CO2 Mineralization Storage in Basalt (Ⅱ): Storage Conditions, Site Selections and Challenges on Leizhou Peninsula, Guangdong Province, South China
-
摘要: 玄武岩CO2矿化封存技术是在玄武岩区实现碳封存的新兴CCUS技术. 广东省西南部雷州半岛的玄武岩以拉斑玄武岩和碱性橄榄玄武岩为主,分布面积超过3 000 km2,其矿化封存潜力已引起重视. 根据雷州半岛地质条件和水文地质条件,在该区宜选用勿需盖层便可实现玄武岩中CO2安全封存的Carbfix技术. 而且由于雷州半岛的玄武岩大多埋藏较浅,需选择第四纪火山口玄武岩或深部第三纪玄武岩夹层方可满足Carbfix技术对储层深度的要求.以徐闻县田洋破火山口玄武岩和勇士农场第三纪玄武岩这两个先导项目候选场址为例,分析了在这两类玄武岩中进行矿化封存的可行性、潜力及存在问题,指出对火山口玄武岩注水后的效应研究、玄武岩的深部和横向延伸的探测等是目前遇到的主要挑战,也需要对是否存在影响地下水资源的风险进行监测和研究.提出在雷州半岛有必要开发在中浅(如150 m以下)第四纪玄武岩中进行矿化封存的工艺,并提议在海边选址开展利用海水进行玄武岩CO2封存的探索和试验,希望为扩大雷州半岛玄武岩矿化封存潜力服务,并为开发全球海底玄武岩碳封存资源的利用技术做出贡献.
-
关键词:
- 玄武岩CO2矿化封存 /
- 碳捕集利用与封存(CCUS) /
- 封存选址 /
- Carbfix技术 /
- 雷琼火山岩 /
- 雷州半岛
Abstract: CO2 mineralization storage in basaltis a new CCUS technique that enables the sequestration of CO2 in basaltic areas for carbon reduction. The Leizhou Peninsula in the Guangdong Province of South China boasts a vast area covered by basalt, exceeding 3 000 km2.The basaltic formations on the Leizhou Peninsula consist primarily of tholeiite and alkali olivine basalts, making it a promising candidate for CO2 mineralization storage. This paper analyzed the geological and hydrological conditions of the Leizhou Peninsular and pointed out that the Carbfix technology, which allows safe storage of CO2 without caprocks, is applicable to the area, However, the basalts in the peninsular are mostly shallowly buried, and only volcanic crater basalts and deeply buried Tertiary basalts might meet the minimum depth requirements of the Carbfix technology. Currently, Xuwun County's Tianyang Quaternary caldera basalts and the Yongshi Farmland's Tertiary basalts have been identified as potential pilot project sites. The geological and hydrological conditions at these two sites are reviewed, and favorable and unfavorable factors and potential for CO2 storage are analyzed. The primary challenges currently faced are to investigate the safety issues of large⁃quantity water injection into the caldera basalts, and to detect the deep basal interface and lateral extension of the basalts. Additionally, the potential impacts of injected CO2⁃changed water on underground water resources need to be monitored and investigated. The article proposes to develop techniques of storing CO2 in shallower (e.g. < 150 m) basalts, and suggests to conduct necessary experiments at a shore site to explore the feasibility and techniques of using seawater for basalt CO2 storage. These actions will benefit not only expanding the potential of basalt mineralization storage on the Leizhou Peninsula, but also contributing to the study of utilizing global submarine basaltic carbon storage resources. -
图 1 雷州半岛火山岩平面图(a)和剖面图(b)
新生代火山岩喷发期次及分布自汪苗等(2019);第四纪火山岩厚度等值线和钻井位置自黄镇国等(1993);穿过雷南的地质剖面图据广东省第四地质大队图件重绘,其中红色虚线示钻井位置. 上方的数字分别为钻井编号(红字)和井口高程(黑字,m);下方的红字为钻井深度(m)
Fig. 1. Map (a) and cross section (b) of the volcanic rocks in the Leizhou Peninsula, Guangdong Province
图 2 雷州半岛地层及玄武岩分期柱状图
*.广东省地质矿产局(1996);**. 广东省第四地质大队(钻井资料);其余自黄镇国等(1993);最右一列自下而上分别示第三纪、早更新世、中更新世的玄武岩分布区;红色方框示候选场地分布区
Fig. 2. Composite column of stratigraphy and volcanic periods in the Leizhou Peninsula, Guangdong Province
图 3 候选场地工作区的地形及重要钻井分布图
图框范围的区域位置见图 1中红色方框
Fig. 3. Map of the study area, showing the surface elevation, important wells, and location of the Tianyang basin and Yongshi Farmland
图 5 田洋盆地#275井综合柱状图
据广东省第四地质大队资料编绘;数据来源:[1] 陈俊仁等(1990);[2] 孙嘉诗(1991);[3] 汪苗等(2019);■. 岩心化学分析的采样位置;数据见表 3.1
Fig. 5. Composite column of the #275 well in the Tianyang basin
图 6 勇士农场#722井和#284井深部下洋组剖面对比
按井口高程将两剖面调整到同一水平面上. “埋深”列中的数字为井深,括号内数字为厚度,单位均为(m);“岩性”列中的绿色箭头示K-Ar法测年样品的位置和测得年代. 剖面据广东省第四地质大队资料绘制;年代数据自黄镇国等(1993)
Fig. 6. The correlation of the Xiayang Formation in the lower sections of #722 and #284 wells in the Yongshi Farmland
表 1 田洋盆地#275井岩心样品化学分析结果(a)和CIPW标准矿物含量(b)
Table 1. Geochemical compositions (a) and CIPW standard mineral compositions (b) of the core samples from the #275 well
(a) 样号* SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 H2O+ CO2 烧失 样深(m) 年龄(Ma) 岩性 文献 CK275-1 45.5 2.84 13.65 4.57 6.04 0.139 7.4 8.42 2.13 2.44 0.38 6.41 2.41 8.09 杏仁状玄武岩 【1】 CK275-4 48.83 2.86 14.89 2.37 8.99 0.161 8.32 8.15 3.25 2.14 0.36 2.21 0.08 2.58 321~324 2.88±0.5 橄榄玄武岩 【1】 CK275-6 48.05 2.78 14.75 4.3 6.75 0.155 8.12 7.55 2.94 2.07 0.36 3.13 0.39 3.95 杏仁状橄榄玄武岩 【1】 T-471 46.9 2.85 14.35 3.54 6.67 0.14 7.94 7.53 2.84 2.08 0.35 2.76 471 橄榄拉斑玄武岩 【2】 W1 50.83 2.835 15.18 12.14 0.132 7.15 8.06 3.22 2.11 0.33 2.68 228 0.87±0.11 石英拉斑玄武岩 【3】 W2 49.38 2.81 15.49 12.2 0.155 8.08 8.23 3.14 2.16 0.35 0.99 226 0.49±0.05 石英拉斑玄武岩 【3】 W3 50.18 2.893 16.25 12.26 0.131 7.23 8.6 3.15 0.95 0.34 2.79 230 0.73±0.09 石英拉斑玄武岩 【3】 (b) 样号 铁橄榄石 镁橄榄石 紫苏辉石 透辉石 钙长石 钠长石 正长石 石英 磷灰石 磷铁矿 钛铁矿 磁铁矿 榍石 文献 CK275-4 5.09 8.3 8.05 12.19 22.81 27.27 6.68 0.93 3.47 3.49 【4】 W1 14.83 6.43 23.71 27.23 6.57 3.91 0.77 0.28 12.14 4.14 【3】 W2 17.22 6.28 24.77 26.54 6.84 0.99 0.82 0.33 12.2 4.01 【3】 W3 15.47 5.46 27.38 26.67 5.64 2.77 0.79 0.28 12.26 4.28 【3】 注:【1】孙嘉诗(1991);【2】韩江伟等(2009);【3】汪苗等(2019). 表 2 勇士农场岩心样品的化学分析结果(a)和CIPW标准矿物含量(b)
Table 2. Geochemical compositions (a) and CIPW standard mineral compositions (b) of the core samples from the Yongshi Farmland
(a) 样号* SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 其他 总量 岩性 文献 YSFM 51.5 1.73 16.65 3.89 5.90 6.12 3.66 4.88 4.15 2.29 0.52 1.74 96.66 粒玄岩 【1】 YS1 51.95 1.56 16.56 12.77 0.18 3.19 4.52 2.80 1.09 0.31 5.46 100.37 石英拉斑玄武岩 【2】 YS3 46.87 1.42 12.33 11.52 0.16 6.55 6.45 2.43 0.46 0.14 11.93 100.25 石英拉斑玄武岩 【2】 YS7 47.96 1.54 13.05 9.56 0.24 6.57 7.26 2.55 0.26 0.20 11.17 100.35 石英拉斑玄武岩 【2】 (b) 样号 紫苏辉石 透辉石 钙长石 钠长石 正长石 石英 磷灰石 钛铁矿 磁铁矿 刚玉 文献 YSFM 13.37 1.34 18.77 35.13 13.30 2.66 1.34 3.28 【1】 YS1 23.51 0.00 21.78 25.22 6.86 12.25 0.76 3.17 2.96 3.5 【2】 YS3 28.75 9.16 24.41 23.61 3.13 4.62 0.37 3.08 2.87 0 【2】 YS7 24.9 10.48 26.44 24.45 1.71 5.83 0.51 3.31 2.35 0 【2】 注:【1】黄镇国等(1993);【2】中英(广东)CCUS中心内部报告(2022). 样品YSFM的数据来自 黄镇国等(1993),原著未提供样品的采集位置,从前后文估计来自#722井. 其余3个样品的数据由李鹏春提供,样品采自勇士农场场部附近稻田的废弃岩心,岩性均为石英拉班玄武岩;YS1样品新鲜致密,而YS3和YS7较新鲜、气孔较发育 表 3 雷琼新生代玄武岩CO2矿化封存潜力估计
Table 3. Estimation of CO2 mineralization and sequestration potential in the Leiqiong Cenozoic basalt
地区 玄武岩参数 封存潜力**(亿吨CO2) 估计方法 文献* 面积(km2) 厚度(km) 体积(km3) 雷州半岛 3 940 等厚线读数 257 4.8~12.5 自然类比 【1】 1.9~38.8 孔隙体积 30.8~45.9 实验系数 雷琼火山岩区 7 000 200~1 000 100~1 000 自然类比 【2】 雷琼火山岩区 8 007 309.5 45.6~81.6 蒙特卡洛 【3】 注:*【1】李鹏春等(2023);【2】Carbfix(2021);【3】张亮等(2023);**.最底部一行是有效封存潜力,其他均为理论封存潜力. -
Aradóttir, E., Sonnenthal, E., Björnsson, G., et al., 2012. Multidimensional Reactive Transport Modeling of CO2 Mineral Sequestration in Basalts at the Hellisheidi Geothermal Field, Iceland. International Journal of Greenhouse Gas Control, 9: 24-40. doi: 10.1016/j.ijggc.2012.02.006 Cao, X., Li, Q., Xu, L., Tan, Y., 2024a. Experiments of CO2⁃Basalt⁃Fluid Interactions and Micromechanical Alterations: Implications for Carbon Mineralization. Energy & Fuels, 38(7): 6205-6214. Cao, X., Li, Q., Xu, L. and Tan, Y., 2024b. A Review of in situ Carbon Mineralization in Basalt. Journal of Rock Mechanics and Geotechnical Engineering, 16(4): 1467-1485. https://doi.org/10.1016/j.jrmge.2023.11.010 Chen, J. R., 1990. Quaternary Geology of Tianyang Volcanic Lake in Guangdong Province. Geological Publishing House, Beijing(in Chinese) Chen, M. X., Xia, S. G., Yang, S. Z., 1991. Local Geothermal Anomalies and Their Formation Mechanisms on Leizhou Peninsula, South China. Chinese Journal of Geology, 26(4): 369-383(in Chinese with English abstract). Flaathen, T. K., Gislason, S. R., Oelkers, E. H. et al., 2009. Chemical Evolution of the Mt. Hekla, Iceland, Groundwaters: A Natural Analogue for CO2 Sequestration in Basaltic Rocks. App. Geochem, 24: 463-474. Gao, Z. H., Xia, C. Y., Liao, S. L., et al., 2023. Progress of Methods for Assessing CO2 Mineralization Storage Potential in Basalt. Geological Journal of China Universities, 29(1): 66-75(in Chinese with English abstract). Gislason, S. R., Oelkers, E. H., 2014. Carbon Storage in Basalt. Science, 344(6182): 373-374. https://doi.org/10.1126/science.1250828 Goldberg, D. S., Takahashi, T., Slagle, A. L., 2008. Carbon Dioxide Sequestration in Deep⁃Sea Basalt. Proceedings of the National Academy of Sciences of the United States of America, 105(29): 9920-9925. https://doi.org/10.1073/pnas.0804397105 Guangdong Geological Bureau, 1996. Stratigraphy(lithostratic) of Guangdong Province. China University of Geosciences Press, Wuhan(in Chinese). Han, J. W., Xiong, X. L., Zhu, Z. Y., 2009. Geochemistry of Late⁃Cenozoic Basalts from Leiqiong area; The Origin of EM2 and the Contribution from Sub⁃Continental Lithosphere Mantle. Acta Petrologica Sinica, 25(12): 3208-3220(in Chinese with English abstract). Ho, H. J., Iizuka, A., 2023. Mineral Carbonation Using Seawater for CO2 Sequestration and Utilization: A Review. Separation and Purification Technology, 307: 122855. doi: 10.1016/j.seppur.2022.122855 Huang, Z. G., Cai, F. X., Han, Z. Y., 1993. Quaternary Volcano in Lei Qiong. Science Press, Beijing(in Chinese). IEAGHG, 2011. Geological Storage of CO2 in Basalts. 2011/TR2. IEA Greenhouse Gas R & D Programme, 18. IEAGHG, 2017. Review of CO2 Storage in Basalts. 2017-TR2. IEA Greenhouse Gas R & D Programme, 27. Kong, Z. H., 2004. Hydrogeological Property and Laws of Water Abundance of the Volcanic Rocks in Leizhou Peninsula. Tropical Geography, 24(2): 136-139(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5221.2004.02.009 Li, C., Li, Y., Zhu, W. H., et al., 2023. Carbon Dioxide Cured Building Materials as an Approach to Decarbonizing the Calcium Carbide Related Industry. Renewable and Sustainable Energy Reviews, 186: 113688. https://doi.org/10.1016/j.rser.2023.113688 Li, P. C., Jiang, J. L., Cheng, J. H., et al., 2023. Assessment of Carbon Dioxide Mineralization Sequestration Potential of Volcanic Rocks in Leizhou Peninsula, Guangdong Province, China. Geological Journal of China Universities, 29(1): 76-84(in Chinese with English abstract). Li, W. L., Chen, J., Jia, L. X., et al., 2022a. Research Progress of CO2 Geological Sequestration in Basalts. Geological Review, 68(2): 648-657(in Chinese with English abstract). Li, W. L., Xu, J. J., Jia, L. X., et al., 2022b. Research Progress on Key Technologies of CO2 Storage in Basalts. Hydrogeology & Engineering Geology, 49(3): 164-173(in Chinese with English abstract). Li, X. Y., Chang, C., Yu, Q. C., 2013. Model of Basalt Dissolution Rate under CO2 Mineral Sequestration Conditions. Geoscience, 27(6): 1477-1483(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.06.028 Luo, S. W., 1998. Volcanic Activity in Southern Leizhou Peninsula and Its Tectonic Setting. Guangdong Geology, (3): 20-24(in Chinese). Marieni, C., Voigt, M., Clark, D. E., et al., 2021. Mineralization Potential of Water⁃Dissolved CO2 and H2S Injected into Basalts as Function of Temperature: Freshwater Versus Seawater. International Journal of Greenhouse Gas Control, 109: 103357. https://doi.org/10.1016/j.ijggc.2021.103357 Matter, J. M., Kelemen, P. B., 2009. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2: 837-841. https://doi.org/10.1038/ngeo683 Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., et al., 2016. Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions. Science, 352(6291): 1312-1314. https://doi.org/10.1126/science.aad8132 McGrail, B. P., Schaef, H. T., Ho, A. M., et al., 2006. Potential for Carbon Dioxide Sequestration in Flood Basalts. Journal of Geophysical Research: Solid Earth, 111(B12): 1-15. McGrail, B. P., Spane, F. A., Amonette, J. E., et al., 2014. Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia, 63: 2939-2948. https://doi.org/10.1016/j.egypro.2014.11.316 Oelkers, E. H., Gislason, S. R., Matter, J., 2008. Mineral Carbonation of CO2. Elements, 4(5): 333-337. doi: 10.2113/gselements.4.5.333 Olsson, J., Stipp, S. L. S., Makovicky, E., et al., 2014. Metal Scavenging by Calcium Carbonate at the Eyjafjallajökull Volcano: a Carbon Capture and Storage Analogue. Chemical Geology, 384: 135-148. https://doi.org/10.1016/j.chemgeo.2014.06.025 Pan, S. Y., Chung, T. C., Ho, C. C., et al., 2017. CO2 Mineralization and Utilization Using Steel Slag for Establishing a Waste⁃to⁃Resource Supply Chain. Scientific Reports, 7(1): 17227. https://doi.org/10.1038/s41598⁃017⁃17648⁃9 Power, I. M., Dipple, G. M., Bradshaw, P. M. D., et al., 2020. Prospects for CO2 Mineralization and Enhanced Weathering of Ultramafic Mine Tailings from the Baptiste Nickel Deposit in British Columbia, Canada. International Journal of Greenhouse Gas Control, 94: 102895. https://doi.org/10.1016/j.ijggc.2019.102895 Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., et al., 2020. Carbon Dioxide Storage through Mineral Carbonation. Nature Reviews Earth & Environment, 1: 90-102. https://doi.org/10.1038/s43017⁃019⁃0011⁃8 Snæbjörnsdóttir, S. Ó., Wiese, F., Fridriksson, T., et al., 2014. CO2 Storage Potential of Basaltic Rocks in Iceland and the Oceanic Ridges. Energy Procedia, 63: 4585-4600. https://doi.org/10.1016/j.egypro.2014.11.491 Sui, S. Z., Wang, W. Y., 2003. The Discussion of the Bottom Age of TY2 Core from Paleo⁃Maar⁃Lake Tianyang, Guangdong Province. Quaternary Sciences, 23(2): 232(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2003.02.015 Sun, J. S., 1991. Cenozoic Volcanic Activity in the Northern South China Sea and Guangdong Coastal Area. Marine Geology & Quaternary Geology, 11(3): 45-67, 125-130(in Chinese with English abstract). Wang, M., Lu, H. Y., 2019. Age, Geochemical Composition and Their Paleoclimatic Implications of the Basalt in Leizhou Peninsula, Southern China. Quaternary Sciences, 39(5): 1071-1082(in Chinese with English abstract). Wen, H. H., 2013. Study on groundwater circulation law and rational development and utilization in Leizhou Peninsula(Dissertation). China University of Geosciences, Wuhan, 167(in Chinese with English abstract). White, S. K., Spane, F. A., Todd Schaef, H., et al., 2020. Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. Environmental Science & Technology, 54(22): 14609-14616. https://doi.org/10.1021/acs.est. 0c05142 doi: 10.1021/acs.est.0c05142 Wiese, F., Fridriksson, T., Ármannsson, H., 2008. CO2 Fixation by Calcite in High⁃Temperature Geothermal Systems in Iceland, Iceland Geosurvey. Wolff⁃Boenisch, D., 2011. On the Buffer Capacity of CO2 ⁃Charged Seawater Used for Carbonation and Subsequent Mineral Sequestration. Energy Procedia, 4(C): 3738-3745 Wu, E. N., Chen, Q., Wang, S. W., et al., 2017. Study on CO2 Storage Potential of Basalt Reservoir in Jiyang Depression. West⁃China Exploration Engineering, 29(12): 98-100(in Chinese with English abstract). Wu, E. N., Wu, C. Z., Ji, J. F., et al., 2012. Potential Capacity and Feasibility of CO2 Sequestration in Petroleum Reservoirs of Basaltic Rocks: Example from Basaltic Hydrocarbon Reservoir in the Xujiaweizi Fault Depression the Songliao Basin, East China. Geological Journal of China Universities, 18(2): 239-247(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.02.006 Yao, J. M., Zhou, X., Li, J., et al., 2007. Hydrogeochemical Characteristics and Evolution Simulation of Groundwater in Basalts on the Leizhou Peninsula, Guangdong, China. Geological Bulletin of China, 26(3): 327-334(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.03.010 Zhang, G. M., 1993. Characteristics and Enrichment Law of Volcanic Groundwater in Leizhou Peninsula. Guangdong Geology, (2): 1-13(in Chinese). Zhang, L., Wen, R., Li, F., et al., 2023. Assessment of CO2 Mineral Storage Potential in the Terrestrial Basalts of China. Fuel, 348: 128602. doi: 10.1016/j.fuel.2023.128602 Zhang, L., Wen, R. H., Geng, S. H., et al., 2022. Mineral Trapping of CO2 in Basalt Rock: Progress and Key Issues. Journal of Chemical Engineering of Chinese Universities, 36(4): 473-480(in Chinese with English abstract). doi: 10.3969/j.issn.1003-9015.2022.04.002 Zhang, S. H., 2016. Conjunctive Use of Surface Water and Groundwater on Leizhou Peninsula. Guangxi Water Resources & Hydropower Engineering, (1): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1510.2016.01.001 Zhang, Z., Zhang, H. F., 2012. Carbonation of Mafic⁃Ultramafic Rocks: a New Approach to Carbon Dioxide Geological Sequestration. Earth Science, 37(1): 156-162(in Chinese with English abstract). Zhou, D., Xia, C. Y., Li, PC., et al., 2024. CO2 Mineral Storage in Basalt (Ⅰ): Technology and Application Conditions. Chinese Journal of Environmental Engineering, 18(10): 2708-2718(in Chinese with English abstract). Zhou, Y. Q., 1990. Geological Characteristics and Development Prospect of Diatomite Deposit in Leizhou Peninsula. Guangdong Geology, (2): 22-27(in Chinese). 陈俊仁, 黄成彦, 林茂福, 等, 1990. 广东田洋火山湖第四纪地质. 北京: 地质出版社, 197. 陈墨香, 夏斯高, 杨淑贞, 1991. 雷州半岛局部地热异常及其形成机制. 地质科学, 26(4): 369-383. 高志豪, 夏菖佑, 廖松林, 等, 2023. 玄武岩CO2矿化封存潜力评估方法研究现状及展望. 高校地质学报, 29(1): 66-75. 广东省地质矿产局, 1996. 广东省岩石地层. 武汉: 中国地质大学出版社, 171. 韩江伟, 熊小林, 朱照宇, 2009. 雷琼地区晚新生代玄武岩地球化学: EM2成分来源及大陆岩石圈地幔的贡献. 岩石学报, 25(12): 3208-3220. 黄镇国, 蔡福详, 韩中元, 等, 1993. 雷琼第四纪火山. 北京: 科学出版社, 281. 孔中恒, 2004. 雷州半岛火山岩的水文地质特征与富水规律. 热带地理, 24(2): 136-139. 李鹏春, 江静练, 程锦辉, 等, 2023. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估. 高校地质学报, 29(1): 76-84. 李万伦, 陈晶, 贾凌霄, 等, 2022a. 玄武岩CO2地质封存研究进展. 地质论评, 68(2): 648-657. 李万伦, 徐佳佳, 贾凌霄, 等, 2022b. 玄武岩封存CO2技术方法及其进展. 水文地质工程地质, 49(3): 164-173. 李晓媛, 常春, 于青春, 2013. CO2矿化封存条件下玄武岩溶解反应速率模型. 现代地质, 27(6): 1477-1483. 罗树文, 1998. 雷州半岛南部火山活动及其构造背景. 广东地质, 13(3): 20-24. 隋淑珍, 王文远, 2003. 广东田洋古玛珥湖TY2孔基底岩芯的年龄探讨. 第四纪研究, 23(2): 232. 孙嘉诗, 1991. 南海北部及广东沿海新生代火山活动. 海洋地质与第四纪地质, 11(3): 45-67, 125-130. 汪苗, 鹿化煜, 2019. 雷州半岛玛珥湖区玄武岩的年代、地球化学特征及其意义. 第四纪研究, 39(5): 1071-1082. 温汉辉, 2013. 雷州半岛地下水循环规律及合理开发利用研究(博士毕业论文). 武汉: 中国地质大学. 吾尔娜, 陈琦, 王世伟, 等, 2017. 济阳坳陷玄武岩油气藏储层的CO_2封存潜力研究. 西部探矿工程, 29(12): 98-100. 吾尔娜, 吴昌志, 季峻峰, 等, 2012. 松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究. 高校地质学报, 18(2): 239-247. 姚锦梅, 周训, 李娟, 等, 2007. 广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟. 地质通报, 26(3): 327-334. 张国梅, 1993. 雷州半岛火山岩地下水特征及其富集规律. 广东地质, (2): 1-13. 张亮, 温荣华, 耿松鹤, 等, 2022. CO2在玄武岩中矿物封存研究进展及关键问题. 高校化学工程学报, 36(4): 473-480. 张胜华, 2016. 雷州半岛地表水与地下水联合利用浅析. 广西水利水电(1): 1-5. 张一驰, 2023. 腾讯启动碳寻计划, 投入过亿聚焦CCUS生态共建. 张舟, 张宏福, 2012. 基性、超基性岩: 二氧化碳地质封存的新途径. 地球科学, 37(1): 156-162. doi: 10.3799/dqkx.2012.015 周蒂, 夏菖佑, 李鹏春, 等, 2024. 玄武岩二氧化碳矿化封存(Ⅰ): 技术特点及适用条件. 环境工程学报, 18(10): 2708-2718 周永清, 1990. 雷州半岛硅藻土矿床地质特征和开发前景. 广东地质, 5(2): 22-27. -