• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南半球中高纬度气旋对南极海冰面积的影响

    陈蕾 黄昱 李双林 徐祥德

    陈蕾, 黄昱, 李双林, 徐祥德, 2025. 南半球中高纬度气旋对南极海冰面积的影响. 地球科学, 50(9): 3395-3407. doi: 10.3799/dqkx.2024.111
    引用本文: 陈蕾, 黄昱, 李双林, 徐祥德, 2025. 南半球中高纬度气旋对南极海冰面积的影响. 地球科学, 50(9): 3395-3407. doi: 10.3799/dqkx.2024.111
    Chen Lei, Huang Yu, Li Shuanglin, Xu Xiangde, 2025. Impacts of Mid-High Latitude Cyclones in the Southern Hemisphere on Antarctic Sea Ice Extent. Earth Science, 50(9): 3395-3407. doi: 10.3799/dqkx.2024.111
    Citation: Chen Lei, Huang Yu, Li Shuanglin, Xu Xiangde, 2025. Impacts of Mid-High Latitude Cyclones in the Southern Hemisphere on Antarctic Sea Ice Extent. Earth Science, 50(9): 3395-3407. doi: 10.3799/dqkx.2024.111

    南半球中高纬度气旋对南极海冰面积的影响

    doi: 10.3799/dqkx.2024.111
    基金项目: 

    国家自然科学基金面上项目 42376250

    详细信息
      作者简介:

      陈蕾(1985-),女,副教授,硕士生导师,长期致力于研究气旋及其对气候系统的影响. ORCID:0000-0002-1104-9200. E-mail:leichen@cug.edu.cn

    • 中图分类号: P447

    Impacts of Mid-High Latitude Cyclones in the Southern Hemisphere on Antarctic Sea Ice Extent

    • 摘要:

      为研究南半球中高纬度气旋对南极海冰面积的年代际影响,基于1979-2022年每年9月的欧洲中期天气预报中心(ECMWF)再分析数据,识别并追踪南半球气旋,探究中高纬度气旋频数与南极海冰面积之间的相关关系,分析气旋经过时下方受影响的南极海冰面积变化的时间和空间特征.研究表明,南半球中高纬度气旋对南极海冰的影响主要集中在南极海冰密集度变动频繁且大多低于80%的边缘区.气旋能够显著影响区域海冰密集度的变化,尤其在海冰边缘线附近,气旋是此处海冰密集度变化的主要影响因素.与气旋对南极海冰的影响相比,南极大部分区域的海冰更易受南半球环状模的影响.然而,在海冰密集度较小的海冰边缘区,气旋对海冰密集度的影响尤为显著.气旋经过影响到的海冰密集度变化依赖于南极海冰的多寡,海冰密集度在达到一定高值后继续增加,会使受气旋影响的海冰密集度增加幅度减小.

       

    • 图  1  2016年9月南半球气旋轨迹

      红色点为气旋起点;绿色点为气旋终点

      Fig.  1.  Southern Hemisphere cyclone tracks in September 2016

      图  2  1979-2022年7月至11月各纬度内(分别为40°S、45°S、50°S、55°S、60°S、66.5°S到90°S)气旋频数与南极海冰面积之间的相关性

      黑圈表示该相关系数通过了90%显著性检验

      Fig.  2.  Correlation between the frequency of cyclones and the Antarctic sea ice extent (SIE) at various latitudes (40°S, 45°S, 50°S, 55°S, 60°S, 66.5°S to 90°S) during July to November from 1979 to 2022

      图  3  1979-2022年中8月(a~c)、9月(d~f)和10月(g~i)的各纬度(55°S~90°S:第一列,60°S~90°S:第二列,66.5°S~90°S:第三列)气旋频数和南极海冰密集度的相关系数空间分布

      Fig.  3.  Spatial distribution of the correlation coefficients between the frequency of cyclones and the Antarctic sea ice concentration (SIC) at various latitudes (55°S-90°S: first column, 60°S-90°S: second column, 66.5°S-90°S: third column) in August (a-c), September (d-f), and October (g-i) from 1979 to 2022

      图  4  1979-2022年间9月(a)在60°S~90°S中活动的气旋密度分布总值;(b)南极海冰总面积与10 m风场矢量的空间相关

      Fig.  4.  Total density distribution of cyclones active in 60°S-90°S(a)and spatial correlation(b)between the total Antarctic SIE and the 10 m wind field vectors in September from 1979 to 2022

      图  5  1979-2022年9月SAM指数(右轴,折线)与在60°S~90°S中活动的气旋频数(左轴,柱状)(a)和南极海冰面积(左轴,柱状)(b)的时间序列

      Fig.  5.  Time series of the SAM index(right axis, line), (a) the frequency of cyclones active in 60°S-90°S(left axis, bars), and(b)the Antarctic SIE(left axis, bars) in September from 1979 to 2022

      图  6  1979-2022年间的9月在60°S~90°S中活动的气旋频数和南极海冰密集度异常值之间的相关性空间分布

      打点区域通过95% 显著性检验

      Fig.  6.  Spatial distribution of the correlation between the frequency of cyclones active in 60° S-90° S and SIC anomalies in September from 1979 to 2022

      图  7  在2016年9月2日至5日一次气旋经过时的海冰密集度日异常(填色,单位:%)、海平面气压场(等值线,单位:hPa)和风场(灰色矢量)的日均值

      紫色星号表示气旋的低压中心;左上角显示了气旋的强度

      Fig.  7.  Daily mean sea level pressure (contour lines, unit: hPa) and wind vectors (gray vectors) are overlaid on daily anomaly of SIC (shade, unit: %) during the passage of a cyclone from 2 to 5 September 2016

      图  8  1979-2022年间9月(a)影响南极海冰密集度发生变化的气旋密度分布总值;(b)受气旋经过影响的南极海冰密集度变化年均值;(c)能影响南极海冰面积发生变化的气旋数量(左轴橙色折线)和气旋影响的南极海冰面积变化(右轴蓝色折线)

      图c中蓝色虚线为气旋影响的南极海冰面积变化44年均值(1.30×106 km2);蓝色实线为海冰面积变化0值,右上角为气旋数量与南极海冰面积变化的相关系数.图a和b中两条黑色实线为1979-2022年9月的最大和最小海冰边界线,黑线之间的区域即为海冰边缘区

      Fig.  8.  Total density distribution of cyclones causing changes in SIC (a), annual mean of SIC changes caused by cyclones (b), and number of cyclones affecting SIE (left axis, orange line) and SIE anomalies caused by cyclones (right axis, blue line) (c) in September from 1979 to 2022

      图  9  1979-2022年9月受气旋经过影响的海冰密集度变化与南极海冰密集度(a)和海冰密集度异常值(b)的相关性

      打点区域通过了95%显著性检验.两条黑色实线为1979-2022年9月的最大和最小海冰边缘线,黑线之间的区域即为海冰边缘区

      Fig.  9.  Correlation between SIC anomalies caused by cyclones and Antarctic SIC (a), and SIC anomalies (b) in September from 1979 to 2022

      图  10  1979-2022年南极海冰多冰22年和少冰22年的9月海冰密集度年均差值(a)和受气旋经过影响的海冰密集度变化年均差值(b)(单位:%)

      右上角数值为南极海冰面积总变化(单位:106 km2).两条黑色实线为1979-2022年9月的最大和最小海冰边缘线,黑线之间的区域即为海冰边缘区

      Fig.  10.  Annual mean SIC difference (a) and annual mean difference of SIC anomalies caused by cyclones (b) between the top 22 and the bottom 22 years of SIE in September from 1979 to 2022 (unit: %)

      图  11  1979-2022年南极少冰22年(a)和多冰22年(b)的9月受气旋经过影响的海冰密集度变化年均值(单位:%)

      小图右上角数值为南极海冰面积总变化(单位:106 km2);两条黑色实线为1979-2022年9月的最大和最小海冰边缘线,黑线之间的区域即为海冰边缘区

      Fig.  11.  Average annual SIC anomalies caused by cyclones during the bottom 22 years (a) and top 22 years (b) of SIE in September from 1979 to 2022 (unit: %)

    • Alberello, A., Bennetts, L., Heil, P., et al., 2020. Drift of Pancake Ice Floes in the Winter Antarctic Marginal Ice Zone during Polar Cyclones. Journal of Geophysical Research: Oceans, 125(3): e2019JC015418. https://doi.org/10.1029/2019JC015418
      Bracegirdle, T. J., Kolstad, E. W., 2010. Climatology and Variability of Southern Hemisphere Marine Cold-Air Outbreaks. Tellus a: Dynamic Meteorology and Oceanography, 62(2): 202-208. https://doi.org/10.1111/j.1600-0870.2009.00431.x
      Comiso, J. C., Zwally, H. J., 1984. Concentration Gradients and Growth/Decay Characteristics of the Seasonal Sea Ice Cover. Journal of Geophysical Research: Oceans, 89(C5): 8081-8103. https://doi.org/10.1029/JC089iC05p08081
      Dumont, D., Kohout, A., Bertino, L., 2011. A Wave-Based Model for the Marginal Ice Zone Including a Floe Breaking Parameterization. Journal of Geophysical Research: Oceans, 116: C04001. https://doi.org/10.1029/2010JC006682
      Eayrs, C., Li, X. C., Raphael, M. N., et al., 2021. Rapid Decline in Antarctic Sea Ice in Recent Years Hints at Future Change. Nature Geoscience, 14(7): 460-464. https://doi.org/10.1038/s41561-021-00768-3
      Francis, D., Eayrs, C., Cuesta, J., et al., 2019. Polar Cyclones at the Origin of the Reoccurrence of the Maud Rise Polynya in Austral Winter 2017. Journal of Geophysical Research: Atmospheres, 124(10): 5251-5267. https://doi.org/10.1029/2019JD030618
      Goldfarb, D., 1969. Extension of Davidon's Variable Metric Method to Maximization under Linear Inequality and Equality Constraints. SIAM Journal on Applied Mathematics, 17(4): 739-764. https://doi.org/10.1137/0117067
      Gramcianinov, C. B., Hodges, K. I., Camargo, R., 2019. The Properties and Genesis Environments of South Atlantic Cyclones. Climate Dynamics, 53(7-8): 4115-4140. https://doi.org/10.1007/s00382-019-04778-1
      Guo, Y. Y., Chen, X. D., Huang, S. H., et al., 2023. Amplified Interannual Variation of the Summer Sea Ice in the Weddell Sea, Antarctic after the Late 1990s. Geophysical Research Letters, 50(17): e2023GL104924. https://doi.org/10.1029/2023GL104924
      Hepworth, E., Messori, G., Vichi, M., 2022. Association between Extreme Atmospheric Anomalies over Antarctic Sea Ice, Southern Ocean Polar Cyclones and Atmospheric Rivers. Journal of Geophysical Research: Atmospheres, 127(7): e2021JD036121. https://doi.org/10.1029/2021JD036121
      Hodges, K. I., 1994. A General Method for Tracking Analysis and Its Application to Meteorological Data. Monthly Weather Review, 122(11): 2573-2586. https://doi.org/10.1175/1520-0493(1994)1222573:agmfta>2.0.co;2 doi: 10.1175/1520-0493(1994)1222573:agmfta>2.0.co;2
      Hodges, K. I., 1995. Feature Tracking on the Unit Sphere. Monthly Weather Review, 123(12): 3458-3465. https://doi.org/10.1175/1520-0493(1995)1233458:ftotus>2.0.co;2 doi: 10.1175/1520-0493(1995)1233458:ftotus>2.0.co;2
      Hodges, K. I., 1999. Adaptive Constraints for Feature Tracking. Monthly Weather Review, 127(6): 1362-1373. https://doi.org/10.1175/1520-0493(1999)1271362:acfft>2.0.co;2 doi: 10.1175/1520-0493(1999)1271362:acfft>2.0.co;2
      Holland, M. M., Landrum, L., Kostov, Y., et al., 2017. Sensitivity of Antarctic Sea Ice to the Southern Annular Mode in Coupled Climate Models. Climate Dynamics, 49(5): 1813-1831. https://doi.org/10.1007/s00382-016-3424-9
      Hoskins, B. J., Hodges, K. I., 2005. A New Perspective on Southern Hemisphere Storm Tracks. Journal of Climate, 18(20): 4108-4129. https://doi.org/10.1175/jcli3570.1
      Kim, J., Kang, D., Lee, M. I., et al., 2023. Remote Influences of ENSO and IOD on the Interannual Variability of the West Antarctic Sea Ice. Journal of Geophysical Research: Atmospheres, 128(10): e2022JD038313. https://doi.org/10.1029/2022JD038313
      Kohout, A. L., Williams, M. J. M., Dean, S. M., et al., 2014. Storm-Induced Sea-Ice Breakup and the Implications for Ice Extent. Nature, 509(7502): 604-607. https://doi.org/10.1038/nature13262
      Laine, V., 2004. Arctic Sea Ice Regional Albedo Variability and Trends, 1982-1998. Journal of Geophysical Research: Oceans, 109(C6): C06027. https://doi.org/10.1029/2003JC001818
      Lefebvre, W., Goosse, H., Timmermann, R., et al., 2004. Influence of the Southern Annular Mode on the Sea Ice-Ocean System. Journal of Geophysical Research: Oceans, 109(C9): C09005. https://doi.org/10.1029/2004JC002403
      Marshall, G. J., 2003. Trends in the Southern Annular Mode from Observations and Reanalyses. Journal of Climate, 16(24): 4134-4143. https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
      Massom, R. A., Stammerjohn, S. E., 2010. Antarctic Sea Ice Change and Variability-Physical and Ecological Implications. Polar Science, 4(2): 149-186. https://doi.org/10.1016/j.polar.2010.05.001
      Matear, R. J., O'Kane, T. J., Risbey, J. S., et al., 2015. Sources of Heterogeneous Variability and Trends in Antarctic Sea-Ice. Nature Communications, 6: 8656. https://doi.org/10.1038/ncomms9656
      Meehl, G. A., Arblaster, J. M., Chung, C. T. Y., et al., 2019. Sustained Ocean Changes Contributed to Sudden Antarctic Sea Ice Retreat in Late 2016. Nature Communications, 10: 14. https://doi.org/10.1038/s41467-018-07865-9
      Papritz, L., Pfahl, S., Rudeva, I., et al., 2014. The Role of Extratropical Cyclones and Fronts for Southern Ocean Freshwater Fluxes. Journal of Climate, 27(16): 6205-6224. https://doi.org/10.1175/jcli-d-13-00409.1
      Pezza, A. B., Rashid, H. A., Simmonds, I., 2012. Climate Links and Recent Extremes in Antarctic Sea Ice, High-Latitude Cyclones, Southern Annular Mode and ENSO. Climate Dynamics, 38(1): 57-73. https://doi.org/10.1007/s00382-011-1044-y
      Reboita, M. S., da Rocha, R. P., Ambrizzi, T., et al., 2015. Trend and Teleconnection Patterns in the Climatology of Extratropical Cyclones over the Southern Hemisphere. Climate Dynamics, 45(7): 1929-1944. https://doi.org/10.1007/s00382-014-2447-3
      Schroeter, S., Hobbs, W., Bindoff, N. L., 2017. Interactions between Antarctic Sea Ice and Large-Scale Atmospheric Modes in CMIP5 Models. The Cryosphere, 11(2): 789-803. https://doi.org/10.5194/tc-11-789-2017
      Sigmond, M., Fyfe, J. C., 2014. The Antarctic Sea Ice Response to the Ozone Hole in Climate Models. Journal of Climate, 27(3): 1336-1342. https://doi.org/10.1175/jcli-d-13-00590.1
      Smith, K. L., Polvani, L. M., Marsh, D. R., 2012. Mitigation of 21st Century Antarctic Sea Ice Loss by Stratospheric Ozone Recovery. Geophysical Research Letters, 39(20): L20701. https://doi.org/10.1029/2012GL053325
      Song, L., Wu, R. G., Chen, W., et al., 2023. Intraseasonal Sea Ice Concentration Variability over the Weddell Sea during Austral Autumn. Geophysical Research Letters, 50(9): e2022GL102691. https://doi.org/10.1029/2022GL102691
      Thompson, D. W. J., Solomon, S., Kushner, P. J., et al., 2011. Signatures of the Antarctic Ozone Hole in Southern Hemisphere Surface Climate Change. Nature Geoscience, 4(11): 741-749. https://doi.org/10.1038/ngeo1296
      Turner, J., Chenoli, S. N., Abu Samah, A., et al., 2009. Strong Wind Events in the Antarctic. Journal of Geophysical Research: Atmospheres, 114: D18103. https://doi.org/10.1029/2008JD011642
      Turner, J., Holmes, C., Harrison, T. C., et al., 2022. Record Low Antarctic Sea Ice Cover in February 2022. Geophysical Research Letters, 49(12): e2022GL098904. https://doi.org/10.1029/2022GL098904
      Uotila, P., Vihma, T., Tsukernik, M., 2013. Close Interactions between the Antarctic Cyclone Budget and Large-Scale Atmospheric Circulation. Geophysical Research Letters, 40(12): 3237-3241. https://doi.org/10.1002/grl.50560
      Vichi, M., Eayrs, C., Alberello, A., et al., 2019. Effects of an Explosive Polar Cyclone Crossing the Antarctic Marginal Ice Zone. Geophysical Research Letters, 46(11): 5948-5958. https://doi.org/10.1029/2019GL082457
      Wang, X. Q., Zhang, Z. R., Wang, X. Z., et al., 2021. Impacts of Strong Wind Events on Sea Ice and Water Mass Properties in Antarctic Coastal Polynyas. Climate Dynamics, 57(11): 3505-3528. https://doi.org/10.1007/s00382-021-05878-7
      Wang, Z. M., Turner, J., Sun, B., et al., 2014. Cyclone-Induced Rapid Creation of Extreme Antarctic Sea Ice Conditions. Scientific Reports, 4: 5317. https://doi.org/10.1038/srep05317
      Womack, A., Vichi, M., Alberello, A., et al., 2022. Atmospheric Drivers of a Winter-to-Spring Lagrangian Sea-Ice Drift in the Eastern Antarctic Marginal Ice Zone. Journal of Glaciology, 68(271): 999-1013. https://doi.org/10.1017/jog.2022.14
      Yadav, J., Kumar, A., Mohan, R., 2022. Atmospheric Precursors to the Antarctic Sea Ice Record Low in February 2022. Environmental Research Communications, 4(12): 121005. https://doi.org/10.1088/2515-7620/aca5f2
      Yu, L. J., Zhong, S. Y., Sui, C. J., et al., 2021. Synoptic Mode of Antarctic Summer Sea Ice Superimposed on Interannual and Decadal Variability. Advances in Climate Change Research, 12(2): 147-161. https://doi.org/10.1016/j.accre.2021.03.008
      Zhan, X. Y., Chen, L., 2023. Climatology and Changes in Extratropical Cyclone Activity in the Southern Hemisphere during Austral Winters from 1948 to 2017. Journal of Applied Meteorology and Climatology, 62(8): 971-983. https://doi.org/10.1175/JAMC-D-22-0061.1
      Zhang, C., Li, T., Li, S. L., 2021. Impacts of CP- and EP-El Niño Events on the Antarctic Sea Ice in Austral Spring. Journal of Climate, 34(23): 9327-9348. https://doi.org/10.1175/jcli-d-21-0002.1
    • 加载中
    图(11)
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  6
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-29
    • 网络出版日期:  2025-10-10
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回