• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    库水-降雨作用下直线形基覆面堆积层滑坡失稳演化机制

    罗世林 黄达 蒋建清 刘华亮 龙会

    罗世林, 黄达, 蒋建清, 刘华亮, 龙会, 2025. 库水-降雨作用下直线形基覆面堆积层滑坡失稳演化机制. 地球科学, 50(6): 2330-2341. doi: 10.3799/dqkx.2024.109
    引用本文: 罗世林, 黄达, 蒋建清, 刘华亮, 龙会, 2025. 库水-降雨作用下直线形基覆面堆积层滑坡失稳演化机制. 地球科学, 50(6): 2330-2341. doi: 10.3799/dqkx.2024.109
    Luo Shilin, Huang Da, Jiang Jianqing, Liu Hualiang, Long Hui, 2025. Failure Evolution of Accumulated Landslide with Line-Like Interface between Sliding Mass and Bedrock under Combined Influence of Reservoir Water and Rainfall. Earth Science, 50(6): 2330-2341. doi: 10.3799/dqkx.2024.109
    Citation: Luo Shilin, Huang Da, Jiang Jianqing, Liu Hualiang, Long Hui, 2025. Failure Evolution of Accumulated Landslide with Line-Like Interface between Sliding Mass and Bedrock under Combined Influence of Reservoir Water and Rainfall. Earth Science, 50(6): 2330-2341. doi: 10.3799/dqkx.2024.109

    库水-降雨作用下直线形基覆面堆积层滑坡失稳演化机制

    doi: 10.3799/dqkx.2024.109
    基金项目: 

    国家自然科学基金 42277187

    国家自然科学基金 42407279

    国家自然科学联合重点项目 U23A202579

    湖南省自然科学青年基金 2023JJ40076

    湖南省自然科学青年基金 2022JJ40525

    湖南省重点实验室开放课题 BNH2024KFB04

    详细信息
      作者简介:

      罗世林(1990-),男,副教授,博士,主要从事水动力型滑坡灾害机理研究. ORCID:0000⁃0003⁃2680⁃2207. E⁃mail:rosilynn@ccsu.edu.cn

      通讯作者:

      黄达,教授,博士生导师,主要从事地质灾害防治及稳定性评价等教学与科研工作. ORCID: 0000⁃0002⁃2795⁃1354. E⁃mail: uangda@@chd.edu.cn

    • 中图分类号: TU457

    Failure Evolution of Accumulated Landslide with Line-Like Interface between Sliding Mass and Bedrock under Combined Influence of Reservoir Water and Rainfall

    • 摘要: 为研究库水-降雨作用下库区直线形基覆面堆积层滑坡响应机制.以曲尺县塔坪H1滑坡为例,通过地质勘察和监测数据分析,并结合相关性理论及离散元法,揭示了滑坡变形特点及失稳演化机制.发现塔坪H1滑坡为阶梯式变形模式,且其变形速率随高程的增加而降低;库水和降雨均是滑坡变形的重要外部诱发因素,持续的库水下降产生的渗流作用迫使滑坡前部变形显著;库水位涨落期间,持续的降雨入渗作用对滑坡中部变形影响明显.库水-降雨联合作用下,滑坡前缘表层岩体率先剥落,发展至坡体前部破坏,再到坡体中部破坏,呈多级牵引式破坏演化.目前塔坪H1滑坡前部和中部处于持续变形阶段,亟需开展滑坡防治工程,提高滑坡稳定性.

       

    • 图  1  塔坪H1滑坡航拍

      Fig.  1.  The aerial photo of Taping H1 landslide

      图  2  滑坡地层岩性横断面图(1-1剖面,图 1)

      Fig.  2.  Geological cross-section about subsurface stratigraphy of the instability(1-1 profile in Fig.1)

      图  3  现场勘察滑坡变形破坏特征

      a.坡脚局部破坏①;b.中部坡体的拉伸裂缝②;c.路面破坏③;d.房屋地基错动④;e.房屋墙体开裂⑤;f.后缘陡坎⑥;滑坡宏观变形破坏位置见图 1

      Fig.  3.  Field observations of the activities in the Taping H1 landslide

      图  4  滑坡变形分区特点(2009-11—2017-10)

      箭头的颜色代表滑坡的运动方向和大小

      Fig.  4.  The zoning characteristics of landslide movement(2009-11—2017-10)

      图  5  滑坡变形与库水和降雨监测数据

      Fig.  5.  The monitoring data on slope movement, reservoir water level and precipitation

      图  6  快速变形阶段中的平均速度(a)和位移增量(b)

      Fig.  6.  The average displacement velocities (a) and displacement increments (b) during faster movement periods

      图  7  库水波动与滑坡变形相关性计算结果

      Fig.  7.  The correlation between reservoir water fluctuation and landslide deformation

      图  8  降雨与滑坡变形相关性计算结果

      Fig.  8.  The correlation between rainfall and landslide deformation

      图  9  滑坡离散元数值模型

      Fig.  9.  DEM model of Taping H1 landslide

      图  10  蓄水初期坡体位移场(a)和渗流场(b)

      Fig.  10.  The characteristics of landslide deformation (a) and seepage (b) during the initial impoundment

      图  11  滑坡测点X方向变形

      Fig.  11.  X-displacement data of the monitoring points

      图  12  滑坡坡脚表层块体变形剥落

      Fig.  12.  The surface block of the toe was deformed and detached

      图  13  滑坡前部变形及裂隙发展

      Fig.  13.  Slope movement and fractures development in front of landslide

      图  14  坡体前部持续变形及中部裂隙发育

      Fig.  14.  The successively slope movement at the front part and the fractures presented occasionally at the middle part

      图  15  坡体前缘破坏图

      Fig.  15.  The failure at the front part

      图  16  坡体中部破坏图

      Fig.  16.  The slope failure at the middle part

      表  1  滑坡数值模型中材料细观参数

      Table  1.   The micro parameters in numerical model

      类型 参数 基岩 滑带 滑体
      岩块 d (kg/m3) 2 400 2 200 2 200
      节理 Jks (GPa/m) 6 4 4
      Jkn (GPa/m) 10 7 7
      Jf (°) 22 13 17
      Jc (MPa) 2.1 0.41 0.43
      Jt (MPa) 2.1 0.21 0.26
      ares (m) 0.003 0.006 0.006
      azero (m) 0.004 0.02 0.02
      amax (m) 0.06 0.2 0.2
      注:d.密度;JksJkn分别指节理剪切和法向刚度;JfJcJt分别指节理内摩擦角、内聚力和抗拉强度;aresamaxazero分别指最小、最大以及零法向压力下节理宽度.
      下载: 导出CSV
    • Han, H. M., Shi, B., Zhang, L., 2021. Prediction of Landslide Sharp Increase Displacement by SVM with Considering Hysteresis of Groundwater Change. Engineering Geology, 280: 105876. https://doi.org/10.1016/j.enggeo.2020.105876
      Jiang, S. H., Xiong, W., Zhu, G. Y., et al., 2024. Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level. Earth Science, 49(5): 1679-1691(in Chinese with English abstract).
      Juang, C. H., 2021. BFTS-Engineering Geologists' Field Station to Study Reservoir Landslides. Engineering Geology, 284: 106038. https://doi.org/10.1016/j.enggeo.2021.106038
      Li, L. X., Hu, X. L., Huang, Y. T., et al., 2024. Seepage-Consolidation Deformation Characters of Sliding-Zone Soils under Water Level Fluctuation. Earth Science, 49(12): 4690-4700(in Chinese with English abstract).
      Li, S. N., Peng, L., Wang, X. H., et al., 2023. Do Geohazards Inhibit Urban Expansion at the Regional Scale?Evidence from a Counterfactual Analysis in Southwest China. Cities, 142: 104558. https://doi.org/10.1016/j.cities.2023.104558
      Li, S. L., Xu, Q., Tang, M. G., et al., 2017. Response Patterns of Old Landslides with Different Slipsurface Shapes Triggered by Fluctuation of Reservoir Water Level. Journal of Engineering Geology, 25(3): 841-852(in Chinese with English abstract).
      Liu, X. L., Miao, C., 2018. Large-Scale Assessment of Landslide Hazard, Vulnerability and Risk in China. Geomatics, Natural Hazards and Risk, 9(1): 1037-1052. https://doi.org/10.1080/19475705.2018.1502690
      Luo, S. L., Huang, D., Peng, J. B., et al., 2022. Influence of Permeability on the Stability of Dual-Structure Landslide with Different Deposit-Bedding Interface Morphology: The Case of the Three Gorges Reservoir Area, China. Engineering Geology, 296: 106480. https://doi.org/10.1016/j.enggeo.2021.106480
      Miao, F. S., Zhao, F. C., Wu, Y. P., et al., 2023. Landslide Susceptibility Mapping in Three Gorges Reservoir Area Based on GIS and Boosting Decision Tree Model. Stochastic Environmental Research and Risk Assessment, 37(6): 2283-2303. https://doi.org/10.1007/s00477-023-02394-4
      Mo, W. W., Xu, P., Ding, X. L., 2006. Research Advances on the Influences of Reservoir Water Level Fluctuation on Slope Stability. Chinese Journal of Underground Space and Engineering, 2(6): 997-1002(in Chinese with English abstract).
      Shi, X. G., Xu, J. H., Jiang, H. J., et al., 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12): 4284-4292(in Chinese with English abstract).
      Sun, Y. S., Hu, R. L., 2016. Experimental Study of Different Shape Bedrock Surfaces about Deformation and Failure of Soil and Rock Mixture. Chinese Journal of Rock Mechanics and Engineering, 35(S1): 2907-2914(in Chinese with English abstract).
      Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China: Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267
      Tang, M. G., Li, S. L., Xu, Q., et al., 2020. Study of Deformation Characteristics of Reservoir Landslide Based on Centrifugal Model Test. Rock and Soil Mechanics, 41(3): 755-764(in Chinese with English abstract).
      Xie, T., 2019. Monitoring and Research of Taping Landslide Based on InSAR Technology(Dissertation). Chang'an University, Xi'an(in Chinese with English abstract).
      Yang, Y. T., Dai, Z. W., Lu, Y. S., et al., 2024. Deformation Characteristics and Stability Changes Characteristics of Reservoir Landslides with Double-Sliding Zones. Earth Science, 49(4): 1498-1514(in Chinese with English abstract).
      Yin, Y. P., Zhang, C. Y., Yan, H., et al., 2022. Research on Seepage Stability and Prevention Design of Landslides during Impoundment Operation of the Three Gorges Reservoir, China. Chinese Journal of Rock Mechanics and Engineering, 41(4): 649-659(in Chinese with English abstract).
      Zhang, S., Sun, P., Li, R., et al., 2022. Distribution Feature and Development Characteristics of Geohazards in Wudu District, Gansu Province, Northwest China. Geoenvironmental Disasters, 9(1): 23. https://doi.org/10.1186/s40677-022-00226-1
      蒋水华, 熊威, 朱光源, 等, 2024. 暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析. 地球科学, 49(5): 1679-1691.
      李岚星, 胡新丽, 黄悦庭, 等, 2024. 水位波动下滑带土的渗透-固结变形特征试验. 地球科学, 49(12): 4690-4700.
      李松林, 许强, 汤明高, 等, 2017. 库水位升降作用下不同滑面形态老滑坡响应规律. 工程地质学报, 25(3): 841-852.
      莫伟伟, 徐平, 丁秀丽, 2006. 库水位涨落对滑坡稳定性影响研究进展. 地下空间与工程学报, 2(6): 997-1002.
      史绪国, 徐金虎, 蒋厚军, 等, 2019. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新. 地球科学, 44(12): 4284-4292.
      孙永帅, 胡瑞林, 2016. 土石混合体变形破坏的不同形态基覆面效应试验研究. 岩石力学与工程学报, 35(增刊1): 2907-2914.
      汤明高, 李松林, 许强, 等, 2020. 基于离心模型试验的库岸滑坡变形特征研究. 岩土力学, 41(3): 755-764.
      谢韬, 2019. 基于InSAR技术的塔坪滑坡监测与研究(硕士学位论文). 西安: 长安大学.
      杨雨亭, 代贞伟, 陆愈实, 等, 2024. 库岸古滑坡复活变形特征及双滑带稳定性响应. 地球科学, 49(4): 1498-1514.
      殷跃平, 张晨阳, 闫慧, 等, 2022. 三峡水库蓄水运行滑坡渗流稳定和防治设计研究. 岩石力学与工程学报, 41(4): 649-659.
    • 加载中
    图(16) / 表(1)
    计量
    • 文章访问数:  12
    • HTML全文浏览量:  7
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-10
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回