• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    146Sm⁃142Nd同位素制约早期地球的地壳起源

    王达

    王达, 2024. 146Sm⁃142Nd同位素制约早期地球的地壳起源. 地球科学, 49(11): 3879-3889. doi: 10.3799/dqkx.2024.101
    引用本文: 王达, 2024. 146Sm⁃142Nd同位素制约早期地球的地壳起源. 地球科学, 49(11): 3879-3889. doi: 10.3799/dqkx.2024.101
    Wang Da, 2024. 146Sm⁃142Nd Isotopic Constraints on the Origin of Earth's First Crust. Earth Science, 49(11): 3879-3889. doi: 10.3799/dqkx.2024.101
    Citation: Wang Da, 2024. 146Sm⁃142Nd Isotopic Constraints on the Origin of Earth's First Crust. Earth Science, 49(11): 3879-3889. doi: 10.3799/dqkx.2024.101

    146Sm⁃142Nd同位素制约早期地球的地壳起源

    doi: 10.3799/dqkx.2024.101
    详细信息
      作者简介:

      王达(1991-),研究员, 成都理工大学行星科学国际研究中心研究员,主要从事早期地球与早期太阳系过程、短半衰期放射性同位素与稳定同位素的核合成异常方面的研究工作.ORCID: 0000-0001-5202-9831. E-mail: da.wang@cdut.edu.cn

    • 中图分类号: P597

    146Sm⁃142Nd Isotopic Constraints on the Origin of Earth's First Crust

    • 摘要: 地球形成最早10亿年的岩石记录稀缺,严重阻碍了地质学家对地球早期地壳起源的认识.短寿命放射性衰变的146Sm-142Nd同位素体系,由于其较短的半衰期(103 Ma),可以示踪地球早期的不相容元素分异过程,是制约早期地壳起源机制的重要手段.当前已有地球化学证据显示早期地球可能有多次地幔不相容元素亏损事件,而导致早期地球地幔亏损的原因很可能是冥古宙大规模原始地壳的形成.大规模的冥古宙原始地壳不仅是地球上多数现存最古老的始太古代岩浆岩的前身,也为新太古代大陆的形成提供了重要的物质来源.首先简述146Sm-142Nd体系定年和示踪的基本原理,并介绍142Nd同位素异常的分析方法.在此基础上,系统总结了全球有始太古代岩石出露的地块的142Nd同位素异常特征,探讨早期地球地壳的起源模式.

       

    • 图  1  1 mL DGA树脂的淋滤曲线(修改自Wang and Carlson, 2022

      Fig.  1.  Elution curve of 1 mL DGA resin (modified from Wang and Carlson, 2022)

      图  2  全球代表性有太古宙岩石出露的地块的142Nd数据总结

      修改自Wang et al.,2023,并增加了Liou et al.,2024报道的华北克拉通曹庄数据.现代地幔参考值为μ142Nd=±5(Carlson et al.,2019).图上标注了原始地幔分异时间分别为4.4 Ga和4.3 Ga的参考演化曲线,以147Sm/144Nd比值代表不相容元素分异的特征(亏损储库:147Sm/144Nd=0.21~0.24;富集储库:147Sm/144Nd=0.16~0.18).此142Nd同位素演化模型详见Wang et al.(2023);各地块的142Nd同位素演化历史详见Carlson et al.(2019

      Fig.  2.  A compilation of 142Nd data in global early Archean terranes

      表  1  TIMS Nd同位素四步动态测试的法拉第杯结构设置

      Table  1.   The Faraday cup configuration of the 4-step dynamic measurement of Nd isotopes using TIMS

      步骤 L4 L3 L2 L1 C H1 H2 H3 H4
      1 139La 140Ce 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm
      2 140Ce 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd
      3 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 149Sm
      4 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 149Sm 150Nd
      下载: 导出CSV
    • Bai, J. H., Liu, F., Zhang, Z. F., et al., 2021. Simultaneous Measurement Stable and Radiogenic Nd Isotopic Compositions by MC⁃ICP⁃MS with a Single⁃Step Chromatographic Extraction Technique. Journal of Analytical Atomic Spectrometry, 36(12): 2695-2703. https://doi.org/10.1039/D1JA00302J
      Bauer, A. M., Fisher, C. M., Vervoort, J. D., et al., 2017. Coupled Zircon Lu⁃Hf and U⁃Pb Isotopic Analyses of the Oldest Terrestrial Crust, the > 4.03 Ga Acasta Gneiss Complex. Earth and Planetary Science Letters, 458: 37-48. https://doi.org/10.1016/j.epsl.2016.10.036
      Bennett, V. C., Brandon, A. D., Nutman, A. P., 2007. Coupled 142Nd⁃143Nd Isotopic Evidence for Hadean Mantle Dynamics. Science, 318(5858): 1907-1910. https://doi.org/10.1126/science.1145928
      Bouvier, A., Boyet, M., 2016. Primitive Solar System Materials and Earth Share a Common Initial 142Nd Abundance. Nature, 537: 399-402. https://doi.org/10.1038/nature19351
      Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu⁃Hf and Sm⁃Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      Bowring, S. A., King, J. E., Housh, T. B., et al., 1989a. Neodymium and Lead Isotope Evidence for Enriched Early Archaean Crust in North America. Nature, 340: 222-225. https://doi.org/10.1038/340222a0
      Bowring, S. A., Williams, I. S., Compston, W., 1989b. 3.96 Ga Gneisses from the Slave Province, Northwest Territories, Canada. Geology, 17(11): 971. https://doi.org/10.1130/0091⁃7613(1989)017<0971:GGFTSP>2.3.CO;2 doi: 10.1130/0091⁃7613(1989)017<0971:GGFTSP>2.3.CO;2
      Bowring, S. A., Williams, I. S., 1999. Priscoan (4.00- 4.03 Ga) Orthogneisses from Northwestern Canada. Contributions to Mineralogy and Petrology, 134(1): 3-16. https://doi.org/10.1007/s004100050465
      Boyet, M., Carlson, R. W., 2005. 142Nd Evidence for Early (> 4.53 Ga) Global Differentiation of the Silicate Earth. Science, 309(5734): 576-581. https://doi.org/10.1126/science.1113634
      Boyet, M., Carlson, R. W., 2006. A New Geochemical Model for the Earth's Mantle Inferred from 146Sm⁃142Nd Systematics. Earth and Planetary Science Letters, 250(1-2): 254-268. https://doi.org/10.1016/j.epsl.2006.07.046
      Boyet, M., Carlson, R. W., Horan, M., 2010. Old Sm⁃Nd Ages for Cumulate Eucrites and Redetermination of the Solar System Initial 146Sm/144Sm Ratio. Earth and Planetary Science Letters, 291(1/2/3/4): 172-181. https://doi.org/10.1016/j.epsl.2010.01.010
      Burkhardt, C., Borg, L. E., Brennecka, G. A., et al., 2016. A Nucleosynthetic Origin for the Earth's Anomalous 142Nd Composition. Nature, 537(7620): 394-398. https://doi.org/10.1038/nature18956
      Burkhardt, C., Kleine, T., Oberli, F., et al., 2011. Molybdenum Isotope Anomalies in Meteorites: Constraints on Solar Nebula Evolution and Origin of the Earth. Earth and Planetary Science Letters, 312(3/4): 390-400. https://doi.org/10.1016/j.epsl.2011.10.010
      Carlson, R. W., Boyet, M., Horan, M., 2007. Chondrite Barium, Neodymium, and Samarium Isotopic Heterogeneity and Early Earth Differentiation. Science, 316(5828): 1175-1178. https://doi.org/10.1126/science.1140189
      Carlson, R. W., Garçon, M., O'Neil, J., et al., 2019. The Nature of Earth's First Crust. Chemical Geology, 530: 119321. https://doi.org/10.1016/j.chemgeo.2019.119321
      Caro, G., Bourdon, B., Birck, J. L., et al., 2003. 146Sm⁃142Nd Evidence from Isua Metamorphosed Sediments for Early Differentiation of the Earth's Mantle. Nature, 423(6938): 428-432. https://doi.org/10.1038/nature01668
      Caro, G., Bourdon, B., Birck, J. L., et al., 2006. High⁃Precision 142Nd/144Nd Measurements in Terrestrial Rocks: Constraints on the Early Differentiation of the Earth's Mantle. Geochimica et Cosmochimica Acta, 70(1): 164-191. https://doi.org/10.1016/j.gca.2005.08.015
      Caro, G., Bourdon, B., Wood, B. J., et al., 2005. Trace⁃Element Fractionation in Hadean Mantle Generated by Melt Segregation from a Magma Ocean. Nature, 436(7048): 246-249. https://doi.org/10.1038/nature03827
      Caro, G., Morino, P., Mojzsis, S. J., et al., 2017. Sluggish Hadean Geodynamics: Evidence from Coupled 146, 147Sm⁃142, 143Nd Systematics in Eoarchean Supracrustal Rocks of the Inukjuak Domain (Québec). Earth and Planetary Science Letters, 457: 23-37. https://doi.org/10.1016/j.epsl.2016.09.051
      Chu, Z. Y., Wang, M. J., Li, C. F., et al., 2019. Separation of Nd from Geological Samples by a Single TODGA Resin Column for High Precision Nd Isotope Analysis as NdO+ by TIMS. Journal of Analytical Atomic Spectrometry, 34(10): 2053-2060. https://doi.org/10.1039/C9JA00200F
      Connelly, J. N., Bollard, J., Bizzarro, M., 2017. Pb⁃Pb Chronometry and the Early Solar System. Geochimica et Cosmochimica Acta, 201: 345-363. https://doi.org/10.1016/j.gca.2016.10.044
      Debaille, V., O'Neill, C., Brandon, A. D., et al., 2013. Stagnant⁃Lid Tectonics in Early Earth Revealed by 142Nd Variations in Late Archean Rocks. Earth and Planetary Science Letters, 373: 83-92. https://doi.org/10.1016/j.epsl.2013.04.016
      Fang, L. R., Frossard, P., Boyet, M., et al., 2022. Half⁃Life and Initial Solar System Abundance of 146Sm Determined from the Oldest Andesitic Meteorite. Proceedings of the National Academy of Sciences of the United States of America, 119(12): 6465. https://doi.org/10.1073/pnas.2120933119
      Fisher, C. M., Bauer, A. M., Vervoort, J. D., 2020. Disturbances in the Sm⁃Nd Isotope System of the Acasta Gneiss Complex—Implications for the Nd Isotope Record of the Early Earth. Earth and Planetary Science Letters, 530: 115900. https://doi.org/10.1016/j.epsl.2019.115900
      Friedman, A. M., Milsted, J., Metta, D., et al., 1966. Alpha Decay Half Lives of 148Gd, 150Gd and 146Sm. Radiochimica Acta, 5(4): 192-194. https://doi.org/10.1524/ract.1966.5.4.192
      Frossard, P., Israel, C., Bouvier, A., et al., 2022. Earth's Composition was Modified by Collisional Erosion. Science, 377(6614): 1529-1532. https://doi.org/10.1126/science.abq7351
      Fukai, R., Yokoyama, T., 2017. Neodymium Isotope Heterogeneity of Ordinary and Carbonaceous Chondrites and the Origin of Non⁃Chondritic 142Nd Compositions in the Earth. Earth and Planetary Science Letters, 474: 206-214. https://doi.org/10.1016/j.epsl.2017.06.036
      Garçon, M., Boyet, M., Carlson, R. W., et al., 2018. Factors Influencing the Precision and Accuracy of Nd Isotope Measurements by Thermal Ionization Mass Spectrometry. Chemical Geology, 476: 493-514. https://doi.org/10.1016/j.chemgeo.2017.12.003
      Guitreau, M., Boyet, M., Paquette, J. L., et al., 2019. Hadean Protocrust Reworking at the Origin of the Archean Napier Complex (Antarctica). Geochemical Perspectives Letters, 12: 7-11. https://doi.org/10.7185/geochemlet.1927
      Hammerli, J., Kemp, A. I. S., Whitehouse, M. J., 2019. In Situ Trace Element and Sm⁃Nd Isotope Analysis of Accessory Minerals in an Eoarchean Tonalitic Gneiss from Greenland: Implications for Hf and Nd Isotope Decoupling in Earth's Ancient Rocks. Chemical Geology, 524: 394-405. https://doi.org/10.1016/j.chemgeo.2019.06.025
      Harper, C. L., Jacobsen, S. B., 1992. Evidence from Coupled 147Sm⁃143Nd and 146Sm⁃142Nd Systematics for Very Early (4.5⁃Gyr) Differentiation of the Earth's Mantle. Nature, 360: 728-732. https://doi.org/10.1038/360728a0
      Hasenstab⁃Dübeler, E., Tusch, J., Hoffmann, J. E., et al., 2022. Temporal Evolution of 142Nd Signatures in SW Greenland from High Precision MC⁃ICP⁃MS Measurements. Chemical Geology, 614: 121141. https://doi.org/10.1016/j.chemgeo.2022.121141
      Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/ 0012⁃821X(88)90132⁃X doi: 10.1016/0012⁃821X(88)90132⁃X
      Horan, M. F., Carlson, R. W., Walker, R. J., et al., 2018. Tracking Hadean Processes in Modern Basalts with 142⁃Neodymium. Earth and Planetary Science Letters, 484: 184-191. https://doi.org/10.1016/j.epsl.2017.12.017
      Hyung, E., Jacobsen, S. B., 2020. The 142Nd/144Nd Variations in Mantle⁃Derived Rocks Provide Constraints on the Stirring Rate of the Mantle from the Hadean to the Present. Proceedings of the National Academy of Sciences of the United States of America, 117(26): 14738-14744. https://doi.org/10.1073/pnas.2006950117
      Johnston, S., Brandon, A., McLeod, C., et al., 2022. Nd Isotope Variation between the Earth⁃Moon System and Enstatite Chondrites. Nature, 611(7936): 501-506. https://doi.org/10.1038/s41586⁃022⁃05265⁃0
      Kagami, S., Yokoyama, T., 2016. Chemical Separation of Nd from Geological Samples for Chronological Studies Using 146Sm⁃142Nd and 147Sm⁃143Nd Systematics. Analytica Chimica Acta, 937: 151-159. https://doi.org/10.1016/j.aca.2016.07.004
      Kinoshita, N., Paul, M., Kashiv, Y., et al., 2012. RETRACTED: A Shorter 146Sm Half⁃Life Measured and Implications for 146Sm⁃142Nd Chronology in the Solar System. Science, 335(6076): 1614-1617. https://doi.org/10.1126/science.1215510
      Laurent, O., Guitreau, M., Bruand, E., et al., 2024. at the Dawn of Continents: Archean Tonalite⁃Trondhjemite⁃Granodiorite Suites. Elements, 20(3): 174-179. https://doi.org/10.2138/gselements.20.3.174
      Li, C. F., Wang, X. C., Li, Y. L., et al., 2015. Ce⁃Nd Separation by Solid⁃Phase Micro⁃Extraction and Its Application to High⁃Precision 142Nd/144Nd Measurements Using TIMS in Geological Materials. Journal of Analytical Atomic Spectrometry, 30(4): 895-902. https://doi.org/10.1039/C4JA00328D
      Li, C. F., Wang, X. C., Wilde, S. A., et al., 2017. Differentiation of the Early Silicate Earth as Recorded by 142Nd⁃143Nd in 3.8‒3.0 Ga Rocks from the Anshan Complex, North China Craton. Precambrian Research, 301: 86-101. https://doi.org/10.1016/j.precamres.2017.09.001
      Liou, P., Caro, G., Cui, X., et al., 2024. Long⁃Term Isolation of Hadean Mantle Domains Revealed from Coupled 147-146Sm⁃143-142Nd Systematics in the Eastern North China Craton. Earth and Planetary Science Letters, 638: 118761. https://doi.org/10.1016/j.epsl.2024.118761
      Liu, F., Li, X., Yang, H., et al., 2023. Simultaneously Obtaining Stable and Radiogenic Nd Isotope Ratios through a Single DGA Column Using Double Spike TIMS. Journal of Analytical Atomic Spectrometry, 38(12): 2581-2589. https://doi.org/10.1039/D3JA00284E
      Marks, N. E., Borg, L. E., Hutcheon, I. D., et al., 2014. Samarium⁃Neodymium Chronology and Rubidium⁃ Strontium Systematics of an Allende Calcium⁃ Aluminum⁃Rich Inclusion with Implications for 146Sm Half⁃Life. Earth and Planetary Science Letters, 405: 15-24. https://doi.org/10.1016/j.epsl.2014.08.017
      Mezger, K., Schönbächler, M., Bouvier, A., 2020. Accretion of the Earth—Missing Components? Space Science Reviews, 216(2): 27. https://doi.org/10.1007/s11214⁃020⁃00649⁃y
      Morino, P., Caro, G., Reisberg, L., et al., 2017. Chemical Stratification in the Post⁃Magma Ocean Earth Inferred from Coupled 146, 147Sm⁃142, 143Nd Systematics in Ultramafic Rocks of the Saglek Block (3.25-3.9 Ga; Northern Labrador, Canada). Earth and Planetary Science Letters, 463: 136-150. https://doi.org/10.1016/j.epsl.2017.01.044
      Nutman, A. P., Bennett, V. C., Friend, C. R. L., et al., 2021. Fifty Years of the Eoarchean and the Case for Evolving Uniformitarianism. Precambrian Research, 367: 106442. https://doi.org/10.1016/j.precamres.2021.106442
      O'Neil, J., Carlson, R. W., 2017. Building Archean Cratons from Hadean Mafic Crust. Science, 355(6330): 1199-1202. https://doi.org/10.1126/science.aah3823
      O'Neil, J., Carlson, R. W., Francis, D., et al., 2008. Neodymium⁃142 Evidence for Hadean Mafic Crust. Science, 321(5897): 1828-1831. https://doi.org/10.1126/science.1161925
      O'Neil, J., Carlson, R. W., Paquette, J. L., et al., 2012. Formation Age and Metamorphic History of the Nuvvuagittuq Greenstone Belt. Precambrian Research, 220: 23-44. https://doi.org/10.1016/j.precamres.2012.07.009
      O'Neil, J., Rizo, H., Boyet, M., et al., 2016. Geochemistry and Nd Isotopic Characteristics of Earth's Hadean Mantle and Primitive Crust. Earth and Planetary Science Letters, 442: 194-205. https://doi.org/10.1016/j.epsl.2016.02.055
      Pearson, D. G., Scott, J. M., Liu, J. G., et al., 2021. Deep Continental Roots and Cratons. Nature, 596(7871): 199-210. https://doi.org/10.1038/s41586⁃021⁃03600⁃5
      Peters, B. J., Carlson, R. W., Day, J. M. D., et al., 2018. Hadean Silicate Differentiation Preserved by Anomalous 142Nd/144Nd Ratios in the Réunion Hotspot Source. Nature, 555(7694): 89-93. https://doi.org/10.1038/nature25754
      Pin, C., Gannoun, A., 2019. A Triple Tandem Columns Extraction Chromatography Method for Isolation of Highly Purified Neodymium Prior to 143Nd/144Nd and 142Nd/ 144Nd Isotope Ratios Determinations. Journal of Analytical Atomic Spectrometry, 34(2): 310-318. https://doi.org/10.1039/C8JA00360B
      Qin, L. P., Carlson, R. W., Alexander, C. M. O., 2011. Correlated Nucleosynthetic Isotopic Variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochimica et Cosmochimica Acta, 75(24): 7806-7828. https://doi.org/10.1016/j.gca.2011.10.009
      Qiu, X. F., Deng, X., Jiang, T., et al., 2021a. First Discovery of Hadean Xenocrystal Zircons from Granitic Gneisses in the Northern Dabie Orogen. Acta Geologica Sinica, 95(5): 1775-1776. https://doi.org/10.1111/1755⁃6724.14755
      Qiu, X. F., Tong, X. R., Jiang, T., et al., 2021b. Reworking of Hadean Continental Crust in the Dabie Orogen: Evidence from the Muzidian Granitic Gneisses. Gondwana Research, 89: 119-130. https://doi.org/10.1016/j.gr.2020.08.014
      Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Earchaean Gneiss in the Beibei Tectonic Belt. Earth Science, 49(11): 3960-3970 (in Chinese with English abstract).
      Rehkämper, M., Gärtner, M., Galer, S. J. G., et al., 1996. Separation of Ce from Other Rare⁃Earth Elements with Application to Sm⁃Nd and La⁃Ce Chronometry. Chemical Geology, 129(3-4): 201-208. https://doi.org/10.1016/0009⁃2541(95)00143⁃3
      Reimink, J. R., Chacko, T., Carlson, R. W., et al., 2018. Petrogenesis and Tectonics of the Acasta Gneiss Complex Derived from Integrated Petrology and 142Nd and 182W Extinct Nuclide⁃Geochemistry. Earth and Planetary Science Letters, 494: 12-22. https://doi.org/10.1016/j.epsl.2018.04.047
      Reimink, J. R., Davies, J. H. F. L., Chacko, T., et al., 2016. No Evidence for Hadean Continental Crust within Earth's Oldest Evolved Rock Unit. Nature Geoscience, 9: 777-780. https://doi.org/10.1038/ngeo2786
      Reimink, J. R., Pearson, D. G., Shirey, S. B., et al., 2019. Onset of New, Progressive Crustal Growth in the Central Slave Craton at 3.55 Ga. Geochemical Perspectives Letters, 10: 8-13. https://doi.org/10.7185/geochemlet.1907
      Render, J., Fischer⁃Gödde, M., Burkhardt, C., et al., 2017. The Cosmic Molybdenum⁃Neodymium Isotope Correlation and the Building Material of the Earth. Geochemical Perspectives Letters, 3(2): 170-178. https://doi.org/10.7185/geochemlet.1720
      Rizo, H., Boyet, M., Blichert⁃Toft, J., et al., 2011. Combined Nd and Hf Isotope Evidence for Deep⁃Seated Source of Isua Lavas. Earth and Planetary Science Letters, 312(3-4): 267-279. https://doi.org/10.1016/j.epsl.2011.10.014
      Rizo, H., Boyet, M., Blichert⁃Toft, J., et al., 2012. The Elusive Hadean Enriched Reservoir Revealed by 142Nd Deficits in Isua Archaean Rocks. Nature, 491(7422): 96-100. https://doi.org/10.1038/nature11565
      Rizo, H., Boyet, M., Blichert⁃Toft, J., et al., 2013. Early Mantle Dynamics Inferred from 142Nd Variations in Archean Rocks from Southwest Greenland. Earth and Planetary Science Letters, 377: 324-335. https://doi.org/10.1016/j.epsl.2013.07.012
      Roth, A. S. G., Bourdon, B., Mojzsis, S. J., et al., 2013. Inherited 142Nd Anomalies in Eoarchean Protoliths. Earth and Planetary Science Letters, 361: 50-57. https://doi.org/10.1016/j.epsl.2012.11.023
      Roth, A. S. G., Bourdon, B., Mojzsis, S. J., et al., 2014. Combined 147, 146Sm⁃143, 142Nd Constraints on the Longevity and Residence Time of Early Terrestrial Crust. Geochemistry, Geophysics, Geosystems, 15(6): 2329-2345. https://doi.org/10.1002/2014gc005313
      Saji, N. S., Larsen, K., Wielandt, D., et al., 2018. Hadean Geodynamics Inferred from Time⁃Varying 142Nd/144Nd in the Early Earth Rock Record. Geochemical Perspectives Letters, 7: 43-48. https://doi.org/10.7185/geochemlet.1818
      Saji, N. S., Wielandt, D., Paton, C., et al., 2016. Ultra⁃High⁃Precision Nd⁃Isotope Measurements of Geological Materials by MC⁃ICPMS. Journal of Analytical Atomic Spectrometry, 31(7): 1490-1504. https://doi.org/10.1039/C6JA00064A
      Sole, C., 2021. Geochronology and Petrogenesis of Hadean to Paleoarchean Mafic and Felsic Crust from the Northeastern Superior Province, Canada. Université d'Ottawa/University of Ottawa, Ottawa. https://doi.org/10.20381/ruor⁃25863
      Stern, R. A., Bleeker, W., 1998. Age of the World's Oldest Rocks Refined Using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada. Geoscience Canada, 25(1): 27-31.
      Tazoe, H., Obata, H., Amakawa, H., et al., 2007. Precise Determination of the Cerium Isotopic Compositions of Surface Seawater in the Northwest Pacific Ocean and Tokyo Bay. Marine Chemistry, 103(1/2): 1-14. https://doi.org/10.1016/j.marchem.2006.05.008
      Upadhyay, D., Scherer, E. E., Mezger, K., 2009. 142Nd Evidence for an Enriched Hadean Reservoir in Cratonic Roots. Nature, 459(7250): 1118-1121. https://doi.org/10.1038/nature08089
      Vervoort, J. D., Plank, T., Prytulak, J., 2011. The Hf⁃Nd Isotopic Composition of Marine Sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. https://doi.org/10.1016/j.gca.2011.07.046
      Wang, D., Carlson, R. W., 2022. Tandem⁃Column Extraction Chromatography for Nd Separation: Minimizing Mass⁃Independent Isotope Fractionation for Ultrahigh⁃Precision Nd Isotope⁃Ratio Analysis. Journal of Analytical Atomic Spectrometry, 37(1): 185-193. https://doi.org/10.1039/D1JA00365H
      Wang, D., Qiu, X. F., Carlson, R. W., 2023. The Eoarchean Muzidian Gneiss Complex: Long⁃Lived Hadean Crustal Components in the Building of Archean Continents. Earth and Planetary Science Letters, 605: 118037. https://doi.org/10.1016/j.epsl.2023.118037
      Wang, D., Shirey, S. B., Carlson, R. W., et al., 2022. Comparative Sm⁃Nd Isotope Behavior of Accessory Minerals: Reconstructing the Sm⁃Nd Isotope Evolution of Early Archean Rocks. Geochimica et Cosmochimica Acta, 318: 190-212. https://doi.org/10.1016/j.gca.2021.11.031
      Wasilewski, B., O'Neil, J., Rizo, H., 2022. Archean Crustal Evolution of the Saglek⁃Hebron Complex, Northern Labrador, Revealed from Coupled 147⁃146Sm⁃143⁃142Nd Systematics. Earth and Planetary Science Letters, 594: 117735. https://doi.org/10.1016/j.epsl.2022.117735
      Wilde, S. A., Valley, J. W., Peck, W. H., et al., 2001. Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr ago. Nature, 409(6817): 175-178. https://doi.org/10.1038/35051550
      邱啸飞, 彭练红, 孔令耀, 等, 2024. 北大别构造带始太古代片麻岩的发现. 地球科学, 49(11): 3960-3970. doi: 10.3799/dqkx.2023.040
    • 加载中
    图(2) / 表(1)
    计量
    • 文章访问数:  638
    • HTML全文浏览量:  160
    • PDF下载量:  238
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-24
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回