• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北克拉通鞍山‒本溪地区太古宙地壳形成演化:综述

    万渝生 董春艳 颉颃强 刘守偈 马铭株 李鹏川 李源 王宇晴 王堃力 刘敦一

    万渝生, 董春艳, 颉颃强, 刘守偈, 马铭株, 李鹏川, 李源, 王宇晴, 王堃力, 刘敦一, 2024. 华北克拉通鞍山‒本溪地区太古宙地壳形成演化:综述. 地球科学, 49(11): 3855-3878. doi: 10.3799/dqkx.2024.104
    引用本文: 万渝生, 董春艳, 颉颃强, 刘守偈, 马铭株, 李鹏川, 李源, 王宇晴, 王堃力, 刘敦一, 2024. 华北克拉通鞍山‒本溪地区太古宙地壳形成演化:综述. 地球科学, 49(11): 3855-3878. doi: 10.3799/dqkx.2024.104
    Wan Yusheng, Dong Chunyan, Xie Hangqiang, Liu Shoujie, Ma Mingzhu, Li Pengchuan, Li Yuan, Wang Yuqing, Wang Kunli, Liu Dunyi, 2024. Formation and Evolution of Archean Continental Crust in the Anshan⁃Benxi Area, North China Craton: A Review. Earth Science, 49(11): 3855-3878. doi: 10.3799/dqkx.2024.104
    Citation: Wan Yusheng, Dong Chunyan, Xie Hangqiang, Liu Shoujie, Ma Mingzhu, Li Pengchuan, Li Yuan, Wang Yuqing, Wang Kunli, Liu Dunyi, 2024. Formation and Evolution of Archean Continental Crust in the Anshan⁃Benxi Area, North China Craton: A Review. Earth Science, 49(11): 3855-3878. doi: 10.3799/dqkx.2024.104

    华北克拉通鞍山‒本溪地区太古宙地壳形成演化:综述

    doi: 10.3799/dqkx.2024.104
    基金项目: 

    国家自然科学重点基金项目 42130311

    国家自然科学联合基金项目 U2344210

    国家自然科学基金项目 41872200

    中国地质调查局地质调查项目 DD20221645

    详细信息
      作者简介:

      万渝生(1958-),男,博士,研究员,博士生导师,主要从事早前寒武纪地质和锆石年代学研究. ORCID:0000⁃0002⁃7896⁃9001. E⁃mail:wanyusheng@bjshrimp.cn

    • 中图分类号: P59

    Formation and Evolution of Archean Continental Crust in the Anshan⁃Benxi Area, North China Craton: A Review

    • 摘要: 鞍山‒本溪(鞍本)位于华北克拉通东北部,以发育条带状铁建造和存在3.8 Ga岩石而闻名.鞍本地区的重要性不仅是3.8 Ga岩石发现,还在于具有长期的太古宙地壳形成演化历史. 3.8 Ga岩石存在于鞍山地区古老杂岩中.迄今已发现6个杂岩.杂岩主要由奥长花岗质岩石组成,存在变质辉长‒闪长岩.它们具有类似的岩石组合和3.1~3.8 Ga锆石年龄记录,是同一巨型杂岩的不同残余部分.除古老杂岩外,鞍本地区重要的地质体还包括古太古代陈台沟表壳岩和新太古代晚期鞍山群、3.1~3.3 Ga陈台沟花岗岩、3.1 Ga立山奥长花岗岩、3.0 Ga东鞍山花岗岩、2.95~3.0 Ga铁架山‒弓长岭花岗岩和2.5 Ga齐大山花岗岩,后两者大规模分布.识别出2.5 Ga、3.1 Ga和3.3 Ga三期构造热事件.随时代更新,花岗质岩浆作用从奥长花岗岩向富钾花岗岩演化.岩石稀土总量和轻重稀土分异程度在3.3 Ga突然增大.奥长花岗质岩石主要来自低钾铁镁质岩石物源区,部分来自早期TTG岩石,富钾花岗岩来自TTG和沉积岩物源区.根据全岩Nd和锆石Hf同位素组成,地幔添加和壳内再循环在地质历史不同阶段都起了重要作用,随时代演化壳内再循环作用越来越重要,但新太古代晚期也是地幔添加的重要时期.研究表明,(1)3.3 Ga是鞍本地区陆壳形成演化的一个重要阶段,陆壳厚度和规模明显增大.(2)存在3.3 Ga到2.95 Ga长期壳源花岗质岩浆作用,并随时代而增强,岩石富钾程度增大.(3)鞍山群表壳岩直接沉积于 > 2.95 Ga古老陆壳基底之上,在古老基底形成和鞍山群沉积之间有长达~400 Ma的“寂静期”(2.55~2.95 Ga).(4)可把鞍本地区太古宙地壳形成演化划分为古老陆核形成(> 3.3 Ga)、古老陆块形成(2.95~3.3 Ga)、“寂静期”(2.55~2.95 Ga)和稳定化(2.5~2.55 Ga)等4个阶段.

       

    • 图  1  鞍本(鞍山‒本溪)地区地质图(Wan et al., 2015a, 2023a

      红色、黄色和绿色三角形分别代表岩浆锆石、外来锆石和碎屑锆石

      Fig.  1.  Geological map of the Anben (Anshan-Benxi) area (Wan et al., 2015a, 2023a)

      图  2  鞍山地区地质图(Wan et al., 2023a

      BC.白家坟杂岩;DC.东山杂岩;SC.深沟寺杂岩;GC.锅底山杂岩;LC.辽美塔杂岩;HC.胡家庙杂岩

      Fig.  2.  Geological map of the Anshan area (Wan et al., 2023a)

      图  3  鞍山地区古老杂岩中花岗质岩石的地球化学图解

      a.An-Ab-Or图(据O’ Neill et al.(2020)和Barker(1979));b.A/CNK-A/NK图(据Maniar and Piccoli,1989);c,e.稀土模式;d,f.微量元素分布模式

      Fig.  3.  Geochemical diagrams of granitoids in the ancient complexes in the Anshan area

      图  4  鞍山地区陈台沟花岗岩的地球化学图解

      a.An-Ab-Or图(据O’ Neill et al.(2020)和Barker(1979));b.A/CNK-A/NK图(据Maniar and Piccoli,1989);c.稀土模式;d.微量元素分布模式

      Fig.  4.  Geochemical diagrams of Chentaigou granite in the Anshan area

      图  5  鞍山地区立山奥长花岗岩的地球化学图解

      a.An-Ab-Or图(据O’ Neill et al.(2020)和Barker(1979));b.A/CNK-A/NK图(据Maniar and Piccoli,1989);c.稀土模式;d.微量元素分布模式

      Fig.  5.  Geochemical diagrams of Lishan trondhjemite in the Anshan area

      图  6  鞍山地区东鞍山花岗岩的地球化学图解

      a.An-Ab-Or图(据O’ Neill et al.(2020)和Barker(1979));b.A/CNK-A/NK图(据Maniar and Piccoli,1989);c.稀土模式图;d.微量元素分布模式

      Fig.  6.  Geochemical diagrams of Dong'anshan granite in the Anshan area

      图  7  鞍本地区铁架山花岗岩的地球化学图解(Dong et al., 2017

      a.An-Ab-Or图(据O’ Neill et al.(2020)和Barker(1979));b.A/CNK-A/NK图(据Maniar and Piccoli,1989);c,e稀土模式;d,f.微量元素分布模式

      Fig.  7.  Geochemical diagrams of Tiejiashan granite in the Anshan area (Dong et al., 2017)

      图  8  鞍本地区齐大山花岗岩的地球化学图解(Wan et al., 2015a

      a.An-Ab-Or图(据O’Neill et al.(2020)和Barker(1979));b.A/CNK-A/NK图(据Maniar and Piccoli,1989);c,d.类型Ⅰ正长花岗岩的稀土模式和微量元素分布模式;e,f.类型Ⅱ正长花岗岩和其他类型花岗质岩石的稀土模式和微量元素分布模式

      Fig.  8.  Geochemical diagrams of Qidashan granite in the Anshan area (Wan et al., 2015a)

      图  9  鞍本地区太古宙岩石的岩浆锆石年龄直方图

      Fig.  9.  Age histogram for magmatic zircons from Archean rocks in the Anben area

      图  10  鞍本地区太古宙岩石的全岩εNd(t)-年龄图

      Fig.  10.  εNd(t) vs. age diagram for Archean rocks in the Anben area

      图  11  鞍本地区太古宙岩石的Nd模式年龄直方图

      a.一阶段模式年龄;b.两阶段模式年龄

      Fig.  11.  Nd model age histograms for Archean rocks in the Anben area

      图  12  鞍本地区太古宙岩石岩浆锆石的εHf(t)-年龄图

      点线和虚线分别代表176 Lu/ 177 Hf为0.01和0.015的长英质地壳

      Fig.  12.  εHf(t) vs. age diagram for magmatic zircon from Archean rocks in the Anben area

      图  13  鞍本地区太古宙岩浆锆石的Hf模式年龄直方图

      a.一阶段模型年龄;b.两阶段模型年龄

      Fig.  13.  Hf model age histograms for magmatic zircons of Archean rocks in the Anben area

      图  14  鞍本地区太古宙花岗质岩石的Nd、Hf同位素模式年龄‒年龄图

      a.全岩Nd同位素一阶段模式年龄‒年龄图;b.全岩Nd同位素二阶段模式年龄‒年龄图;c.岩浆锆石Hf同位素一阶段模式年龄‒年龄图;d.岩浆锆石H同位素二阶段模式年龄‒年龄图

      Fig.  14.  Nd, Hf model ages vs. formation age diagrams for Archean granitoids in the Anben area

      图  15  鞍本地区太古宙岩石岩浆锆石的O同位素

      Fig.  15.  δ18O vs. age diagram of magmatic zircons from Archean rocks in the Anben area

      图  16  鞍山地区古老杂岩的太古宙岩浆记录对比

      数据来源: Liu et al. (1992, 2008), Song et al. (1996), Wan et al. (2005, 2012, 2013, 2023b), Wu et al. (2008), Wang et al. (2015b)

      Fig.  16.  Comparison of the Archean magmatic records of the ancient complexes in the Anshan area

      图  17  鞍本地区太古宙花岗质岩石的La/Yb-Yb(a)和Sr/Y-Y(b)图

      Fig.  17.  La/Yb vs. Yb (a) and Sr/Y vs. Y (b) diagrams for Archean granitoids in the Anben area

      图  18  鞍本地区太古宙花岗质岩石的Al2O3/(FeOt+MgO)-3CaO-5(K2O/Na2O)图(Laurent et al., 2014

      Fig.  18.  Al2O3/(FeOt+MgO)-3CaO-5(K2O/Na2O) diagram of Archean granitoids in the Anben area (Laurent et al., 2014)

      图  19  鞍本地区太古宙花岗质岩石的Nb-Y(a)和Ta-Yb图(b. Moyen, 2011

      Syn.COLG.同碰撞花岗岩;VAG.火山弧花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩.虚线代表来自异常洋脊的ORG上部边界

      Fig.  19.  Nb vs. Y (a) and Ta vs. Yb diagrams (b. Moyen, 2011) for Archean granitoids in the Anben area

      图  20  鞍本地区太古宙岩石的Eu*/Eu-Ba*/Ba图解

      Fig.  20.  Eu*/Eu vs. Ba*/Ba diagram for Archean granitoids in the Anben area

      图  21  鞍本地区太古宙陆壳的形成和演化

      Fig.  21.  Formation and evolution of Archean continental crust in the Anben area

      表  1  鞍本地区太古宙花岗质岩石的锆石饱和温度

      Table  1.   Zircon saturation temperature of Archean granitoids in the Anben area

      地质体 平均值(℃) 最小值(℃) 最大值(℃) 样品数
      杂岩中 > 3.4 Ga奥长花岗质岩石 764 672 855 21
      杂岩中3.3 Ga奥长花岗质岩石 759 687 880 13
      杂岩中3.1 Ga奥长花岗质岩石 805 750 838 14
      杂岩中3.3 Ga富钾花岗岩 (900) 1
      杂岩中3.1 Ga(?)富钾花岗岩 807 781 827 7
      3.1~3.3 Ga陈台沟斑状花岗岩 784 750 816 13
      3.1~3.3 Ga陈台沟中细粒花岗岩 778 732 830 19
      3.1 Ga立山奥长花岗岩 804 783 828 11
      3.0 Ga东鞍山花岗岩 794 773 809 9
      2.95~3.0 Ga铁架山‒弓长岭花岗岩 814 714 898 27
      2.5 Ga齐大山花岗岩 784 674 881 23
      下载: 导出CSV
    • Bao, H., Liu, S. W., Wan, Y. S., et al., 2022. Neoarchean Granitoids and Tectonic Regime of Lateral Growth in Northeastern North China Craton. Gondwana Research, 107: 176-200. https://doi.org/10.1016/j.gr.2022.02.015
      Barker, F., 1979. Trondhjemite: Definition, Environment and Hypotheses of Origin. Developments in Petrology. Elsevier, Amsterdam, 1-12. 10.1016/b978-0-444-41765-7.50006-x
      Cawood, P. A., Chowdhury, P., Mulder, J. A., et al., 2022. Secular Evolution of Continents and the Earth System. Reviews of Geophysics, 60(4): e2022rg000789. https://doi.org/10.1029/2022rg000789
      Cheng, Y. Q., 1957. Problems on the Genesis of the High⁃Grade Ore in the Pre⁃Sinian (Pre⁃Cambrian) Banded Iron Ore Deposits of the Anshan⁃Type of Liaoning and Shantung Provinces. Acta Geological Sinica, 31(2): 153-180 (in Chinese with English abstract).
      Dai, Y. P., Zhang, L. C., Wang, C. L., et al., 2012. Genetic Type, Formation Age and Tectonic Setting of the Waitoushan Banded Iron Formation, Benxi, Liaoning Province. Acta Petrologica Sinica, 28(11): 3574-3594 (in Chinese with English abstract).
      Dai, Y. P., Zhang, L. C., Zhu, M. T., et al., 2013. Chentaigou BIF⁃Type Iron Deposit, Anshan Area Associated with Archean Crustal Growth: Constraints from Zircon U⁃Pb Dating and Hf Isotope. Acta Petrologica Sinica, 29(7): 2537-2550 (in Chinese with English abstract).
      Dai, Y. P., Zhang, L. C., Zhu, M. T., et al., 2014. The Composition and Genesis of the Mesoarchean Dagushan Banded Iron Formation (BIF) in the Anshan Area of the North China Craton. Ore Geology Reviews, 63: 353-373. https://doi.org/10.1016/j.oregeorev.2014.04.013
      Dong, C. Y., Wan, Y. S., Xie, H. Q., et al., 2017. The Mesoarchean Tiejiashan⁃Gongchangling Potassic Granite in the Anshan⁃Benxi Area, North China Craton: Origin by Recycling of Paleo⁃ to Eoarchean Crust from U⁃Pb⁃Nd⁃Hf⁃O Isotopic Studies. Lithos, 290: 116-135. https://doi.org/10.1016/j.lithos.2017.08.009
      Dong, C. Y., Wan, Y. S., Zhang, Y. H., et al., 2013. 3.3-3.1 Ga Magmatism Recorded in an Outcrop of the Dongshan Complex in the Anshan Area, North China Craton: Evidence from Geochemistry and SHRIMP Zircon Dating. Acta Petrologica Sinica, 29(2): 414-420 (in Chinese with English abstract).
      Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006
      Guo, R. R., Liu, S. W., Gong, E. P., et al., 2017. Arc⁃Generated Metavolcanic Rocks in the Anshan⁃Benxi Greenstone Belt, North China Craton: Constraints from Geochemistry and Zircon U⁃Pb⁃Hf Isotopic Systematics. Precambrian Research, 303: 228-250. https://doi.org/10.1016/j.precamres.2017.03.028
      Han, C. M., Xiao, W. J., Su, B. X., et al., 2014. Formation Age and Genesis of the Gongchangling Neoarchean Banded Iron Deposit in Eastern Liaoning Province: Constraints from Geochemistry and SHRIMP Zircon U⁃Pb Dating. Precambrian Research, 254: 306-322. https://doi.org/10.1016/j.precamres.2014.09.007
      Hoffmann, J. E., Zhang, C., Moyen, J. F., et al., 2019. The Formation of Tonalites⁃Trondjhemite⁃Granodiorites in Early Continental Crust. Earth's Oldest Rocks. Elsevier, Amsterdam, 133-168. 10.1016/b978-0-444-63901-1.00007-1
      Johnson, T. E., Gardiner, N. J., Miljković, K., et al., 2018. An Impact Melt Origin for Earth's Oldest Known Evolved Rocks. Nature Geoscience, 11: 795-799. https://doi.org/10.1038/s41561⁃018⁃0206⁃5
      Johnson, T. E., Kirkland, C. L., Lu, Y. J., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586⁃022⁃04956⁃y
      Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., et al., 2010. Hadean Crustal Evolution Revisited: New Constraints from Pb⁃Hf Isotope Systematics of the Jack Hills Zircons. Earth and Planetary Science Letters, 296(1-2): 45-56. https://doi.org/10.1016/j.epsl.2010.04.043
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late⁃Archean Granitoids: Evidence for the Onset of "Modern⁃Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Lei, K., Wang, Y. F., Zhang, Q., et al., 2023. Decoding the Onset of ca. 3.8 Ga Continental Nuclei in Anshan, North China: A Review Integrated with 1: 10 000 Geological Mapping, Zircon U⁃Pb Dating, and Si⁃O⁃Nd⁃Hf⁃W Isotopes. Earth⁃Science Reviews, 247: 104606. https://doi.org/10.1016/j.earscirev.2023.104606
      Li, B., Jin, W., Zhang, J. H., et al., 2013. Composition and Structural Characteristics of Archean Granite in Chentaigou Area of Anshan. Global Geology, 32(2): 191-199 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2013.02.001
      Li, C. F., Wang, X. C., Wilde, S. A., et al., 2017. Differentiation of the Early Silicate Earth as Recorded by 142Nd⁃143Nd in 3.8‒3.0 Ga Rocks from the Anshan Complex, North China Craton. Precambrian Research, 301: 86-101. https://doi.org/10.1016/j.precamres.2017.09.001
      Liu, D., Wilde, S. A., Wan, Y., et al., 2008. New U⁃Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton. American Journal of Science, 308(3): 200-231. https://doi.org/10.2475/03.2008.02
      Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino⁃Korean Craton. Geology, 20(4): 339. https://doi.org/10.1130/0091⁃7613(1992)0200339: romcit>2.3.co;2 doi: 10.1130/0091⁃7613(1992)0200339:romcit>2.3.co;2
      Liu, S. W., Wang, M. J., Wan, Y. S., et al., 2017. A Reworked ~3.45 Ga Continental Microblock of the North China Craton: Constraints from Zircon U⁃Pb⁃Lu⁃Hf Isotopic Systematics of the Archean Beitai⁃Waitoushan Migmatite⁃Syenogranite Complex. Precambrian Research, 303: 332-354. https://doi.org/10.1016/j.precamres.2017.04.003
      Long, Y. J., Yang, W., Lin, Y. T., et al., 2019. Sub⁃ Micron Trace Elemental Distributions and U⁃Pb Dating of Zircon from the Oldest Rock in the Anshan Area, North China Craton. Precambrian Research, 322: 1-17. https://doi.org/10.1016/j.precamres.2018.12.023
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016⁃7606(1989)1010635:tdog>2.3.co;2
      Martin, H., Chauvel, C., Jahn, B. M., 1983. Major and Trace Element Geochemistry and Crustal Evolution of Archaean Granodioritic Rocks from Eastern Finland. Precambrian Research, 21(3/4): 159-180. https://doi.org/10.1016/0301⁃9268(83)90039⁃6
      Mei, Q. F., Yang, J. H., Wang, Y. F., et al., 2020. Tungsten Isotopic Constraints on Homogenization of the Archean Silicate Earth: Implications for the Transition of Tectonic Regimes. Geochimica et Cosmochimica Acta, 278: 51-64. https://doi.org/10.1016/j.gca.2019.07.050
      Mojzsis, S. J., Cates, N. L., Caro, G., et al., 2014. Component Geochronology in the Polyphase Ca. 3 920 Ma Acasta Gneiss. Geochimica et Cosmochimica Acta, 133: 68-96. https://doi.org/10.1016/j.gca.2014.02.019
      Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non⁃Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015
      Næraa, T., Scherstén, A., Rosing, M. T., et al., 2012. Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr ago. Nature, 485(7400): 627-630. https://doi.org/10.1038/nature11140
      Nutman, A. P., Bennett, V. C., 2019. The 3.9‒3.6 Ga Itsaq Gneiss Complex of Greenland. Earth's Oldest Rocks. Elsevier, Amsterdam, 375-399. 10.1016/b978-0-444-63901-1.00017-4C
      Nutman, A. P., Friend, C. R. L., Barker, S. L. L., et al., 2004. Inventory and Assessment of Palaeoarchaean Gneiss Terrains and Detrital Zircons in Southern West Greenland. Precambrian Research, 135(4): 281-314. https://doi.org/10.1016/j.precamres.2004.09.002
      O'Neill, C., Marchi, S., Bottke, W., et al., 2020. The Role of Impacts on Archaean Tectonics. Geology, 48(2): 174-178. https://doi.org/10.1130/g46533.1
      Pearce, J. A., 1983. Role of the Subcontinental Lithosphere in Magmagenesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle, Xenoliths. Shiva Publishing Ltd., Nantwich, 230-249.
      Qiao, G. S., Zhai, M. G., Yan, Y. H., 1990. Geochronological Study of Archaean Rocks in Anshan, Liaoning Province. Chinese Journal of Geology, 25(2): 158-165 (in Chinese with English abstract).
      Reimink, J. R., Chacko, T., Stern, R. A., et al., 2014. Earth's Earliest Evolved Crust Generated in an Iceland⁃Like Setting. Nature Geoscience, 7: 529-533. https://doi.org/10.1038/ngeo2170
      Reimink, J. R., Davies, J. H. F. L., Chacko, T., et al., 2016. No Evidence for Hadean Continental Crust within Earth's Oldest Evolved Rock Unit. Nature Geoscience, 9: 777-780. https://doi.org/10.1038/ngeo2786
      Rozel, A. B., Golabek, G. J., Jain, C., et al., 2017. Continental Crust Formation on Early Earth Controlled by Intrusive Magmatism. Nature, 545(7654): 332-335. https://doi.org/10.1038/nature22042
      Song, B., Nutman, A. P., Liu, D. Y., et al., 1996. 3 800 to 2 500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Research, 78(1-3): 79-94. https://doi.org/10.1016/0301⁃9268(95)00070⁃4
      Song, B., Wu, J. S., Wan, Y. S., et al., 1994. A Preliminary Study on the Age Attribution of Chentaigou Supracrustal Rocks in Anshan Area. Acta Geoscientica Sinica, 15(S1): 14-16 (in Chinese with English abstract).
      Song, B., Zhao, D. M., Wan, Y. S., 1992. Geochronology Research of the Iron Formation of Gongchangling, Liaoning Province. Acta Petrologica et Mineralogica, 11(4): 317-323 (in Chinese with English abstract).
      Sun, M., Armstrong, R. L., Lambert, R. S. J., et al., 1993. Petrochemistry and Sr, Pb and Nd Isotopic Geochemistry of the Paleoproterozoic Kuandian Complex, the Eastern Liaoning Province, China. Precambrian Research, 62: 171-190. https://doi.org/10.1016/0301⁃9268(93)90099⁃N
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005.4. 4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410⁃005⁃0025⁃8
      van Kranendonk, M. J., Smithies, R. H., Bennett, V., 2007. Earth's Oldest Rocks. 1st ed. Elsevier, Amsterdam.
      van Kranendonk, M. J., Smithies, R. H., Bennett, V., 2019. Earth's Oldest Rocks. 2nd ed. Elsevier, Amsterdam.
      Wan, Y., Ma, M., Dong, C., et al., 2015a. Widespread Late Neoarchean Reworking of Meso⁃ to Paleoarchean Continental Crust in the Anshan⁃Benxi Area, North China Craton, as Documented by U⁃Pb⁃Nd⁃Hf⁃O Isotopes. American Journal of Science, 315(7): 620-670. https://doi.org/10.2475/07.2015.02
      Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2015b. Formation and Evolution of Archean Continental Crust of the North China Craton. Springer Geology, Berlin, 59-136. https://doi.org/10.1007/978⁃3⁃662⁃47885⁃1_2
      Wan, Y. S., 1993. The Formation and Evolution of Iron Bearing Rock Series in Gongchangling, Liaoning. Beijing Science and Technology Press, Beijing (in Chinese with English).
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2012. Formation Ages of Early Precambrian BIFs in the North China Craton: SHRIMP Zircon U⁃Pb Dating. Acta Geologica Sinica, 86(9): 1447-1478 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.09.008
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2018. Formation Age of BIF⁃Bearing Anshan Group Supracrustal Rocks in Anshan⁃Benxi Area: New Evidence from SHRIMP U⁃Pb Zircon Dating. Earth Science, 43(1): 57-74 (in Chinese with English abstract).
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2023a. Hadean to Early Mesoarchean Rocks and Zircons in the North China Craton: A Review. Earth⁃Science Reviews, 243: 104489. https://doi.org/10.1016/j.earscirev.2023.104489
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2023b. SHRIMP U⁃Pb Zircon Dating and Geochemistry of the 3.8‒3.1 Ga Hujiamiao Complex in Anshan (North China Craton) and the Significance of the Trondhjemites for Early Crustal Genesis. Precambrian Research, 388: 106975. https://doi.org/10.1016/j.precamres.2023.106975
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2024. Late Neoarchean Magmatism in the North China Craton: A Review. Earth Science Frontiers, 31(1): 1-18 (in Chinese with English abstract).
      Wan, Y. S., Geng, Y. S., Shen, Q. H., et al., 2002a. Geochemical Characteristics of Supracrustal Enclaves in Mesoarchean Tiejiashan Granite in Anshan Area and Its Geological Significance. Scientia Geologica Sinica, 37(2): 143-151 (in Chinese with English abstract).
      Wan, Y. S., Song, B., Liu, D. Y., 2002b. Discovery of Archean Felsic Rocks with Abnormal Rare Earth Composition in Anshan and Its Significance. Geological Review, 48(S1): 45-52 (in Chinese with English abstract).
      Wan, Y. S., Liu, D. Y., 1993. Ages of Zircons from Mid⁃Archaean Gneissic Granite and Fuchsite Quartzite in the Gongchangling Area, Liaoning. Geological Review, 39(2): 124-129 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1993.02.005
      Wan, Y. S., Liu, D. Y., Nutman, A., et al., 2012. Multiple 3.8‒3.1 Ga Tectono⁃Magmatic Events in a Newly Discovered Area of Ancient Rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences, 54: 18-30. https://doi.org/10.1016/j.jseaes.2012.03.007
      Wan, Y. S., Liu, D. Y., Song, B., et al., 2005. Geochemical and Nd Isotopic Compositions of 3.8 Ga Meta⁃Quartz Dioritic and Trondhjemitic Rocks from the Anshan Area and Their Geological Significance. Journal of Asian Earth Sciences, 24(5): 563-575. https://doi.org/10.1016/j.jseaes.2004.02.009
      Wan, Y. S., Liu, D. Y., Wu, J. S., et al., 1998. The Origin of Mesoarchaean Granitic Rocks from Anshan⁃Benxi Area: Constraints of Geochemistry and Nd Isotope. Acta Petrologica Sinica, 14(3): 278-288 (in Chinese with English abstract).
      Wan, Y. S., Liu, D. Y., Yin, X. Y., et al., 2007. SHRIMP Geochronology and Hf Isotope Composition of Zircons from the Tiejiashan Granite and Supracrustal Rocks in the Anshan Area, Liaoning Province. Acta Petrologica Sinica, 23(2): 241-252 (in Chinese with English abstract).
      Wan, Y. S., Song, B., Liu, D. Y., et al., 2001. Geochronology and Geochemistry of 3.8‒2.5 Ga Ancient Rock Belt in the Dongshan Scenic Park, Anshan Area. Acta Geologica Sinica, 75(3): 363-370 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.03.009
      Wan, Y. S., Song, B., Wu, J. S., et al., 1999. Geochemical and Nd and Sr Isotopic Compositions of 3.8 Ga Trondhjemitic Rocks from the Anshan Area and Their Significance. Acta Geologica Sinica, 73(1): 25-36 (in Chinese with English abstract).
      Wan, Y. S., Wu, J. S., Liu, D. Y., et al., 1997. Geochemistry and Nd and Pb Isotopic Characteristics of 3.3 Ga Chentaigou Granite in Anshan. Acta Geoscientica Sinica, 18(4): 382-388 (in Chinese with English abstract).
      Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2019. Hadean to Paleoarchean Rocks and Zircons in China. Earth's Oldest Rocks. Elsevier, Amsterdam, 293-327. 10.1016/b978-0-444-63901-1.00014-9
      Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2023. Oldest Continental Materials: A Review. Chinese Science Bulletin, 68: 2296-2311 (in Chinese with English abstract).
      Wan, Y. S., Zhang, Y. H., Williams, I. S., et al., 2013. Extreme Zircon O Isotopic Compositions from 3.8 to 2.5 Ga Magmatic Rocks from the Anshan Area, North China Craton. Chemical Geology, 352: 108-124. https://doi.org/10.1016/j.chemgeo.2013.06.009
      Wang, C. L., Huang, H., Tong, X. X., et al., 2016. Changing Provenance of Late Neoarchean Metasedimentary Rocks in the Anshan⁃Benxi Area, North China Craton: Implications for the Tectonic Setting of the World⁃Class Dataigou Banded Iron Formation. Gondwana Research, 40: 107-123. https://doi.org/10.1016/j.gr.2016.08.010
      Wang, W., Liu, S. W., Santosh, M., et al., 2015a. Neoarchean Intra⁃Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth⁃Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002
      Wang, Y. F., Li, X. H., Jin, W., et al., 2015b. Eoarchean Ultra⁃Depleted Mantle Domains Inferred from Ca. 3.81 Ga Anshan Trondhjemitic Gneisses, North China Craton. Precambrian Research, 263: 88-107. https://doi.org/10.1016/j.precamres.2015.03.005
      Wang, W., Tian, Z. H., Liu, F. L., 2022. The Research Progress of the Paleoarchean Granite in the Gongchangling Area: Evidence from Geology and Zircon U⁃Th⁃Pb⁃Hf Isotopic Composition. Acta Petrologica et Mineralogica, 41(2): 359-370 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2022.02.010
      Wang, Y. F., Li, X. H., Jin, W., et al., 2020. Generation and Maturation of Mesoarchean Continental Crust in the Anshan Complex, North China Craton. Precambrian Research, 341: 105651. https://doi.org/10.1016/j.precamres.2020.105651
      Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U⁃Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002
      Wu, J. S., Geng, Y. S., Shen, Q. H., et al., 1998. Geological Characteristics and Tectonic Evolution of the Archean Period in the Ancient Continent of China and Korea. Geological Publishing House, Beijing (in Chinese).
      Yin, X. Y., Wan, Y. S., Liu, D. Y., et al., 2006. Formation Time of Supracrustal Rocks in Tiejiashan Granite of the Anshan Area: Evidence from Detrital Zircon SHRIMP Dating. Acta Petrologica et Mineralogica, 25(4): 282-286 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2006.04.003
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhai, M. G., Windley, B. F., Sills, J. D., 1990. Archaean Gneisses, Amphibolites and Banded Iron⁃Formations from the Anshan Area of Liaoning Province, NE China: Their Geochemistry, Metamorphism and Petrogenesis. Precambrian Research, 46(3): 195-216. https://doi.org/10.1016/0301⁃9268(90)90002⁃8
      Zhang, J. H., Jin, W., Wang, Y. F., et al., 2018. Formation and Evolution of Eo⁃Paleoarchean Granitic Crust in the Anshan Area: Evidence from Petrology, Geochronology and Geochemistry of the Shengousi Complex. Acta Geologica Sinica, 92(5): 887-907 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.05.001
      Zhang, J. H., Jin, W., Zheng, P. X., et al., 2013. Identification and Zircon U⁃Pb Geochronology of the Yingchengzi Paleoarchean Gneiss Complex, Anshan Area. Acta Petrologica Sinica, 29(2): 399-413 (in Chinese with English abstract).
      Zhang, L. C., Dai, Y. P., Wang, C. L., et al., 2014. Age, Material Sources and Formation Setting of Procambrian BIFs Iron Deposits in Anshan⁃Benxi Area. Journal of Earth Sciences and Environment, 36(4): 1-15, 17 (in Chinese with English abstract).
      Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
      Zhong, D. F., 1984. Geochronological Study of Archaean Granite⁃gneisses in Anshan Area, Northeast China. Geochimica, 13(3): 195-205 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1984.03.001
      Zhou, H. Y., Liu, D. Y., Nemchim, A., 2007a. 3.0 Ga Thermo⁃Tectonic Events Suffered by the 3.8 Ga Meta⁃ Quartz⁃Diorite in the Anshan Area: Constraints from Apatite SHRIMP U⁃Th⁃Pb Dating. Geological Review, 53(1): 120-125 (in Chinese with English abstract).
      Zhou, H. Y., Liu, D. Y., Wan, Y. S., et al., 2007b. 3.3 Ga Magmatic Events in the Anshan Area: New SHRIMP Age and Geochemical Constraints. Acta Petrologica et Mineralogica, 26(2): 123-129 (in Chinese with English abstract).
      Zhou, H. Y., Liu, D. Y., Wan, Y. S., et al., 2008. 3.3‒ 3.1 Ga Magmatism in the Dongshan Complex, Anshan Area, Liaoning, China: Evidence from Zircon SHRIMP U⁃Pb Dating. Geological Bulletin of China, 27(12): 2122-2126 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.12.020
      Zhu, M. T., Dai, Y. P., Zhang, L. C., et al., 2015. Geochronology and Geochemistry of the Nanfen Iron Deposit in the Anshan⁃Benxi Area, North China Craton: Implications for ~2.55 Ga Crustal Growth and the Genesis of High⁃Grade Iron Ores. Precambrian Research, 260: 23-38. https://doi.org/10.1016/j.precamres.2015.01.001
      程裕淇, 1957. 中国东北部辽宁东等省前寒武纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 31(2): 153-180.
      代堰锫, 张连昌, 王长乐, 等, 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景. 岩石学报, 28(11): 3574-3594.
      代堰锫, 张连昌, 朱明田, 等, 2013. 鞍山陈台沟BIF铁矿与太古代地壳增生: 锆石U⁃Pb年龄与Hf同位素约束. 岩石学报, 29(7): 2537-2550.
      董春艳, 万渝生, 张玉海, 等, 2013. 鞍山地区东山杂岩3.3~3.1 Ga岩浆作用: 地球化学和锆石定年. 岩石学报, 29(2): 414-420.
      李斌, 金巍, 张家辉, 等, 2013. 鞍山陈台沟地区太古宙花岗岩组成与构造特征, 世界地质, 32(2): 191-199. doi: 10.3969/j.issn.1004-5589.2013.02.001
      乔广生, 翟明国, 阎月华, 1990. 鞍山地区太古代岩石同位素地质年代学研究. 地质科学, 25(2): 158-165.
      宋彪, 伍家善, 万渝生, 等, 1994. 鞍山地区陈台沟表壳岩时代归属的初步研究. 地球科学, 15(S1): 14-16.
      宋彪, 赵敦敏, 万渝生, 1992. 辽宁弓长岭含铁建造年代学研究, 岩石矿物学杂志, 11(4): 317-323.
      万渝生, 1993. 辽宁弓长岭含铁岩系的形成与演化. 北京: 北京科学技术出版社.
      万渝生, 董春艳, 颉颃强, 等, 2012. 华北克拉通早前寒武纪条带状铁建造形成时代: SHRIMP锆石U⁃Pb定年. 地质学报, 86(9): 1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008
      万渝生, 董春艳, 颉颃强, 等, 2018. 鞍山‒本溪地区鞍山群含BIF表壳岩形成时代新证据: 锆石SHRIMP U⁃Pb定年. 地球科学, 43(1): 57-74.
      万渝生, 董春艳, 颉颃强, 等, 2024. 华北克拉通新太古代晚期岩浆作用: 对构造体制和克拉通化的启示. 地学前缘, 31(1): 1-18.
      万渝生, 耿元生, 沈其韩, 等, 2002a. 鞍山中太古代铁架山花岗岩中表壳岩包体的地球化学特征及地质意义. 地质科学, 37(2): 143-151.
      万渝生, 宋彪, 刘敦一, 2002b. 鞍山太古宙具异常稀土组成长英质岩石的发现及其意义. 地质论评, 48(增刊): 45-52.
      万渝生, 刘敦一, 1993. 辽宁弓长岭中太古代片麻岩和铬云母石英岩的锆石年龄. 地质论评, 39(2): 124-129. doi: 10.3321/j.issn:0371-5736.1993.02.005
      万渝生, 刘敦一, 伍家善, 等, 1998. 辽宁鞍山‒本溪地区中太古代花岗质岩石的成因——地球化学及Nd同位素制约. 岩石学报, 14(3): 278-288.
      万渝生, 刘敦一, 殷小艳, 等, 2007. 鞍山地区铁架山花岗岩及表壳岩的锆石SHRIMP年代学和Hf同位素组成. 岩石学报, 23(2): 241-252.
      万渝生, 宋彪, 刘敦一, 等, 2001. 鞍山东山风景区3.8~ 2.5 Ga古老岩石带的同位素地质年代学和地球化学. 地质学报, 75(3): 363-370.
      万渝生, 宋彪, 伍家善, 等, 1999. 鞍山3.8 Ga奥长花岗质岩石的地球化学和Nd、Sr同位素组成及其意义. 地质学报, 73(1): 25-36.
      万渝生, 伍家善, 刘敦一, 等, 1997. 鞍山3.3 Ga陈台沟花岗岩地球化学和Nd、Pb同位素特征. 地球学报, 18(4): 382-388.
      万渝生, 颉颃强, 董春艳, 等, 2023. 最古老陆壳物质: 综述. 科学通报, 68: 2296-2311.
      王伟, 田中华, 刘福来, 2022. 辽宁鞍山弓长岭地区古太古代花岗岩研究进展——来自野外地质和锆石U⁃Th⁃Pb⁃Hf同位素的证据. 岩石矿物学杂志, 41(2): 359-370. doi: 10.3969/j.issn.1000-6524.2022.02.010
      伍家善, 耿元生, 沈其韩, 等, 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社.
      殷小艳, 万渝生, 刘敦一, 等, 2006. 鞍山地区铁架山花岗岩中表壳岩的碎屑锆石SHRIMP年龄及其地质意义. 岩石矿物学杂志, 25(4): 282-286. doi: 10.3969/j.issn.1000-6524.2006.04.003
      张家辉, 金巍, 王亚飞, 等, 2018. 鞍山地区始‒古太古代花岗质地壳的形成及演化: 深沟寺杂岩的岩石学、年代学及地球化学证据. 地质学报, 92(5): 887-907. doi: 10.3969/j.issn.0001-5717.2018.05.001
      张家辉, 金巍, 郑培玺, 等, 2013. 鞍山地区营城子古太古代片麻岩杂岩的识别与锆石U⁃Pb年代学研究. 岩石学报, 29(2): 399-413.
      张连昌, 代堰锫, 王长乐, 等, 2014. 鞍山‒本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境. 地球科学与环境学报, 36(4): 1-15, 17. doi: 10.3969/j.issn.1672-6561.2014.04.001
      钟富道, 1984. 鞍山铁甲山花岗片麻岩同位素年代学研究. 地球化学, 13(3): 195-205. doi: 10.3321/j.issn:0379-1726.1984.03.001
      周红英, 刘敦一, Nemchim, A., 等, 2007a. 鞍山地区3.8 Ga变质石英闪长岩遭受3.0 Ga构造热事件叠加: 来自磷灰石SHRIMP U⁃Th⁃Pb定年证据. 地质论评, 53(1): 120-125.
      周红英, 刘敦一, 万渝生, 等, 2007b. 鞍山地区3.3 Ga岩浆热事件⁃SHRIMP年代学和地球化学证据. 岩石矿物学杂志, 26(2): 123-129.
      周红英, 刘敦一, 万渝生, 等, 2008. 辽宁鞍山地区东山杂岩带3.3~3.1 Ga期间的岩浆作用: 锆石SHRIMP U⁃Pb定年. 地质通报, 27(12): 2122-2126.
    • 加载中
    图(21) / 表(1)
    计量
    • 文章访问数:  940
    • HTML全文浏览量:  295
    • PDF下载量:  456
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-29
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回