• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    边坡场地勘探方案预期效果评价及优化方法

    蒋水华 钟越 黄奕哲 胡金政 万建宏 黄劲松

    蒋水华, 钟越, 黄奕哲, 胡金政, 万建宏, 黄劲松, 2025. 边坡场地勘探方案预期效果评价及优化方法. 地球科学, 50(6): 2255-2269. doi: 10.3799/dqkx.2024.110
    引用本文: 蒋水华, 钟越, 黄奕哲, 胡金政, 万建宏, 黄劲松, 2025. 边坡场地勘探方案预期效果评价及优化方法. 地球科学, 50(6): 2255-2269. doi: 10.3799/dqkx.2024.110
    Jiang Shuihua, Zhong Yue, Huang Yizhe, Hu Jinzheng, Wan Jianhong, Huang Jinsong, 2025. Expected Effectiveness Evaluation and Optimization Methods of Slope Site Investigation Program. Earth Science, 50(6): 2255-2269. doi: 10.3799/dqkx.2024.110
    Citation: Jiang Shuihua, Zhong Yue, Huang Yizhe, Hu Jinzheng, Wan Jianhong, Huang Jinsong, 2025. Expected Effectiveness Evaluation and Optimization Methods of Slope Site Investigation Program. Earth Science, 50(6): 2255-2269. doi: 10.3799/dqkx.2024.110

    边坡场地勘探方案预期效果评价及优化方法

    doi: 10.3799/dqkx.2024.110
    基金项目: 

    国家自然科学基金项目 42272326

    国家自然科学基金项目 52222905

    国家自然科学基金项目 521791035

    国家自然科学基金项目 52408371

    江西省自然科学基金项目 20232ACB204031

    江西省自然科学基金项目 20242BAB24001

    江西省自然科学基金项目 S20255146

    详细信息
      作者简介:

      蒋水华(1987-),男,博士,教授、博士生导师,主要从事岩土工程可靠度与风险分析方面的研究. ORCID:0000-0002-1322-6266.E-mail:sjiangaa@ncu.edu.cn

      通讯作者:

      万建宏,ORCID: 0009-0006-3026-7824.E-mail: wanjianhong@ncu.edu.cn

    • 中图分类号: P642

    Expected Effectiveness Evaluation and Optimization Methods of Slope Site Investigation Program

    • 摘要: 目前的勘探方案预期效果评价指标常未能反映物理过程且参数较难确定.此外,勘探方案优化框架中的勘探点布置策略往往依赖位置关系并需事先确定勘探范围.为解决上述问题,以不排水抗剪强度参数为例,提出并采用安全系数的均方根误差折减率期望(expected reduction rate of the root mean square error,ERRS)量化因融合参考勘探数据而导致的安全系数评估结果向参考安全系数集中效果的期望提升程度,并将其作为勘探方案预期效果评价的指标.此外,结合该指标和贪心算法构建了以优化勘探位置和数量为目的的勘探方案优化框架.ERRS指标计算过程采用乔列斯基分解中点法和改进贝叶斯更新方法离散参数完全及条件随机场实现,并基于多重二阶响应面代理模型替代确定性空间变异边坡稳定性分析,有效提高指标计算精度和效率.不排水饱和黏土边坡案例显示:提出的ERRS指标能够在无需确定复杂参数的情况下,获得与其他指标接近的评价结果;所构建的勘探方案优化框架能够在不事先确定勘探范围的情况下,得到指定勘探数量下更优的勘探点布置,进而获得更节省成本且预期效果较好的勘探方案.提出的指标和优化框架可为实际边坡工程场地勘探方案评价及优化设计提供参考.

       

    • 图  1  安全系数分布示意

      Fig.  1.  Schematic diagram of distributions of safety factor

      图  2  勘探方案评价流程及ERRS计算框架

      Fig.  2.  Evaluation process of investigation program and ERRS calculation framework

      图  3  勘探方案优化流程

      Fig.  3.  Optimization process of investigation program

      图  4  模型尺寸与网格划分

      Fig.  4.  Model size and mesh generation

      图  5  不排水抗剪强度均值场和先验随机场的一次典型实现

      a. 不排水抗剪强度均值场; b. 典型先验随机场实现

      Fig.  5.  Mean field and one typical implementation of prior random field of undrained shear strength

      图  6  边坡安全系数随潜在滑动面数量的变化

      Fig.  6.  Variation of the factor of slope safety with the number of potential slip surfaces

      图  7  不同方法计算的边坡安全系数的比较

      Fig.  7.  Comparison of the factors of safety calculated by different methods

      图  8  两个典型的等距布置勘探方案

      a. 勘探方案①; b. 勘探方案②

      Fig.  8.  Two typical equidistant arrangement investigation programs

      图  9  安全系数先验均值随先验随机场实现数量的变化

      Fig.  9.  Variation of the prior mean of factor of safety with the number of prior random field implementations

      图  10  ERRS随参考随机场实现数量的变化

      Fig.  10.  The variation of ERRS with the number of reference random field implementations

      图  11  不同勘探方案的后验随机场实现均方根误差云图

      a. 勘探方案①; b. 勘探方案②

      Fig.  11.  RMSE cloud map of posterior random field implementation for different investigation programs

      图  12  不同方法计算的后验安全系数比较

      Fig.  12.  Comparison of posterior factor of safety calculated by different methods

      图  13  不同评价指标随单个勘探点勘探位置的变化

      Fig.  13.  The variation of different evaluation indicators with investigation position of single investigation point

      图  14  ERRS随不同因素的变化

      a. 随第k个勘探位置Lk; b. 随勘探数量

      Fig.  14.  The variation of ERRS with different factors

      图  15  勘探方案优化结果

      Fig.  15.  Optimization result of investigation program

      图  16  不同勘探数量下的最佳勘探点布置(小范围等距框架)

      a. 勘探数量为1; b. 勘探数量为2; c. 勘探数量为3; d. 勘探数量为4

      Fig.  16.  Optimal investigation point layout for different numbers of investigation point quantities (small-range equidistant framework)

      图  17  不同勘探数量下的最佳勘探点布置(大范围等距框架)

      a. 勘探数量为1; b. 勘探数量为2; c. 勘探数量为3; d. 勘探数量为4

      Fig.  17.  Optimal investigation point layout for different numbers of investigation point quantities (large-range equidistant framework)

      图  18  不同优化框架下ERRS随勘探数量的变化

      Fig.  18.  The variation of ERRS with investigation point quantity for different optimization frameworks

      表  1  随机场模型参数取值

      Table  1.   Parameter values of random field model

      参数 模型 参数取值
      土体重度γ 常量 20 kN/m3
      地面土体不排水抗剪强度su0 常量 14.669 kPa
      趋势分量b 常量 0.3
      随机波动分量
      w(x, z)
      二维平稳高斯随机场 均值:0
      标准差:0.24
      水平波动范围:38 m
      垂直波动范围:3.8 m
      自相关函数类型:指数型
      下载: 导出CSV
    • Asaoka, A., A-Grivas, D., 1982. Spatial Variability of the Undrained Strength of Clays. Journal of the Geotechnical Engineering Division, 108(5): 743-756. https://doi.org/10.1061/ajgeb6.0001292
      Bishop, A. W., 1955. The Use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique, 5(1): 7-17. https://doi.org/10.1680/geot.1955.5.1.7
      Bucher, C. G., Bourgund, U., 1990. A Fast and Efficient Response Surface Approach for Structural Reliability Problems. Structural Safety, 7(1): 57-66. https://doi.org/10.1016/0167-4730(90)90012-e
      Cai, Y. M., Li, J. H., Li, X. Y., et al., 2019. Estimating Soil Resistance at Unsampled Locations Based on Limited CPT Data. Bulletin of Engineering Geology and the Environment, 78(5): 3637-3648. https://doi.org/10.1007/s10064-018-1318-2
      Cao, Z. J., Wang, Y., Li, D. Q., 2016. Quantification of Prior Knowledge in Geotechnical Site Characterization. Engineering Geology, 203: 107-116. https://doi.org/10.1016/j.enggeo.2015.08.018
      Chang, Y. Q., Xiao, G. Y., Zeng, M., 2008. Exploration of Greedy Algorithm. Journal of Chongqing Electric Power College, 13(3): 40-42, 47(in Chinese with English abstract).
      Deng, Z. P., Li, D. Q., Qi, X. H., et al., 2017. Reliability Evaluation of Slope Considering Geological Uncertainty and Inherent Variability of Soil Parameters. Computers and Geotechnics, 92: 121-131. https://doi.org/10.1016/j.compgeo.2017.07.020
      GEO-SLOPE International Ltd., 2011. Stability Modeling with SLOPE/W 2007 Version. Fourth Edition. Translated by CnTech. Metallurgical Industry Press, Beijing (in Chinese).
      Han, J. W., Liu, X. M., Yang, Y. H., et al., 2020. Study on the Horizontal Bearing Capacity of Single Pile Foundation Considering Spatial Variability of Soil Strength. Hydro-Science and Engineering, (6): 108-114(in Chinese with English abstract).
      Hu, H. P., Jiang, S. H., Chen, D., et al., 2024. Probabilistic Back Analysis of Slope Parameters and Reliability Evaluation Using Improved Bayesian Updating Method. Rock and Soil Mechanics, 45(3): 835-845(in Chinese with English abstract). doi: 10.26599/RSM.2024.9435485
      Hu, J. Z., Zhang, J., Huang, H. W., et al., 2023. Value of Information Assessment and Optimization of Slope Boreholes. Earth Science, 48(5): 1977-1988(in Chinese with English abstract).
      Hu, J. Z., Zheng, J. G., Zhang, J., et al., 2023. Bayesian Framework for Assessing Effectiveness of Geotechnical Site Investigation Programs. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 9(1): 04022054. https://doi.org/10.1061/ajrua6.0001278
      Jiang, S. H., 2014. A Non-Intrusive Stochastic Method for Slope Reliability in Hydroelectricity Engineering (Dissertation). Wuhan University, Wuhan (in Chinese with English abstract).
      Jiang, S. H., Li, D. Q., Zhou, C. B., et al., 2014. Slope Reliability Analysis Considering Effect of Autocorrelation Functions. Chinese Journal of Geotechnical Engineering, 36(3): 508-518(in Chinese with English abstract).
      Jiang, S. H., Liu, X., Yao, R. Z., et al., 2018. Optimization Design Approach for Layout Scheme of Slope Boreholes Based on Bayesian Updating and Value of Information Analysis. Chinese Journal of Geotechnical Engineering, 40(10): 1871-1879(in Chinese with English abstract).
      Jiang, S. H., Papaioannou, I., Straub, D., 2020. Optimization of Site-Exploration Programs for Slope-Reliability Assessment. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(1): 04020004. https://doi.org/10.1061/ajrua6.0001042
      Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia. 1942-1948. https://doi.org/10.1109/icnn.1995.488968
      Li, D. Q., Chen, Y. F., Lu, W. B., et al., 2011. Stochastic Response Surface Method for Reliability Analysis of Rock Slopes Involving Correlated Non-Normal Variables. Computers and Geotechnics, 38(1): 58-68. https://doi.org/10.1016/j.compgeo.2010.10.006
      Li, D. Q., Qi, X. H., Cao, Z. J., et al., 2016a. Evaluating Slope Stability Uncertainty Using Coupled Markov Chain. Computers and Geotechnics, 73: 72-82. https://doi.org/10.1016/j.compgeo.2015.11.021
      Li, Y. J., Hicks, M. A., Vardon, P. J., 2016b. Uncertainty Reduction and Sampling Efficiency in Slope Designs Using 3D Conditional Random Fields. Computers and Geotechnics, 79: 159-172. https://doi.org/10.1016/j.compgeo.2016.05.027
      MathWorks Inc., 2020. MATLAB Version: 9.9. 0.1467703(R2020b). The MathWorks Inc, Natick, Massachusetts.
      Shi, C., Wang, Y., 2021. Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost. Journal of Geotechnical and Geoenvironmental Engineering, 147(9): 04021082. https://doi.org/10.1061/(asce)gt.1943-5606.0002583
      Straub, D., Papaioannou, I., 2015. Bayesian Updating with Structural Reliability Methods. Journal of Engineering Mechanics, 141(3): 04014134. https://doi.org/10.1061/(asce)em.1943-7889.0000839
      Sun, S. S., 2013. Statistical Inference Methods Based on Item Response Theory and Cognitive Diagnosis(Dissertation). Northeast Normal University, Changchun(in Chinese with English abstract).
      Sun, Z. H., Tan, X. H., Sun, Z. B., et al., 2021. Reliability of Spatially Variable Earth Slopes Based on the Upper Bound Analysis. Rock and Soil Mechanics, 42(12): 3397-3406(in Chinese with English abstract).
      Tian, M., Sheng, X. T., 2019. Method for Determining Minimum Test Data Quantity for Geotechnical Engineering Investigation. Rock and Soil Mechanics, 40(Supp. 1): 400-408(in Chinese with English abstract).
      Wu, S. H., Ou, C. Y., Ching, J., et al., 2012. Reliability-Based Design for Basal Heave Stability of Deep Excavations in Spatially Varying Soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(5): 594-603. https://doi.org/10.1061/(asce)gt.1943-5606.0000626
      Yang, R., Huang, J. S., Griffiths, D. V., et al., 2019. Optimal Geotechnical Site Investigations for Slope Design. Computers and Geotechnics, 114: 103111. https://doi.org/10.1016/j.compgeo.2019.103111.
      Zhang, L., 2019. Research on Quantum Behaved Particle Swarm Optimization Algorithm and Its Applications for Single-Objective and Multi-Objective Optimization Problems (Dissertation). Northwestern Polytechnical University, Xi'an(in Chinese with English abstract).
      Zhang, L., Wang, L., 2023. Optimization of Site Investigation Program for Reliability Assessment of Undrained Slope Using Spearman Rank Correlation Coefficient. Computers and Geotechnics, 155: 105208. https://doi.org/10.1016/j.compgeo.2022.105208
      Zhang, W. G., Meng, F. S., He, C. J., et al., 2023. Stability Analysis of Slope with Spatial Variability in Karst Area under Building Load. Journal of Disaster Prevention and Mitigation Engineering, 43(2): 316-323(in Chinese with English abstract).
      常友渠, 肖贵元, 曾敏, 2008. 贪心算法的探讨与研究. 重庆电力高等专科学校学报, 13(3): 40-42, 47.
      GEO-SLOPE International Ltd., 2011. 边坡稳定性分析软件SLOPE/W用户指南. 中仿科技公司, 译. 北京: 冶金工业出版社.
      韩吉伟, 刘晓明, 杨月红, 等, 2020. 考虑土体强度空间变异性的单桩水平承载力研究. 水利水运工程学报(6): 108-114.
      胡鸿鹏, 蒋水华, 陈东, 等, 2024. 基于改进贝叶斯更新方法的边坡参数概率反分析及可靠度评估. 岩土力学, 45(3): 835-845.
      胡金政, 张洁, 黄宏伟, 等, 2023. 边坡勘察钻孔信息价值评价及优化布置方法. 地球科学, 48(5): 1977-1988. doi: 10.3799/dqkx.2022.216
      蒋水华, 2014. 水电工程边坡可靠度非侵入式随机分析方法(博士学位论文). 武汉: 武汉大学.
      蒋水华, 李典庆, 周创兵, 等, 2014. 考虑自相关函数影响的边坡可靠度分析. 岩土工程学报, 36(3): 508-518.
      蒋水华, 刘贤, 尧睿智, 等, 2018. 基于贝叶斯更新和信息量分析的边坡钻孔布置方案优化设计方法. 岩土工程学报, 40(10): 1871-1879.
      孙珊珊, 2013. 项目反应理论与认知诊断的统计推断方法(博士学位论文). 长春: 东北师范大学.
      孙志豪, 谭晓慧, 孙志彬, 等, 2021. 基于上限分析的空间变异土质边坡可靠度. 岩土力学, 42(12): 3397-3406.
      田密, 盛小涛, 2019. 岩土工程最小勘探数据量确定方法. 岩土力学, 40(增刊1): 400-408.
      张兰, 2019. 单目标和多目标量子粒子群优化算法的研究及应用(博士学位论文). 西安: 西北工业大学.
      仉文岗, 孟凡胜, 何昌杰, 等, 2023. 岩溶区空间变异性边坡建筑荷载作用下稳定分析. 防灾减灾工程学报, 43(2): 316-323.
    • 加载中
    图(18) / 表(1)
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  3
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-08-03
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回