• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于X射线CT图像的泥质致密砂岩纵横波速度计算

    刘洪平 骆杨

    刘洪平, 骆杨, 2025. 基于X射线CT图像的泥质致密砂岩纵横波速度计算. 地球科学, 50(5): 1999-2010. doi: 10.3799/dqkx.2024.108
    引用本文: 刘洪平, 骆杨, 2025. 基于X射线CT图像的泥质致密砂岩纵横波速度计算. 地球科学, 50(5): 1999-2010. doi: 10.3799/dqkx.2024.108
    Liu Hongping, Luo Yang, 2025. P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone. Earth Science, 50(5): 1999-2010. doi: 10.3799/dqkx.2024.108
    Citation: Liu Hongping, Luo Yang, 2025. P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone. Earth Science, 50(5): 1999-2010. doi: 10.3799/dqkx.2024.108

    基于X射线CT图像的泥质致密砂岩纵横波速度计算

    doi: 10.3799/dqkx.2024.108
    基金项目: 

    国家自然科学基金青年基金项目 41902147

    国家自然科学基金青年基金项目 41402117

    详细信息
      作者简介:

      刘洪平(1988-),男,副教授,博士,主要从事油气藏精细描述、岩石物理研究.ORCID:0000-0002-0721-7144. E-mail:liuhongping12@126.com

    • 中图分类号: P631

    P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone

    • 摘要: 基于三维X射线CT图像重构的数字岩心模型,是目前计算岩石纵横波速度的重要方法,但由于CT图像难以准确区分致密砂岩中泥质和岩石碎屑颗粒,利用X射线CT图像研究泥质致密砂岩纵横波速度难度较大.本研究通过建立二维数字岩心模型,开展有限元模拟,讨论泥质含量、分布形式以及微孔隙的发育程度对岩石弹性参数的影响,基于影响岩石弹性参数的主控因素,探索利用三维数字岩心模拟泥质砂岩纵横波速度的可行性.研究表明:分散泥质以及骨架结构泥质对岩石体积模量影响较小,颗粒-颗粒接触面结构泥质对体积模量影响较大,三种泥质分布形式对剪切模量影响相当;泥质含量对岩石体积模量的影响小于泥质分布形式,而泥质含量对剪切模量的影响大于泥质的分布形式;与分散泥质相关的微孔隙对岩石弹性参数影响较小,而岩石弹性参数对与骨架结构泥质和颗粒-颗粒接触面泥质相关的微孔隙敏感,且微孔隙增加对剪切模量的减小大于体积模量.根据上述模拟结果,针对泥质砂岩建立了基于三维分水岭算法的颗粒-颗粒接触面泥质模型,模拟结果与实测值吻合较好.

       

    • 图  1  砂岩中泥质分布模式

      Sams and Andrea(2001)

      Fig.  1.  Clay distribution patterns in sandstone

      图  2  砂岩CT图像二维切片(a)及相应的二值化图像(b)

      Fig.  2.  A slice of CT image (a) and the corresponding binary image (b) of sandstone

      图  3  三种泥质分布形式不同泥质含量的二维图像

      A1~A8为孔隙分布模型;B1~B8为颗粒包壳模型;C1~C8为喉道分布模型

      Fig.  3.  2D images of three clay distribution patterns with different clay contents

      图  4  基于三维分水岭算法的颗粒‒颗粒接触面泥质模型

      Fig.  4.  Grain-grain contact clay model based on the 3D watershed method

      图  5  纵波模量和剪切模量模拟边界条件

      Fig.  5.  Boundary conditions of P-wave modulus and shear modulus

      图  6  不同泥质分布模式的体积模量和剪切模量与孔隙度的关系

      Fig.  6.  Bulk and shear modulus versus porosity for different clay cement patterns

      图  7  不同泥质分布模式、不同泥质弹性参数的体积模量和剪切模量与孔隙度的关系

      Fig.  7.  Bulk and shear modulus versus porosity for different clay cement patterns and clay elastic properties

      图  8  样品D20(a),样品D105(b)和样品D6(c)对应的铸体薄片、CT图像以及表征单元体分析

      Fig.  8.  Casting thin sections, CT image and representative elementary volume analysis of sample D20 (a), D105 (b) and D6 (c)

      图  9  基于分水岭算法的致密砂岩颗粒‒颗粒接触面泥质建模流程

      Fig.  9.  Grain-grain contact clay model of tight sandstone based on watershed method

      图  10  样品D20(a),样品D105(b)和样品D6(c)三维数字岩心模型

      Fig.  10.  3D digital core model of samples D20(a), D105(b) and D6(c)

      图  11  D20样品三维数字岩心挤压(a)和剪切(b)条件下米塞斯应力分布

      Fig.  11.  3D von-mises stress distribution of compression (a) and shear condition (b) of D20

      图  12  致密砂岩纵横波速度实测值与预测值对比

      Fig.  12.  Comparison of measured and predicted P- and S-wave velocities of tight sandstone samples

      表  1  不同矿物的弹性参数

      Table  1.   Bulk (K) and shear (G) moduli of the minerals used in the modeling

      石英 泥质0% 泥质2.5% 泥质5% 泥质10% 泥质Xu and White 泥质Mavko
      体积模量(GPa) 36.6 34 25.6 22 13.9 26.6 21
      剪切模量(GPa) 45 15.2 8.2 5.1 2.3 16.8 7
      下载: 导出CSV
    • Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., et al., 2002. Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Agreement between Theory and Experiment. Geophysics, 67(5): 1396. https://doi.org/10.1190/1.1512785
      Cheng, J. W., Zhang, F., Li, X. Y., 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312 (in Chinese with English abstract).
      Dvorkin, J., Nur, A., 1996. Elasticity of High-Porosity Sandstones: Theory for Two North Sea Data Sets. Geophysics, 61(5): 1363-1370. https://doi.org/10.1190/1.1444059
      Han, D. H., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. https://doi.org/10.1190/1.1442062
      Jiang, L. M., 2012. Numerical Simulation of Acoustic and Electrical Characteristics of Natural Gas Reservoir Rocks Based on Digital Cores (Dissertation). China University of Petroleum, Dongying (in Chinese with English abstract).
      Jin, G. D., Patzek, T. W., Silin, D. B., 2012. Modeling the Impact of Rock Formation History on the Evolution of Absolute Permeability. Journal of Petroleum Science and Engineering, 100: 153-161. https://doi.org/10.1016/j.petrol.2012.03.005
      Li, W., Gao, L., 2013. Pavement Crack Detection Based on Improved Watershed Algorithm. Computer Engineering and Applications, 49(20): 263-266, 270 (in Chinese with English abstract). doi: 10.3778/j.issn.1002-8331.1210-0221
      Lin, C. L., Miller, J. D., Luttrell, G. H., 2002. Evaluation of a CT-Based Coal Washability Analysis System under Simulated On-Line Conditions. Mining, Metallurgy & Exploration, 19(1): 9-16. https://doi.org/10.1007/BF03402894
      Liu, H. P., Luo, Y., Zhao, Y. C., et al., 2022. Controlling Factors and Predictions of Well-Connected Pore-Throat Volumes in Tight Oil Sandstones. Journal of Petroleum Science and Engineering, 218: 111034. https://doi.org/10.1016/j.petrol.2022.111034
      Liu, H. P., Rodrigues, S., Shi, F. N., et al., 2017. Coal Washability Analysis Using X-Ray Tomographic Images for Different Lithotypes. Fuel, 209: 162-171. https://doi.org/10.1016/j.fuel.2017.07.104
      Liu, X. F., 2010. Numerical Simulation of Elastic and Electrical Properties of Rock Based on Digital Cores (Dissertation). China University of Petroleum (East China), Qingdao (in Chinese with English abstract).
      Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook (2nd Ed). Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511626753
      Minear, J. W., 1982. Clay Models and Acoustic Velocities. 57th Annual Meeting, American Institute of Mining, Metallurgical and Petroleum Engineers, Dallas, https://doi.org/10.2118/11031-MS
      Nur, A., Simmons, G., 1969. The Effect of Saturation on Velocity in Low Porosity Rocks. Earth and Planetary Science Letters, 7(2): 183-193. https://doi.org/10.1016/0012-821X(69)90035-1
      Qiao, H. Q., Liu, C., Fang, H., et al., 2023. S-Wave Velocity Prediction Method of Volcanic Rock Based on Statistical Rock-Physics Model. Earth Science, 48(8): 2993-3006 (in Chinese with English abstract).
      Sams, M. S., Andrea, M., 2001. The Effect of Clay Distribution on the Elastic Properties of Sandstones. Geophysical Prospecting, 49(1): 128-150. https://doi.org/10.1046/j.1365-2478.2001.00230.x
      Saxena, N., Mavko, G., 2016. Estimating Elastic Moduli of Rocks from Thin Sections: Digital Rock Study of 3D Properties from 2D Images. Computers & Geosciences, 88: 9-21. https://doi.org/10.1016/j.cageo.2015.12.008
      Sheppard, A. P., Sok, R. M., Averdunk, H., 2004. Techniques for Image Enhancement and Segmentation of Tomographic Images of Porous Materials. Physica A: Statistical Mechanics and Its Applications, 339(1/2): 145-151. https://doi.org/10.1016/j.physa.2004.03.057
      Shulakova, V., Pervukhina, M., Müller, T. M., et al., 2013. Computational Elastic Up-Scaling of Sandstone on the Basis of X-Ray Micro-Tomographic Images. Geophysical Prospecting, 61(2): 287-301. https://doi.org/10.1111/j.1365-2478.2012.01082.x
      Smith, T. M., Sayers, C. M., Sondergeld, C. H., 2009. Rock Properties in Low-Porosity/Low-Permeability Sandstones. The Leading Edge, 28(1): 48-59. https://doi.org/10.1190/1.3064146
      Soille, P., 2003. Morphological Image Analysis-Principles and Applications. Springer, New York.
      Swanson, B. F., 1985. Microporosity in Reservoir Rocks-Its Measurement and Influence on Electrical Resistivity. The Log Analyst, 26(6): 42-52.
      Torskaya, T. S., 2013. Pore-Scale Analysis of Grain Shape and Sorting Effects on Fluid Transport Phenomena in Porous Media (Dissertation). The University of Texas at Austin, Austin.
      Wang, K. W., 2007. Reservoir Rock Electrical Properties Study Based on Percolation Network Model and Upscaling (Dissertation). China University of Petroleum (East China), Dongying (in Chinese with English abstract).
      Wyllie, M. R. J., Gregory, A. R., Gardner, G. H. F., 1958. An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media. Geophysics, 23(3): 459-493. https://doi.org/10.1190/1.1438493
      Xu, M. M., Yin, X. Y., Zong, Z. Y., et al., 2020. Rock-Physics Model of Volcanic Rocks, an Example from Junggar Basin of China. Journal of Petroleum Science and Engineering, 195: 107003. https://doi.org/10.1016/j.petrol.2020.107003
      Xu, S. Y., White, R. E., 1995. A New Velocity Model for Clay-Sand Mixtures 1. Geophysical Prospecting, 43(1): 91-118. https://doi.org/10.1111/j.1365-2478.1995.tb00126.x
      Zeng, W. C., 1991. Oil and Gas Reservoir Well Logging Evaluation Technology. Petroleum Industry Press, Beijing (in Chinese).
      程绩伟, 张峰, 李向阳, 2024. 四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模. 地球科学, 49(1): 299-312. doi: 10.3799/dqkx.2022.229
      姜黎明, 2012. 基于数字岩心的天然气储层岩石声电特性数值模拟研究(博士学位论文). 青岛: 中国石油大学(华东).
      黎蔚, 高璐, 2013. 基于改进的分水岭算法的路面裂缝检测. 计算机工程与应用, 49(20): 263-266, 270.
      刘学锋, 2010. 基于数字岩心的岩石声电特性微观数值模拟研究(博士学位论文). 青岛: 中国石油大学(华东).
      乔汉青, 刘财, 方慧, 等, 2023. 基于统计学岩石物理模型的火山岩横波速度预测方法. 地球科学, 48(8): 2993-3006. doi: 10.3799/dqkx.2022.417
      王克文, 2007. 基于逾渗网络模型和升尺度方法的储层岩石电性研究(博士学位论文). 东营: 中国石油大学(华东).
      曾文冲, 1991. 油气藏储集层测井评价技术. 北京: 石油工业出版社.
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  23
    • HTML全文浏览量:  6
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-02
    • 网络出版日期:  2025-06-06
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回