146Sm⁃142Nd Isotopic Constraints on the Origin of Earth's First Crust
-
摘要: 地球形成最早10亿年的岩石记录稀缺,严重阻碍了地质学家对地球早期地壳起源的认识.短寿命放射性衰变的146Sm-142Nd同位素体系,由于其较短的半衰期(103 Ma),可以示踪地球早期的不相容元素分异过程,是制约早期地壳起源机制的重要手段.当前已有地球化学证据显示早期地球可能有多次地幔不相容元素亏损事件,而导致早期地球地幔亏损的原因很可能是冥古宙大规模原始地壳的形成.大规模的冥古宙原始地壳不仅是地球上多数现存最古老的始太古代岩浆岩的前身,也为新太古代大陆的形成提供了重要的物质来源.首先简述146Sm-142Nd体系定年和示踪的基本原理,并介绍142Nd同位素异常的分析方法.在此基础上,系统总结了全球有始太古代岩石出露的地块的142Nd同位素异常特征,探讨早期地球地壳的起源模式.Abstract: The understanding of the origin of Earth's earliest crust is incomplete due to the limited rock record in the first billion-year of Earth's history. The short-lived isotope system, 146Sm-142Nd, taking advantage of its short half-life of 103 Ma, is especially effective in tracing the chemical differentiation of incompatible elements during the Hadean and thus constraining the origin of the first crust on Earth. Studies show that multiple mantle depletion events may have occurred on the early Earth that were likely caused by the formation of massive proto-crust. The massive proto-crust is not only the likely progenitor of the oldest preserved igneous rocks on Earth, but also has served as the nuclei for the formation of Neoarchean continent. Here in this review article, the isotopic systematics and the analytical methods of 146Sm-142Nd were reviewed, and the current models for the formation of Earth's earliest crust were discussed based on a compilation of 142Nd isotopic anomaly data of ancient samples from global Eoarchean terranes.
-
Key words:
- early Earth /
- rocks /
- 142Nd /
- Hadean /
- isotopic anomaly /
- extinct nuclide /
- geochemistry
-
图 1 1 mL DGA树脂的淋滤曲线(修改自Wang and Carlson, 2022)
Fig. 1. Elution curve of 1 mL DGA resin (modified from Wang and Carlson, 2022)
图 2 全球代表性有太古宙岩石出露的地块的142Nd数据总结
修改自Wang et al.,2023,并增加了Liou et al.,2024报道的华北克拉通曹庄数据.现代地幔参考值为μ142Nd=±5(Carlson et al.,2019).图上标注了原始地幔分异时间分别为4.4 Ga和4.3 Ga的参考演化曲线,以147Sm/144Nd比值代表不相容元素分异的特征(亏损储库:147Sm/144Nd=0.21~0.24;富集储库:147Sm/144Nd=0.16~0.18).此142Nd同位素演化模型详见Wang et al.(2023);各地块的142Nd同位素演化历史详见Carlson et al.(2019)
Fig. 2. A compilation of 142Nd data in global early Archean terranes
表 1 TIMS Nd同位素四步动态测试的法拉第杯结构设置
Table 1. The Faraday cup configuration of the 4-step dynamic measurement of Nd isotopes using TIMS
步骤 L4 L3 L2 L1 C H1 H2 H3 H4 1 139La 140Ce 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 2 140Ce 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 3 141Pr 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 149Sm 4 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 149Sm 150Nd -
Bai, J. H., Liu, F., Zhang, Z. F., et al., 2021. Simultaneous Measurement Stable and Radiogenic Nd Isotopic Compositions by MC⁃ICP⁃MS with a Single⁃Step Chromatographic Extraction Technique. Journal of Analytical Atomic Spectrometry, 36(12): 2695-2703. https://doi.org/10.1039/D1JA00302J Bauer, A. M., Fisher, C. M., Vervoort, J. D., et al., 2017. Coupled Zircon Lu⁃Hf and U⁃Pb Isotopic Analyses of the Oldest Terrestrial Crust, the > 4.03 Ga Acasta Gneiss Complex. Earth and Planetary Science Letters, 458: 37-48. https://doi.org/10.1016/j.epsl.2016.10.036 Bennett, V. C., Brandon, A. D., Nutman, A. P., 2007. Coupled 142Nd⁃143Nd Isotopic Evidence for Hadean Mantle Dynamics. Science, 318(5858): 1907-1910. https://doi.org/10.1126/science.1145928 Bouvier, A., Boyet, M., 2016. Primitive Solar System Materials and Earth Share a Common Initial 142Nd Abundance. Nature, 537: 399-402. https://doi.org/10.1038/nature19351 Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu⁃Hf and Sm⁃Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 Bowring, S. A., King, J. E., Housh, T. B., et al., 1989a. Neodymium and Lead Isotope Evidence for Enriched Early Archaean Crust in North America. Nature, 340: 222-225. https://doi.org/10.1038/340222a0 Bowring, S. A., Williams, I. S., Compston, W., 1989b. 3.96 Ga Gneisses from the Slave Province, Northwest Territories, Canada. Geology, 17(11): 971. https://doi.org/10.1130/0091⁃7613(1989)017<0971:GGFTSP>2.3.CO;2 doi: 10.1130/0091⁃7613(1989)017<0971:GGFTSP>2.3.CO;2 Bowring, S. A., Williams, I. S., 1999. Priscoan (4.00- 4.03 Ga) Orthogneisses from Northwestern Canada. Contributions to Mineralogy and Petrology, 134(1): 3-16. https://doi.org/10.1007/s004100050465 Boyet, M., Carlson, R. W., 2005. 142Nd Evidence for Early (> 4.53 Ga) Global Differentiation of the Silicate Earth. Science, 309(5734): 576-581. https://doi.org/10.1126/science.1113634 Boyet, M., Carlson, R. W., 2006. A New Geochemical Model for the Earth's Mantle Inferred from 146Sm⁃142Nd Systematics. Earth and Planetary Science Letters, 250(1-2): 254-268. https://doi.org/10.1016/j.epsl.2006.07.046 Boyet, M., Carlson, R. W., Horan, M., 2010. Old Sm⁃Nd Ages for Cumulate Eucrites and Redetermination of the Solar System Initial 146Sm/144Sm Ratio. Earth and Planetary Science Letters, 291(1/2/3/4): 172-181. https://doi.org/10.1016/j.epsl.2010.01.010 Burkhardt, C., Borg, L. E., Brennecka, G. A., et al., 2016. A Nucleosynthetic Origin for the Earth's Anomalous 142Nd Composition. Nature, 537(7620): 394-398. https://doi.org/10.1038/nature18956 Burkhardt, C., Kleine, T., Oberli, F., et al., 2011. Molybdenum Isotope Anomalies in Meteorites: Constraints on Solar Nebula Evolution and Origin of the Earth. Earth and Planetary Science Letters, 312(3/4): 390-400. https://doi.org/10.1016/j.epsl.2011.10.010 Carlson, R. W., Boyet, M., Horan, M., 2007. Chondrite Barium, Neodymium, and Samarium Isotopic Heterogeneity and Early Earth Differentiation. Science, 316(5828): 1175-1178. https://doi.org/10.1126/science.1140189 Carlson, R. W., Garçon, M., O'Neil, J., et al., 2019. The Nature of Earth's First Crust. Chemical Geology, 530: 119321. https://doi.org/10.1016/j.chemgeo.2019.119321 Caro, G., Bourdon, B., Birck, J. L., et al., 2003. 146Sm⁃142Nd Evidence from Isua Metamorphosed Sediments for Early Differentiation of the Earth's Mantle. Nature, 423(6938): 428-432. https://doi.org/10.1038/nature01668 Caro, G., Bourdon, B., Birck, J. L., et al., 2006. High⁃Precision 142Nd/144Nd Measurements in Terrestrial Rocks: Constraints on the Early Differentiation of the Earth's Mantle. Geochimica et Cosmochimica Acta, 70(1): 164-191. https://doi.org/10.1016/j.gca.2005.08.015 Caro, G., Bourdon, B., Wood, B. J., et al., 2005. Trace⁃Element Fractionation in Hadean Mantle Generated by Melt Segregation from a Magma Ocean. Nature, 436(7048): 246-249. https://doi.org/10.1038/nature03827 Caro, G., Morino, P., Mojzsis, S. J., et al., 2017. Sluggish Hadean Geodynamics: Evidence from Coupled 146, 147Sm⁃142, 143Nd Systematics in Eoarchean Supracrustal Rocks of the Inukjuak Domain (Québec). Earth and Planetary Science Letters, 457: 23-37. https://doi.org/10.1016/j.epsl.2016.09.051 Chu, Z. Y., Wang, M. J., Li, C. F., et al., 2019. Separation of Nd from Geological Samples by a Single TODGA Resin Column for High Precision Nd Isotope Analysis as NdO+ by TIMS. Journal of Analytical Atomic Spectrometry, 34(10): 2053-2060. https://doi.org/10.1039/C9JA00200F Connelly, J. N., Bollard, J., Bizzarro, M., 2017. Pb⁃Pb Chronometry and the Early Solar System. Geochimica et Cosmochimica Acta, 201: 345-363. https://doi.org/10.1016/j.gca.2016.10.044 Debaille, V., O'Neill, C., Brandon, A. D., et al., 2013. Stagnant⁃Lid Tectonics in Early Earth Revealed by 142Nd Variations in Late Archean Rocks. Earth and Planetary Science Letters, 373: 83-92. https://doi.org/10.1016/j.epsl.2013.04.016 Fang, L. R., Frossard, P., Boyet, M., et al., 2022. Half⁃Life and Initial Solar System Abundance of 146Sm Determined from the Oldest Andesitic Meteorite. Proceedings of the National Academy of Sciences of the United States of America, 119(12): 6465. https://doi.org/10.1073/pnas.2120933119 Fisher, C. M., Bauer, A. M., Vervoort, J. D., 2020. Disturbances in the Sm⁃Nd Isotope System of the Acasta Gneiss Complex—Implications for the Nd Isotope Record of the Early Earth. Earth and Planetary Science Letters, 530: 115900. https://doi.org/10.1016/j.epsl.2019.115900 Friedman, A. M., Milsted, J., Metta, D., et al., 1966. Alpha Decay Half Lives of 148Gd, 150Gd and 146Sm. Radiochimica Acta, 5(4): 192-194. https://doi.org/10.1524/ract.1966.5.4.192 Frossard, P., Israel, C., Bouvier, A., et al., 2022. Earth's Composition was Modified by Collisional Erosion. Science, 377(6614): 1529-1532. https://doi.org/10.1126/science.abq7351 Fukai, R., Yokoyama, T., 2017. Neodymium Isotope Heterogeneity of Ordinary and Carbonaceous Chondrites and the Origin of Non⁃Chondritic 142Nd Compositions in the Earth. Earth and Planetary Science Letters, 474: 206-214. https://doi.org/10.1016/j.epsl.2017.06.036 Garçon, M., Boyet, M., Carlson, R. W., et al., 2018. Factors Influencing the Precision and Accuracy of Nd Isotope Measurements by Thermal Ionization Mass Spectrometry. Chemical Geology, 476: 493-514. https://doi.org/10.1016/j.chemgeo.2017.12.003 Guitreau, M., Boyet, M., Paquette, J. L., et al., 2019. Hadean Protocrust Reworking at the Origin of the Archean Napier Complex (Antarctica). Geochemical Perspectives Letters, 12: 7-11. https://doi.org/10.7185/geochemlet.1927 Hammerli, J., Kemp, A. I. S., Whitehouse, M. J., 2019. In Situ Trace Element and Sm⁃Nd Isotope Analysis of Accessory Minerals in an Eoarchean Tonalitic Gneiss from Greenland: Implications for Hf and Nd Isotope Decoupling in Earth's Ancient Rocks. Chemical Geology, 524: 394-405. https://doi.org/10.1016/j.chemgeo.2019.06.025 Harper, C. L., Jacobsen, S. B., 1992. Evidence from Coupled 147Sm⁃143Nd and 146Sm⁃142Nd Systematics for Very Early (4.5⁃Gyr) Differentiation of the Earth's Mantle. Nature, 360: 728-732. https://doi.org/10.1038/360728a0 Hasenstab⁃Dübeler, E., Tusch, J., Hoffmann, J. E., et al., 2022. Temporal Evolution of 142Nd Signatures in SW Greenland from High Precision MC⁃ICP⁃MS Measurements. Chemical Geology, 614: 121141. https://doi.org/10.1016/j.chemgeo.2022.121141 Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/ 0012⁃821X(88)90132⁃X doi: 10.1016/0012⁃821X(88)90132⁃X Horan, M. F., Carlson, R. W., Walker, R. J., et al., 2018. Tracking Hadean Processes in Modern Basalts with 142⁃Neodymium. Earth and Planetary Science Letters, 484: 184-191. https://doi.org/10.1016/j.epsl.2017.12.017 Hyung, E., Jacobsen, S. B., 2020. The 142Nd/144Nd Variations in Mantle⁃Derived Rocks Provide Constraints on the Stirring Rate of the Mantle from the Hadean to the Present. Proceedings of the National Academy of Sciences of the United States of America, 117(26): 14738-14744. https://doi.org/10.1073/pnas.2006950117 Johnston, S., Brandon, A., McLeod, C., et al., 2022. Nd Isotope Variation between the Earth⁃Moon System and Enstatite Chondrites. Nature, 611(7936): 501-506. https://doi.org/10.1038/s41586⁃022⁃05265⁃0 Kagami, S., Yokoyama, T., 2016. Chemical Separation of Nd from Geological Samples for Chronological Studies Using 146Sm⁃142Nd and 147Sm⁃143Nd Systematics. Analytica Chimica Acta, 937: 151-159. https://doi.org/10.1016/j.aca.2016.07.004 Kinoshita, N., Paul, M., Kashiv, Y., et al., 2012. RETRACTED: A Shorter 146Sm Half⁃Life Measured and Implications for 146Sm⁃142Nd Chronology in the Solar System. Science, 335(6076): 1614-1617. https://doi.org/10.1126/science.1215510 Laurent, O., Guitreau, M., Bruand, E., et al., 2024. at the Dawn of Continents: Archean Tonalite⁃Trondhjemite⁃Granodiorite Suites. Elements, 20(3): 174-179. https://doi.org/10.2138/gselements.20.3.174 Li, C. F., Wang, X. C., Li, Y. L., et al., 2015. Ce⁃Nd Separation by Solid⁃Phase Micro⁃Extraction and Its Application to High⁃Precision 142Nd/144Nd Measurements Using TIMS in Geological Materials. Journal of Analytical Atomic Spectrometry, 30(4): 895-902. https://doi.org/10.1039/C4JA00328D Li, C. F., Wang, X. C., Wilde, S. A., et al., 2017. Differentiation of the Early Silicate Earth as Recorded by 142Nd⁃143Nd in 3.8‒3.0 Ga Rocks from the Anshan Complex, North China Craton. Precambrian Research, 301: 86-101. https://doi.org/10.1016/j.precamres.2017.09.001 Liou, P., Caro, G., Cui, X., et al., 2024. Long⁃Term Isolation of Hadean Mantle Domains Revealed from Coupled 147-146Sm⁃143-142Nd Systematics in the Eastern North China Craton. Earth and Planetary Science Letters, 638: 118761. https://doi.org/10.1016/j.epsl.2024.118761 Liu, F., Li, X., Yang, H., et al., 2023. Simultaneously Obtaining Stable and Radiogenic Nd Isotope Ratios through a Single DGA Column Using Double Spike TIMS. Journal of Analytical Atomic Spectrometry, 38(12): 2581-2589. https://doi.org/10.1039/D3JA00284E Marks, N. E., Borg, L. E., Hutcheon, I. D., et al., 2014. Samarium⁃Neodymium Chronology and Rubidium⁃ Strontium Systematics of an Allende Calcium⁃ Aluminum⁃Rich Inclusion with Implications for 146Sm Half⁃Life. Earth and Planetary Science Letters, 405: 15-24. https://doi.org/10.1016/j.epsl.2014.08.017 Mezger, K., Schönbächler, M., Bouvier, A., 2020. Accretion of the Earth—Missing Components? Space Science Reviews, 216(2): 27. https://doi.org/10.1007/s11214⁃020⁃00649⁃y Morino, P., Caro, G., Reisberg, L., et al., 2017. Chemical Stratification in the Post⁃Magma Ocean Earth Inferred from Coupled 146, 147Sm⁃142, 143Nd Systematics in Ultramafic Rocks of the Saglek Block (3.25-3.9 Ga; Northern Labrador, Canada). Earth and Planetary Science Letters, 463: 136-150. https://doi.org/10.1016/j.epsl.2017.01.044 Nutman, A. P., Bennett, V. C., Friend, C. R. L., et al., 2021. Fifty Years of the Eoarchean and the Case for Evolving Uniformitarianism. Precambrian Research, 367: 106442. https://doi.org/10.1016/j.precamres.2021.106442 O'Neil, J., Carlson, R. W., 2017. Building Archean Cratons from Hadean Mafic Crust. Science, 355(6330): 1199-1202. https://doi.org/10.1126/science.aah3823 O'Neil, J., Carlson, R. W., Francis, D., et al., 2008. Neodymium⁃142 Evidence for Hadean Mafic Crust. Science, 321(5897): 1828-1831. https://doi.org/10.1126/science.1161925 O'Neil, J., Carlson, R. W., Paquette, J. L., et al., 2012. Formation Age and Metamorphic History of the Nuvvuagittuq Greenstone Belt. Precambrian Research, 220: 23-44. https://doi.org/10.1016/j.precamres.2012.07.009 O'Neil, J., Rizo, H., Boyet, M., et al., 2016. Geochemistry and Nd Isotopic Characteristics of Earth's Hadean Mantle and Primitive Crust. Earth and Planetary Science Letters, 442: 194-205. https://doi.org/10.1016/j.epsl.2016.02.055 Pearson, D. G., Scott, J. M., Liu, J. G., et al., 2021. Deep Continental Roots and Cratons. Nature, 596(7871): 199-210. https://doi.org/10.1038/s41586⁃021⁃03600⁃5 Peters, B. J., Carlson, R. W., Day, J. M. D., et al., 2018. Hadean Silicate Differentiation Preserved by Anomalous 142Nd/144Nd Ratios in the Réunion Hotspot Source. Nature, 555(7694): 89-93. https://doi.org/10.1038/nature25754 Pin, C., Gannoun, A., 2019. A Triple Tandem Columns Extraction Chromatography Method for Isolation of Highly Purified Neodymium Prior to 143Nd/144Nd and 142Nd/ 144Nd Isotope Ratios Determinations. Journal of Analytical Atomic Spectrometry, 34(2): 310-318. https://doi.org/10.1039/C8JA00360B Qin, L. P., Carlson, R. W., Alexander, C. M. O., 2011. Correlated Nucleosynthetic Isotopic Variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochimica et Cosmochimica Acta, 75(24): 7806-7828. https://doi.org/10.1016/j.gca.2011.10.009 Qiu, X. F., Deng, X., Jiang, T., et al., 2021a. First Discovery of Hadean Xenocrystal Zircons from Granitic Gneisses in the Northern Dabie Orogen. Acta Geologica Sinica, 95(5): 1775-1776. https://doi.org/10.1111/1755⁃6724.14755 Qiu, X. F., Tong, X. R., Jiang, T., et al., 2021b. Reworking of Hadean Continental Crust in the Dabie Orogen: Evidence from the Muzidian Granitic Gneisses. Gondwana Research, 89: 119-130. https://doi.org/10.1016/j.gr.2020.08.014 Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Earchaean Gneiss in the Beibei Tectonic Belt. Earth Science, 49(11): 3960-3970 (in Chinese with English abstract). Rehkämper, M., Gärtner, M., Galer, S. J. G., et al., 1996. Separation of Ce from Other Rare⁃Earth Elements with Application to Sm⁃Nd and La⁃Ce Chronometry. Chemical Geology, 129(3-4): 201-208. https://doi.org/10.1016/0009⁃2541(95)00143⁃3 Reimink, J. R., Chacko, T., Carlson, R. W., et al., 2018. Petrogenesis and Tectonics of the Acasta Gneiss Complex Derived from Integrated Petrology and 142Nd and 182W Extinct Nuclide⁃Geochemistry. Earth and Planetary Science Letters, 494: 12-22. https://doi.org/10.1016/j.epsl.2018.04.047 Reimink, J. R., Davies, J. H. F. L., Chacko, T., et al., 2016. No Evidence for Hadean Continental Crust within Earth's Oldest Evolved Rock Unit. Nature Geoscience, 9: 777-780. https://doi.org/10.1038/ngeo2786 Reimink, J. R., Pearson, D. G., Shirey, S. B., et al., 2019. Onset of New, Progressive Crustal Growth in the Central Slave Craton at 3.55 Ga. Geochemical Perspectives Letters, 10: 8-13. https://doi.org/10.7185/geochemlet.1907 Render, J., Fischer⁃Gödde, M., Burkhardt, C., et al., 2017. The Cosmic Molybdenum⁃Neodymium Isotope Correlation and the Building Material of the Earth. Geochemical Perspectives Letters, 3(2): 170-178. https://doi.org/10.7185/geochemlet.1720 Rizo, H., Boyet, M., Blichert⁃Toft, J., et al., 2011. Combined Nd and Hf Isotope Evidence for Deep⁃Seated Source of Isua Lavas. Earth and Planetary Science Letters, 312(3-4): 267-279. https://doi.org/10.1016/j.epsl.2011.10.014 Rizo, H., Boyet, M., Blichert⁃Toft, J., et al., 2012. The Elusive Hadean Enriched Reservoir Revealed by 142Nd Deficits in Isua Archaean Rocks. Nature, 491(7422): 96-100. https://doi.org/10.1038/nature11565 Rizo, H., Boyet, M., Blichert⁃Toft, J., et al., 2013. Early Mantle Dynamics Inferred from 142Nd Variations in Archean Rocks from Southwest Greenland. Earth and Planetary Science Letters, 377: 324-335. https://doi.org/10.1016/j.epsl.2013.07.012 Roth, A. S. G., Bourdon, B., Mojzsis, S. J., et al., 2013. Inherited 142Nd Anomalies in Eoarchean Protoliths. Earth and Planetary Science Letters, 361: 50-57. https://doi.org/10.1016/j.epsl.2012.11.023 Roth, A. S. G., Bourdon, B., Mojzsis, S. J., et al., 2014. Combined 147, 146Sm⁃143, 142Nd Constraints on the Longevity and Residence Time of Early Terrestrial Crust. Geochemistry, Geophysics, Geosystems, 15(6): 2329-2345. https://doi.org/10.1002/2014gc005313 Saji, N. S., Larsen, K., Wielandt, D., et al., 2018. Hadean Geodynamics Inferred from Time⁃Varying 142Nd/144Nd in the Early Earth Rock Record. Geochemical Perspectives Letters, 7: 43-48. https://doi.org/10.7185/geochemlet.1818 Saji, N. S., Wielandt, D., Paton, C., et al., 2016. Ultra⁃High⁃Precision Nd⁃Isotope Measurements of Geological Materials by MC⁃ICPMS. Journal of Analytical Atomic Spectrometry, 31(7): 1490-1504. https://doi.org/10.1039/C6JA00064A Sole, C., 2021. Geochronology and Petrogenesis of Hadean to Paleoarchean Mafic and Felsic Crust from the Northeastern Superior Province, Canada. Université d'Ottawa/University of Ottawa, Ottawa. https://doi.org/10.20381/ruor⁃25863 Stern, R. A., Bleeker, W., 1998. Age of the World's Oldest Rocks Refined Using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada. Geoscience Canada, 25(1): 27-31. Tazoe, H., Obata, H., Amakawa, H., et al., 2007. Precise Determination of the Cerium Isotopic Compositions of Surface Seawater in the Northwest Pacific Ocean and Tokyo Bay. Marine Chemistry, 103(1/2): 1-14. https://doi.org/10.1016/j.marchem.2006.05.008 Upadhyay, D., Scherer, E. E., Mezger, K., 2009. 142Nd Evidence for an Enriched Hadean Reservoir in Cratonic Roots. Nature, 459(7250): 1118-1121. https://doi.org/10.1038/nature08089 Vervoort, J. D., Plank, T., Prytulak, J., 2011. The Hf⁃Nd Isotopic Composition of Marine Sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. https://doi.org/10.1016/j.gca.2011.07.046 Wang, D., Carlson, R. W., 2022. Tandem⁃Column Extraction Chromatography for Nd Separation: Minimizing Mass⁃Independent Isotope Fractionation for Ultrahigh⁃Precision Nd Isotope⁃Ratio Analysis. Journal of Analytical Atomic Spectrometry, 37(1): 185-193. https://doi.org/10.1039/D1JA00365H Wang, D., Qiu, X. F., Carlson, R. W., 2023. The Eoarchean Muzidian Gneiss Complex: Long⁃Lived Hadean Crustal Components in the Building of Archean Continents. Earth and Planetary Science Letters, 605: 118037. https://doi.org/10.1016/j.epsl.2023.118037 Wang, D., Shirey, S. B., Carlson, R. W., et al., 2022. Comparative Sm⁃Nd Isotope Behavior of Accessory Minerals: Reconstructing the Sm⁃Nd Isotope Evolution of Early Archean Rocks. Geochimica et Cosmochimica Acta, 318: 190-212. https://doi.org/10.1016/j.gca.2021.11.031 Wasilewski, B., O'Neil, J., Rizo, H., 2022. Archean Crustal Evolution of the Saglek⁃Hebron Complex, Northern Labrador, Revealed from Coupled 147⁃146Sm⁃143⁃142Nd Systematics. Earth and Planetary Science Letters, 594: 117735. https://doi.org/10.1016/j.epsl.2022.117735 Wilde, S. A., Valley, J. W., Peck, W. H., et al., 2001. Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr ago. Nature, 409(6817): 175-178. https://doi.org/10.1038/35051550 邱啸飞, 彭练红, 孔令耀, 等, 2024. 北大别构造带始太古代片麻岩的发现. 地球科学, 49(11): 3960-3970. doi: 10.3799/dqkx.2023.040 -