142 9 -4.38 -0.47 0.04 BY20-1-4 0.706 739 0.512 579 18.680 0 15.709 3 39.143 8 -0.70 -0.47 0.03 BY20-1-5 0.706 848 0.512 585 18.700 0 15.721 6 39.177 5 -0.58 -0.41 0.04 BY20-1-6 0.706 798 0.512 577 18.697 1 15.716 4 39.173 9 -0.74 -0.42 0.02 BY20-1-7 0.708 678 0.512 368 18.682 7 15.713 7 39.163 3 -4.78 -0.52 0.02 BY20-1-8 0.708 839 0.512 359 18.688 4 15.714 8 39.168 3 -4.95 -0.54 0.02 YY20-2-1 0.706 162 0.512 481 18.273 3 15.611 6 38.598 9 -2.49 -0.31 0.01 YY20-2-2 0.706 337 0.512 472 18.271 2 15.612 6 38.605 7 -2.66 -0.44 0.03 YY20-2-3 0.706 176 0.512 478 18.276 3 15.611 1 38.595 6 -2.59 -0.40 0.04 YY20-2-4 0.706 327 0.512 481 18.388 9 15.622 2 38.662 6 -2.56 -0.37 0.04 YY20-2-5 0.706 289 0.512 471 18.268 2 15.610 0 38.600 7 -2.68 -0.47 0.03 YA20-1-1 0.709 673 0.512 086 18.350 2 15.603 2 38.933 3 -10.22 -0.41 0.03 YA20-1-2 0.709 528 0.512 088 18.313 2 15.593 3 38.890 7 -10.20 -0.56 0.03 YA20-1-3 0.709 353 0.512 092 18.333 4 15.598 8 38.911 9 -10.11 -0.53 0.03 YA20-1-6 0.709 621 0.512 092 18.349 3 15.603 2 38.942 2 -10.13 -0.44 0.04 YA20-1-7 0.710 421 0.512 028 18.358 8 15.622 5 39.178 1 -11.27 -0.61 0.02 注:三江地区煌斑岩样品的主微量元素和放射性同位素地球化学数据引自Geng et al.(2024). -
Berglund, M., Wieser, M. E., 2011. Isotopic Compositions of the Elements 2009 (IUPAC Technical Report). Pure and Applied Chemistry, 83(2): 397-410. https://doi.org/10.1351/pac-rep-10-06-02 Chen, H., Liu, X. M., Wang, K., 2020. Potassium Isotope Fractionation during Chemical Weathering of Basalts. Earth and Planetary Science Letters, 539: 116192. https://doi.org/10.1016/j.epsl.2020.116192 Chen, H., Saunders, N. J., Jerram, M., et al., 2021. High-Precision Potassium Isotopic Measurements by Collision Cell Equipped MC-ICP-MS. Chemical Geology, 578: 120281. https://doi.org/10.1016/j.chemgeo.2021.120281 Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 Cocks, L. R. M., Torsvik, T. H., 2013. The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia. Earth-Science Reviews, 117: 40-79. https://doi.org/10.1016/j.earscirev.2012.12.001 Dalslåen, B. H., Gasser, D., Grenne, T., et al., 2020. Ordovician Shoshonitic to Ultrapotassic Volcanism in the Central Norwegian Caledonides: The Result of Sediment Subduction, Mantle Metasomatism and Mantle Partial Melting. Lithos, 356: 105372. https://doi.org/10.1016/j.lithos.2020.105372 Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138: 268-299. https://doi.org/10.1016/j.earscirev.2014.05.015 Du, D. H., Luo, X. L., Wang, X. L., et al., 2024. A Recipe for Making Potassium-Rich Magmas in Collisional Orogens: New Insights from K and Fe Isotopes. Earth and Planetary Science Letters, 632: 118642. https://doi.org/10.1016/j.epsl.2024.118642 Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3/4/5/6): 435-453. https://doi.org/10.1016/0024-4937(92)90018-T Förster, M. W., Buhre, S., Xu, B., et al., 2019. Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle. Minerals, 10(1): 41. https://doi.org/10.3390/min10010041 Gan, T., Huang, Z. L., 2017. Platinum-Group Element and Re-Os Geochemistry of Lamprophyres in the Zhenyuan Gold Deposit, Yunnan Province, China: Implications for Petrogenesis and Mantle Evolution. Lithos, 282: 228-239. https://doi.org/10.1016/j.lithos.2017.03.018 Geng, X. L., Tian, S. H., Xu, W., et al., 2024. A Two-Stage Geodynamic Model for Post-Collisional Potassic-Ultrapotassic Magmatism in Southeast Tibet. Journal of Geophysical Research (Solid Earth), 129(8): e2024JB028887. https://doi.org/10.1029/2024JB028887 Guo, Z. F., Hertogen, J., Liu, J. Q., et al., 2005. Potassic Magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and Geochemical Constraints on Petrogenesis. Journal of Petrology, 46(1): 33-78. https://doi.org/10.1093/petrology/egh061 Gupta, A. K., 2015. Origin of Potassium-Rich Silica- Deficient Igneous Rocks. Springer New Delhi, India, https://doi.org/10.1007/978-81-322-2083-1 Hille, M., Hu, Y., Huang, T. Y., et al., 2019. Homogeneous and Heavy Potassium Isotopic Composition of Global Oceans. Science Bulletin, 64(23): 1740-1742. https://doi.org/10.1016/j.scib.2019.09.024 Hu, Y., Teng, F. Z., Chauvel, C., 2021a. Potassium Isotopic Evidence for Sedimentary Input to the Mantle Source of Lesser Antilles Lavas. Geochimica et Cosmochimica Acta, 295: 98-111. https://doi.org/10.1016/j.gca.2020.12.013 Hu, Y., Teng, F. Z., Helz, R. T., et al., 2021b. Potassium Isotope Fractionation during Magmatic Differentiation and the Composition of the Mantle. Journal of Geophysical Research (Solid Earth), 126(3): e2020JB021543. https://doi.org/10.1029/2020JB021543 Hu, Y., Teng, F. Z., Plank, T., et al., 2020. Potassium Isotopic Heterogeneity in Subducting Oceanic Plates. Science Advances, 6(49): eabb2472. https://doi: 10.1126/sciadv.abb2472 Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2010. Mineralogical and Geochemical Constraints on the Petrogenesis of Post-Collisional Potassic and Ultrapotassic Rocks from Western Yunnan, SW China. Journal of Petrology, 51(8): 1617-1654. https://doi.org/10.1093/petrology/egq032 Huang, F., Lundstrom, C. C., Glessner, J., et al., 2009. Chemical and Isotopic Fractionation of Wet Andesite in a Temperature Gradient: Experiments and Models Suggesting a New Mechanism of Magma Differentiation. Geochimica et Cosmochimica Acta, 73(3): 729-749. https://doi.org/10.1016/j.gca.2008.11.012 Huang, T. Y., Teng, F. Z., Rudnick, R. L., et al., 2020. Heterogeneous Potassium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 278: 122-136. https://doi.org/10.1016/j.gca.2019.05.022 Huang, T. Y., Teng, F. Z., Wang, Z. Z., et al., 2023. Potassium Isotope Fractionation during Granitic Magmatic Differentiation: Mineral-Pair Perspectives. Geochimica et Cosmochimica Acta, 343: 196-211. https://doi.org/10.1016/j.gca.2022.11.006 Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 Le Maitre, R. W., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 1-208. https://doi.org/10.1017/CBO9780511535581 Li, S. L., Li, W. Q., Beard, B. L., et al., 2019a. K Isotopes as a Tracer for Continental Weathering and Geological K Cycling. Proceedings of the National Academy of Sciences of the United States of America, 116(18): 8740-8745. https://doi.org/10.1073/pnas.1811282116 Li, W. Q., Li, S. L., Beard, B. L., 2019b. Geological Cycling of Potassium and the K Isotopic Response: Insights from Loess and Shales. Acta Geochimica, 38(4): 508-516. https://doi.org/10.1007/s11631-019-00345-x Li, Y. H., Wang, W. Z., Huang, S. C., et al., 2019c. First-Principles Investigation of the Concentration Effect on Equilibrium Fractionation of K Isotopes in Feldspars. Geochimica et Cosmochimica Acta, 245: 374-384. https://doi.org/10.1016/j.gca.2018.11.006 Li, Y. H., Wang, W. Z., Wu, Z. Q., et al., 2019d. First-Principles Investigation of Equilibrium K Isotope Fractionation among K-Bearing Minerals. Geochimica et Cosmochimica Acta, 264: 30-42. https://doi.org/10.1016/j.gca.2019.07.038 Li, W. S., Coogan, L. A., Wang, K., et al., 2024. Hydrothermal Origin of Heavy Potassium Isotope Compositions in Altered Oceanic Crust: Implications for Tracing the Elemental Cycle. Earth and Planetary Science Letters, 625: 118448. https://doi.org/10.1016/j.epsl.2023.118448 Li, W. S., Liu, X. M., Wang, K., et al., 2022. Potassium Isotope Signatures in Modern Marine Sediments: Insights into Early Diagenesis. Earth and Planetary Science Letters, 599: 117849. https://doi.org/10.1016/j.epsl.2022.117849 Liu, D., Zhao, Z. D., Depaolo, D. J., et al., 2017. Potassic Volcanic Rocks and Adakitic Intrusions in Southern Tibet: Insights into Mantle-Crust Interaction and Mass Transfer from Indian Plate. Lithos, 268-271: 48-64. https://doi: 10.1016/j.lithos.2016.10.034 Liu, H. Y., Wang, K., Sun, W. D., et al., 2020. Extremely Light K in Subducted Low-T Altered Oceanic Crust: Implications for K Recycling in Subduction Zone. Geochimica et Cosmochimica Acta, 277: 206-223. https://doi.org/10.1016/j.gca.2020.03.025 Liu, H. Y., Xue, Y. Y., Wang, K., et al., 2021. Contributions of Slab-Derived Fluids to Ultrapotassic Rocks Indicated by K Isotopes. Lithos, 396: 106202. https://doi.org/10.1016/j.lithos.2021.106202 Lu, Y. J., Kerrich, R., McCuaig, T. C., et al., 2013. Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-Like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Petrology, 54(7): 1309-1348. https://doi.org/10.1093/petrology/egt013 Lu, Y. J., McCuaig, T. C., Li, Z. X., et al., 2015. Paleogene Post-Collisional Lamprophyres in Western Yunnan, Western Yangtze Craton: Mantle Source and Tectonic Implications. Lithos, 233: 139-161. https://doi.org/10.1016/j.lithos.2015.02.003 McDonough, W., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 Miao, Z., Li, X. Q., Zhao, Z. D., et al., 2023. Deciphering Mantle Heterogeneity Associated with Ancient Subduction-Related Metasomatism: Insights from Mg-K Isotopes in Potassic Alkaline Rocks. Geochimica et Cosmochimica Acta, 348: 258-277. https://doi.org/10.1016/j.gca.2023.03.020 Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post- Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.13999 Mo, X. X., Zhao, Z. D., Zhu, D. C., et al., 2009. On the Lithosphere of Indo-Asia Collision Zone in Southern Tibet: Petrological and Geochemical Constraints. Earth Science, 34(1): 17-27 (in Chinese with English abstract). Murphy, D. T., Collerson, K. D., Kamber, B. S., 2002. Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments. Journal of Petrology, 43(6): 981-1001. https://doi.org/10.1093/petrology/43.6.981 Müller, D., Groves, D. I., 1993. Direct and Indirect Associations between Potassic Igneous Rocks, Shoshonites and Gold-Copper Deposits. Ore Geology Reviews, 8(5): 383-406. https://doi.org/10.1016/0169-1368(93)90035-W Palmer, M. R., Ersoy, E. Y., Akal, C., et al., 2019. A Short, Sharp Pulse of Potassium-Rich Volcanism during Continental Collision and Subduction. Geology, 47(11): 1079-1082. https://doi.org/10.1130/g45836.1 Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 Parendo, C. A., Jacobsen, S. B., Wang, K., 2017. K Isotopes as a Tracer of Seafloor Hydrothermal Alteration. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1827-1831. https://doi.org/10.1073/pnas.1609228114 Philpotts, J. A., Schnetzler, C. C., 1970. Phenocryst-Matrix Partition Coefficients for K, Rb, Sr and Ba, with Applications to Anorthosite and Basalt Genesis. Geochimica et Cosmochimica Acta, 34(3): 307-322. https://doi.org/10.1016/0016-7037(70)90108-0 Plank, T., 2014. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry. Elsevier, Amsterdam, 607-629. https://doi.org/10.1016/b978-0-08-095975-7.00319-3 Prelević, D., Foley, S. F., Romer, R., et al., 2008. Mediterranean Tertiary Lamproites Derived from Multiple Source Components in Postcollisional Geodynamics. Geochimica et Cosmochimica Acta, 72(8): 2125-2156. https://doi.org/10.1016/j.gca.2008.01.029 Prelević, D., Jacob, D. E., Foley, S. F., 2013. Recycling Plus: A New Recipe for the Formation of Alpine- Himalayan Orogenic Mantle Lithosphere. Earth and Planetary Science Letters, 362: 187-197. https://doi.org/10.1016/j.epsl.2012.11.035 Richter, F. M., Bruce Watson, E., Chaussidon, M., et al., 2014. Isotope Fractionation of Li and K in Silicate Liquids by Soret Diffusion. Geochimica et Cosmochimica Acta, 138: 136-145. https://doi.org/10.1016/j.gca.2014.04.012 Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6 Santiago Ramos, D. P., Coogan, L. A., Murphy, J. G., et al., 2020. Low-Temperature Oceanic Crust Alteration and the Isotopic Budgets of Potassium and Magnesium in Seawater. Earth and Planetary Science Letters, 541: 116290. https://doi.org/10.1016/j.epsl.2020.116290 Shen, Y., Zheng, Y. C., Hou, Z. Q., et al., 2021. Petrology of the Machangqing Complex in Southeastern Tibet: Implications for the Genesis of Potassium-Rich Adakite-Like Intrusions in Collisional Zones. Journal of Petrology, 62(11): egab066. https://doi.org/10.1093/petrology/egab066 Shen, Y., Zheng, Y. C., Hou, Z. Q., et al., 2022. Pre-Late Eocene Position of the Lüchun-Jinping Microblock in Western Yangtze Craton: Constraints from Eocene-Oligocene Lamprophyres in Southeastern Tibet. Lithos, 414: 106622. https://doi.org/10.1016/j.lithos.2022.106622 Soder, C. G., Romer, R. L., 2018. Post-Collisional Potassic-Ultrapotassic Magmatism of the Variscan Orogen: Implications for Mantle Metasomatism during Continental Subduction. Journal of Petrology, 59(6): 1007-1034. https://doi.org/10.1093/petrology/egy053 Staudigel, H., Davies, G. R., Hart, S. R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1/2/3/4): 169-185. https://doi.org/10.1016/0012-821X(94)00263-X Sun, S. S. , McDonough, W. F. , 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Sun, Y., Teng, F. Z., Hu, Y., et al., 2020. Tracing Subducted Oceanic Slabs in the Mantle by Using Potassium Isotopes. Geochimica et Cosmochimica Acta, 278: 353-360. https://doi.org/10.1016/j.gca.2019.05.013 Sun, Y., Teng, F. Z., Pang, K. N., et al., 2021. Multistage Mantle Metasomatism Deciphered by Mg-Sr-Nd-Pb Isotopes in the Leucite Hills Lamproites. Contributions to Mineralogy and Petrology, 176(6): 45. https://doi.org/10.1007/s00410-021-01801-9 Teng, F. Z., Dauphas, N., Watkins, J. M., 2017. Non- Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82(1): 1-26. https://doi.org/10.2138/rmg.2017.82.1 Teng, F. Z., Hu, Y., Ma, J. L., et al., 2020. Potassium Isotope Fractionation during Continental Weathering and Implications for Global K Isotopic Balance. Geochimica et Cosmochimica Acta, 278: 261-271. https://doi.org/10.1016/j.gca.2020.02.029 Tian, S. H., Yang, Z. S., Hou, Z. Q., et al., 2017. Subduction of the Indian Lower Crust beneath Southern Tibet Revealed by the Post-Collisional Potassic and Ultrapotassic Rocks in SW Tibet. Gondwana Research, 41: 29-50. https://doi.org/10.1016/j.gr.2015.09.005 Tommasini, S., Avanzinelli, R., Conticelli, S., 2011. The Th/La and Sm/La Conundrum of the Tethyan Realm Lamproites. Earth and Planetary Science Letters, 301(3-4): 469-478. https://doi.org/10.1016/j.epsl.2010.11.023 Tuller-Ross, B., Marty, B., Chen, H., et al., 2019a. Potassium Isotope Systematics of Oceanic Basalts. Geochimica et Cosmochimica Acta, 259: 144-154. https://doi.org/10.1016/j.gca.2019.06.001 Tuller-Ross, B., Savage, P. S., Chen, H., et al., 2019b. Potassium Isotope Fractionation during Magmatic Differentiation of Basalt to Rhyolite. Chemical Geology, 525: 37-45. https://doi.org/10.1016/j.chemgeo.2019.07.017 Turner, S., Arnaud, N., Liu, J., et al., 1996. Post- Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45 Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1/2): 123-133. https://doi.org/10.1016/S0012-821X(01)00315-6 Wang, K., Close, H. G., Tuller-Ross, B., et al., 2020. Global Average Potassium Isotope Composition of Modern Seawater. ACS Earth and Space Chemistry, 4(7): 1010-1017.https://pubs.acs.org/doi/abs/10.1021/acsearthspacechem.0c00047 doi: 10.1021/acsearthspacechem.0c00047 Wang, K., Ionov, D. A., 2023. Potassium Isotope Evidence for Slab-Derived Fluids in the Sub-Arc Mantle. Earth and Planetary Science Letters, 619: 118315. https://doi.org/10.1016/j.epsl.2023.118315 Wang, K., Li, W. Q., Li, S. L., et al., 2021a. Geochemistry and Cosmochemistry of Potassium Stable Isotopes. Geochemistry, 81(3): 125786. https://doi.org/10.1016/j.chemer.2021.125786 Wang, Z. Z., Teng, F. Z., Prelević, D., et al., 2021b. Potassium Isotope Evidence for Sediment Recycling into the Orogenic Lithospheric Mantle. Geochemical Perspectives Letters, 18: 43-47. https://doi.org/10.7185/geochemlet.2123 Wang, Z. Z., Teng, F. Z., Busigny, V., et al., 2022a. Evidence from HP/UHP Metasediments for Recycling of Isotopically Heterogeneous Potassium into the Mantle. American Mineralogist, 107(3): 350-356. https://doi.org/10.2138/am-2021-7923 Wang, Z. Z., Teng, F. Z., Wu, F. Y., et al., 2022b. Extensive Crystal Fractionation of High-Silica Magmas Revealed by K Isotopes. Science Advances, 8(47): eabo4492. https://doi.org/10.1126/sciadv.abo4492 Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005 Xu, Y. G., Menzies, M. A., Thirlwall, M. F., et al., 2001. Exotic Lithosphere Mantle beneath the Western Yangtze Craton: Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks. Geology, 29(9): 863.https://doi.org/10.1130/0091-7613(2001)0290863: elmbtw>2.0.co;2 doi: 10.1130/0091-7613(2001)0290863:elmbtw>2.0.co;2 Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 Zeng, H., Rozsa, V. F., Nie, N. X., et al., 2019. Ab Initio Calculation of Equilibrium Isotopic Fractionations of Potassium and Rubidium in Minerals and Water. ACS Earth and Space Chemistry, 3(11): 2601-2612. https://doi.org/10.1021/acsearthspacechem.9b00180 Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge- Propagator. Earth-Science Reviews, 187: 1-18. https://doi.org/10.1016/j.earscirev.2018.10.004 Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004 Zhu, Y., Lai, S. C., Qin, J. F., et al., 2021. Neoproterozoic Metasomatized Mantle beneath the Western Yangtze Block, South China: Evidence from Whole-Rock Geochemistry and Zircon U-Pb-Hf Isotopes of Mafic Rocks. Journal of Asian Earth Sciences, 206: 104616. https://doi.org/10.1016/j.jseaes.2020.104616 莫宣学, 赵志丹, 朱弟成, 等, 2009. 西藏南部印度‒亚洲碰撞带岩石圈: 岩石学‒地球化学约束 . 地球科学, 34(1): 17-27. -