• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泰国东南部黎府带晚三叠世碰撞后火山岩成因及其古特提斯构造意义

    闫秋彤 钱鑫 张菲菲 MongkolUdchachon 王逸文

    闫秋彤, 钱鑫, 张菲菲, MongkolUdchachon, 王逸文, 2025. 泰国东南部黎府带晚三叠世碰撞后火山岩成因及其古特提斯构造意义. 地球科学, 50(6): 2144-2162. doi: 10.3799/dqkx.2024.112
    引用本文: 闫秋彤, 钱鑫, 张菲菲, MongkolUdchachon, 王逸文, 2025. 泰国东南部黎府带晚三叠世碰撞后火山岩成因及其古特提斯构造意义. 地球科学, 50(6): 2144-2162. doi: 10.3799/dqkx.2024.112
    Yan Qiutong, Qian Xin, Zhang Feifei, Mongkol Udchachon, Wang Yiwen, 2025. Petrogenesis of Late Triassic Post-Collisional Volcanic Rocks from Loei Zone in Southeastern Thailand and Its Paleotethyan Tectonic Implications. Earth Science, 50(6): 2144-2162. doi: 10.3799/dqkx.2024.112
    Citation: Yan Qiutong, Qian Xin, Zhang Feifei, Mongkol Udchachon, Wang Yiwen, 2025. Petrogenesis of Late Triassic Post-Collisional Volcanic Rocks from Loei Zone in Southeastern Thailand and Its Paleotethyan Tectonic Implications. Earth Science, 50(6): 2144-2162. doi: 10.3799/dqkx.2024.112

    泰国东南部黎府带晚三叠世碰撞后火山岩成因及其古特提斯构造意义

    doi: 10.3799/dqkx.2024.112
    基金项目: 

    国家自然科学基金项目 42330302

    国家自然科学基金项目 42172235

    南方海洋科学与工程广东省实验室(珠海) SML2023SP239

    详细信息
      作者简介:

      闫秋彤(2001-),女,硕士研究生,岩石学矿物学矿床学专业.ORCID:0009-0000-5429-2668. E-mail:yanqt3@mail2.sysu.edu.cn

      通讯作者:

      钱鑫, 教授, 博士生导师, 从事东南亚大地构造研究. ORCID: 0000-0002-3587-861X. E-mail: qianx3@mail.sysu.edu.cn

    • 中图分类号: P581

    Petrogenesis of Late Triassic Post-Collisional Volcanic Rocks from Loei Zone in Southeastern Thailand and Its Paleotethyan Tectonic Implications

    • 摘要: 泰国位于东古特提斯构造域的核心位置,保存了多条与古特提斯洋俯冲-碰撞-闭合演化有关的构造岩浆岩带.但目前对于其中黎府带早中生代火山岩的研究仍存在不足,其相关的岩石成因和构造属性未能得到有效限定.因此,针对泰国东南部黎府带出露的晚三叠世火山岩开展了详细的岩相学、锆石U-Pb年代学、地球化学以及Sr-Nd-Hf同位素研究,并结合区域对比综合分析了东古特提斯构造域晚三叠世岩浆活动及其动力学机制.该套样品包括了玄武岩、流纹岩和英安岩,锆石U-Pb定年表明其形成年龄为晚三叠世(204~200 Ma).其中玄武岩样品具有富铌玄武岩的特征,其对应的(87Sr/86Sr)i =0.703 98~0.704 00,εNdt)=+5.0~+5.3,εHft)=+0.3~+15.5.长英质火山岩样品具有A型特征,且与玄武岩样品具相似的同位素组成,其对应的(87Sr/86Sr)i =0.702 71~0.704 72,εHft)=+4.0~+4.2,εNdt)=+6.8~+16.0.地球化学特征表明该套玄武岩样品来自类似OIB特征的亏损软流圈地幔源区,而长英质火山岩可能来自该套新底侵的基性岩经低程度部分熔融.区域对比表明该套晚三叠世火山岩形成于古特提斯洋碰撞后伸展背景,是东古特提斯洋碰撞闭合后最晚期的岩浆活动.年代学数据对比显示黎府带与清孔-南邦-塔克火山岩带均具有相似的三叠纪年龄谱系,证实了在中-晚三叠世时期黎府带也同样记录了东古特提斯洋碰撞及碰撞后的岩浆作用.

       

    • 图  1  东南亚地区区域构造图(a)和研究区地质简图(b)

      图a据Wang et al.(2018)余永琪等(2024);图b据Qian et al.(2022)

      Fig.  1.  Regional tectonic framework (a) and simplified geological map of study area (b)

      图  2  泰国东南部黎府带火山岩野外露头(a~c)和正交偏光镜下显微岩相学特征(d~f)

      矿物缩写:Pl. 斜长石;Qtz. 石英;Cpx. 辉石;Chl. 绿泥石

      Fig.  2.  Field photo (a-c) and photomicrographs (d-f) for the volcanic rocks in the Loei zone of SE Thailand

      图  3  泰国东南部黎府带火山岩锆石U-Pb年龄谐和图(a~e)和锆石年龄-εHf(t)图解(f)

      Fig.  3.  U-Pb concordia diagrams (a-e) and plot of age (Ma) vs. εHf(t) for zircon grains (f) from the volcanic rocks in the Loei zone of SE Thailand

      图  4  泰国东南部黎府带火山岩图解

      a. TAS,据Le Maitre et al.(1989);b. Co-Th,据Hastie et al.(2007);c. Nb-Nb/U,据Kepezhinskas et al.(1996);d. Zr+Nb+Ce+Y-(K2O+Na2O)/CaO;e. Nb-Y-Ga

      Fig.  4.  Diagrams for the volcanic rocks in the Loei zone of SE Thailand

      图  5  泰国东南部黎府带火山岩球粒陨石标准化稀土元素配分曲线(a、c)和原始地幔标准化微量元素蛛网图(b、d)

      背景数据引自Qian et al.(2017a)Nualkhao et al.(2018)Shi et al.(20192021)Uchida et al.(2022,2023);球粒陨石和原始地幔标准化数据引自Sun and McDonough(1989)

      Fig.  5.  Primitive mantlenormalized spidergram (a, c) and Chondritenormalized REE pattern (b, d) for the volcanic rocks in the Loei zone of SE Thailand

      图  6  泰国东南部黎府带火山岩Sr-Nd同位素图解

      底图据Zi et al.(2012)Qian et al.(2021);背景数据来自Qian et al.(2016a2016b2017a2020)Wang et al.(2018)Uchida et al.(20222023)及其参考文献

      Fig.  6.  Plot of Sr vs. Nd isotopic data for the volcanic rocks in the Loei zone of SE Thailand

      图  7  泰国东南部黎府带火山岩La-La/Sm (a)、Mg#-CaO/Al2O3 (b)、Zr-Th/Ta (c)、Rb/Sr-Rb/Ba(d)和部分熔融程度(e)模拟图解

      图c据Liu et al.(2021);图d据Sylvester(1998)

      Fig.  7.  Plots of La-La/Sm (a), Mg#-CaO/Al2O3 (b), Zr-Th/Ta (c), Rb/Sr-Rb/Ba (d) and partial melting degree simulation (e) for the volcanic rocks in the Loei zone of SE Thailand

      图  8  黎府带及其邻区火成岩年龄分布图(a)和年龄频谱图(b)

      年代学数据来自Barr et al.(20002006)Srichan et al.(2009)Qian et al.(201320152016a2016b2017a20212022)Kamvong et al.(2014)Salam et al.(2014)Arboit et al.(2016)Fanka et al.(20162018)Yang et al.(2016)Shi et al.(20192021)Wang et al.(2020)Nualkhao et al.(2018)Uchida et al.(20222023)和本研究

      Fig.  8.  The distribution (a) and spectrogram (b) of formation ages for the igneous rocks along the Loei zone and surrounding areas

      图  9  泰国东南部黎府带火山岩构造环境判别图

      图a据Meschede(1986);图b据Pearce et al.(1996)

      Fig.  9.  Tectonic discrimination diagrams for the volcanic rocks in the Loei zone of SE Thailand

      图  10  东古特提斯晚三叠世后碰撞伸展背景岩浆活动示意图

      Fig.  10.  Tectonic cartoon showing the Paleotethyan extensional regime following the post-collision during the Late Triassic

    • Aguillón-Robles, A., Calmus, T., Benoit, M., et al., 2001. Late Miocene Adakites and Nb-Enriched Basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise Subduction below Southern Baja California? Geology, 29(6): 531-534. https://doi.org/10.1130/0091-7613(2001)029<0531:lmaane>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0531:lmaane>2.0.co;2
      Arboit, F., Collins, A. S., Morley, C. K., et al., 2016. Geochronological and Geochemical Studies of Mafic and Intermediate Dykes from the Khao Khwang Fold-Thrust Belt: Implications for Petrogenesis and Tectonic Evolution. Gondwana Research, 36: 124-141. https://doi.org/10.1016/j.gr.2016.04.005
      Barr, S. M., Charusiri, P., 2011. Volcanic Rocks. In: Ridd, M. F., ed., The Geology of Thailand. Geological Society of London, London. https://doi.org/10.1144/goth.15
      Barr, S. M., MacDonald, A. S., Dunning, G. R., et al., 2000. Petrochemistry, U-Pb (Zircon) Age, and Palaeotectonic Setting of the Lampang Volcanic Belt, Northern Thailand. Journal of the Geological Society, 157(3): 553-563. https://doi.org/10.1144/jgs.157.3.553
      Barr, S. M., MacDonald, A. S., Ounchanum, P., et al., 2006. Age, Tectonic Setting and Regional Implications of the Chiang Khong Volcanic Suite, Northern Thailand. Journal of the Geological Society, 163(6): 1037-1046. https://doi.org/10.1144/0016-76492005-118
      Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Brown, S. J. A., Barley, M. E., Krapež, B., et al., 2002. The Late Archaean Melita Complex, Eastern Goldfields, Western Australia: Shallow Submarine Bimodal Volcanism in a Rifted Arc Environment. Journal of Volcanology and Geothermal Research, 115(3-4): 303-327. https://doi.org/10.1016/s0377-0273(01)00314-6
      Bunopas, S., 1981. Paleogeographic History of Western Thailand and Adjacent Parts of Southeast Asia: A Plate Tectonic Interpretation. Department of Mineral Resources of Thailand, Bangkok, Thailand. Geological Survey of Thailand, Special Paper, 5: 1-810.
      Castillo, P. R., 2008. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. GSA Bulletin, 120(3-4): 451-462. https://doi.org/10.1130/b26166.1
      Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255(1-2): 70-84. https://doi.org/10.1016/j.epsl.2006.12.006
      Cawood, P. A., Williams, H., 1988. Acadian Basement Thrusting, Crustal Delamination, and Structural Styles in and around the Humber Arm Allochthon, Western Newfoundland. Geology, 16(4): 370-373. https://doi.org/10.1130/0091-7613(1988)0160370:abtcda>2.3.co;2 doi: 10.1130/0091-7613(1988)0160370:abtcda>2.3.co;2
      Chairangsee, C., Hinze, C., Machareonsap, S., et al., 1990. Geological Map of Thailand 1: 50 000-Explanation for the Sheets 5345 Ⅱ (Amphoe Pak Chom), 5344 Ⅰ (Ban Na Kho), 5445 Ⅲ (Ban Huai Khop) and 5444 Ⅳ (King Amphoe Nam Som). Geologisches Jahrbuch Reihe B, 73: 3-55.
      Charusiri, P., Clark, A. H., Farrar, E., et al., 1993. Granite Belts in Thailand: Evidence from the 40Ar/39Ar Geochronological and Geological Syntheses. Journal of Southeast Asian Earth Sciences, 8(1-4): 127-136. https://doi.org/10.1016/0743-9547(93)90014-g
      Charusiri, P., Daorerk, V., Archibald, D., et al., 2002, Geotectonic Evolution of Thailand: A New Synthesis. Journal of the Geological Society of Thailand, 1: 1-20.
      Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895
      Davies, G. R., MacDonald, R., 1987. Crustal Influences in the Petrogenesis of the Naivasha Basalt—Comendite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints. Journal of Petrology, 28(6): 1009-1031. https://doi.org/10.1093/petrology/28.6.1009
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2013. Zircon U-Pb Dating and the Petrological and Geochemical Constraints on Lincang Granite in Western Yunnan, China: Implications for the Closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294. https://doi.org/10.1016/j.jseaes.2012.10.003
      Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1-2): 115-134. https://doi.org/10.1016/0024-4937(90)90043-z
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      Fan, J. J., Zhang, B. C., Zhou, J. B., et al., 2024. The Meso-Tethys Ocean: The Nature, Extension and Spatial-Temporal Evolution. Earth-Science Reviews, 255: 104839. https://doi.org/10.1016/j.earscirev.2024.104839
      Fan, W. M., Wang, Y. J., Zhang, A. M., et al., 2010. Permian Arc-back-Arc Basin Development along the Ailaoshan Tectonic Zone: Geochemical, Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks, Southwest China. Lithos, 119(3-4): 553-568. https://doi.org/10.1016/j.lithos.2010.08.010
      Fanka, A., Tsunogae, T., Daorerk, V., et al., 2016. Petrochemistry and Mineral Chemistry of Late Permian Hornblendite and Hornblende Gabbro from the Wang Nam Khiao Area, Nakhon Ratchasima, Thailand: Indication of Palaeo-Tethyan Subduction. Journal of Asian Earth Sciences, 130: 239-255. https://doi.org/10.1016/j.jseaes.2016.11.018
      Fanka, A., Tsunogae, T., Daorerk, V., et al., 2018. Petrochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Wang Nam Khiao Area, Nakhon Ratchasima, Thailand: Implications for Petrogenesis and Tectonic Setting. Journal of Asian Earth Sciences, 157: 92-118. https://doi.org/10.1016/j.jseaes.2017.08.025
      Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2004. Long-Lived Paleotethyan Pelagic Remnant inside Shan-Thai Block: Evidence from Radiolarian Biostratigraphy. Science in China: Earth Sciences, 47(12): 1113-1119. https://doi.org/10.1360/03yd0085
      Feng, Q. L., Chonglakmani, C., Ingavat-Helmcke, R., 2009. Evolution of the Loei Fold Belt in Northeastern Thailand and Northwestern Laos. Acta Geoscientica Sinica, 30(Suppl. 1): 9. https://doi.org/10.3975/cagsb.2009.s1.06
      Feng, Q. L., Yang, W. Q., Shen, S. Y., et al., 2008. The Permian Seamount Stratigraphic Sequence in Chiang Mai, North Thailand and Its Tectogeographic Significance. Science in China: Earth Sciences, 51(12): 1768-1775. https://doi.org/10.1007/s11430-008-0121-5
      Frisch, W., Dunkl, I., Kuhlemann, J., 2000. Post-Collisional Orogen-Parallel Large-Scale Extension in the Eastern Alps. Tectonophysics, 327(3-4): 239-265. https://doi.org/10.1016/s0040-1951(00)00204-3
      Frost, C. D., Ronald Frost, B., 1997. Reduced Rapakivi-Type Granites: The Tholeiite Connection. Geology, 25(7): 647-650. https://doi.org/10.1130/0091-7613(1997)0250647:rrtgtt>2.3.co;2 doi: 10.1130/0091-7613(1997)0250647:rrtgtt>2.3.co;2
      Griffin, W. L., Powell, W. J., Pearson, N. J., et al., 2008. Appendix A2: Glitter: Data Reduction Software for Laser Ablation ICP-MS. In: Sylvester, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, Canada, 308-311. https://doi.org/10.3749/9780921294801.app02
      Guo, L. N., Deng, J., Hou, L., et al., 2024. Gold Source and Deposition in the Sanakham Gold Deposit, SW Laos: Constrains from Textures, Trace Element Geochemistry and In-Situ Sulfur Isotopes of Pyrite. Ore Geology Reviews, 167: 106003. https://doi.org/10.1016/j.oregeorev.2024.106003
      Hara, H., Charoentitirat, T., Tokiwa, T., et al., 2024. Record of the Indosinian Orogeny from Conglomerates and Detrital Zircon U-Pb Ages of the Western Indochina Block, Central Thailand. Gondwana Research, 128: 368-389. https://doi.org/10.1016/j.gr.2023.11.009
      Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
      Hutchison, C. S., Tan, D. N. K., 2009. Geology of Peninsular Malaysia. The University of Malaya and the Geological Society of Malaysia, Kuala Lumpur.
      Ito, T., Qian, X., Feng, Q. L., 2016. Geochemistry of Triassic Siliceous Rocks of the Muyinhe Formation in the Changning-Menglian Belt of Southwest China. Journal of Earth Science, 27(3): 403-411. https://doi.org/10.1007/s12583-016-0672-x
      Jin, J. J., Qian, X., Senebouttalath, V., et al., 2024. Provenance and Paleogeographic Evolution of The Upper Paleozoic-Lower Mesozoic Strata in Northern Laos. Journal of Earth Science. https://doi.org/10.1007/s12583-024-0011-6
      Kamvong, T., Zaw, K., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165-184. https://doi.org/10.1016/j.gr.2013.06.011
      Kepezhinskas, P., Defant, M. J., Drummond, M. S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred from Kamchatka Xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229. https://doi.org/10.1016/0016-7037(96)00001-4
      Kerr, A., Fryer, B. J., 1993. Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. https://doi.org/10.1016/0009-2541(93)90141-5
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. International Union of Geological Sciences, Blackwell, Oxford.
      Li, H. L., Qian, X., Yu, X. Q., et al., 2023. Petrogenesis of Triassic Granites from Kontum Massif in Vietnam and Its Tethyan Tectonic Implications. Earth Science, 48(4): 1441-1460(in Chinese with English abstract).
      Li, Y. X., Yin, C. Q., Lin, S. F., et al., 2021. Geochronology and Geochemistry of Bimodal Volcanic Rocks from the Western Jiangnan Orogenic Belt: Petrogenesis, Source Nature and Tectonic Implication. Precambrian Research, 359: 106218. https://doi.org/10.1016/j.precamres.2021.106218
      Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for a Type Rock Suites. Geological Journal of China Universities, 9(4): 573-591(in Chinese with English abstract).
      Liu, G. C., Li, J., Qian, X., et al., 2021. Geochronological and Geochemical Constraints on the Petrogenesis of Late Mesoproterozoic Mafic and Granitic Rocks in the Southwestern Yangtze Block. Geoscience Frontiers, 12(1): 39-52. https://doi.org/10.1016/j.gsf.2020.07.005
      Liu, H. C., Wang, Y. J., Cawood, P. A., et al., 2017. Episodic Slab Rollback and Back-Arc Extension in the Yunnan-Burma Region: Insights from Cretaceous Nb-Enriched and Oceanic-Island Basalt-Like Mafic Rocks. Geological Society of America Bulletin, 129(5-6): 698-714. https://doi.org/10.1130/b31604.1
      Ludwig, K. R., 2001. Using Isoplot/EX, Version 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publications, Berkeley.
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605-623. https://doi.org/10.1080/08120099608728282
      Metcalfe, I., 2000. The Bentong-Raub Suture Zone. Journal of Asian Earth Sciences, 18(6): 691-712. https://doi.org/10.1016/s1367-9120(00)00043-2
      Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551-566. https://doi.org/10.1016/s1367-9120(02)00022-6
      Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9(1-2): 24-46. https://doi.org/10.1016/j.gr.2005.04.002
      Metcalfe, I., 2011. Palaeozoic-Mesozoic History of SE Asia. Geological Society, London, Special Publications, 355(1): 7-35. https://doi.org/10.1144/sp355.2
      Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012
      Mingram, B., Trumbull, R. B., Littman, S., et al., 2000. A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia: Evidence for Mixing of Crust and Mantle-Derived Components. Lithos, 54(1-2): 1-22. https://doi.org/10.1016/s0024-4937(00)00033-5
      Namur, O., Charlier, B., Toplis, M. J., et al., 2011. Differentiation of Tholeiitic Basalt to A-Type Granite in the Sept Iles Layered Intrusion, Canada. Journal of Petrology, 52(3): 487-539. https://doi.org/10.1093/petrology/egq088
      Nie, Z. T., Liang, D. Y., Song, Z. M., et al., 1997. Discovery of Permian Pro-Gondwanan Facies in Western Margin of Simao Massif and Its Significance. Geoscience, 11(3): 261-267(in Chinese with English abstract).
      Nualkhao, P., Takahashi, R., Imai, A., et al., 2018. Petrochemistry of Granitoids along the Loei Fold Belt, Northeastern Thailand. Resource Geology, 68(4): 395-424. https://doi.org/10.1111/rge.12176
      Oliver, G., Zaw, K., Hotson, M., et al., 2014. U-Pb Zircon Geochronology of Early Permian to Late Triassic Rocks from Singapore and Johor: A Plate Tectonic Reinterpretation. Gondwana Research, 26(1): 132-143. https://doi.org/10.1016/j.gr.2013.03.019
      Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Peng, T. P., Wang, Y. J., Fan, W. M., et al., 2006. SHRIMP Zircon U-Pb Geochronology of Early Mesozoic Felsic Igneous Rocks from the Southern Lancangjiang and Its Tectonic Implications. Science in China (Series D), 49(10): 1032-1042. https://doi.org/10.1007/s11430-006-1032-y
      Peng, T. P., Wilde, S. A., Wang, Y. J., et al., 2013. Mid-Triassic Felsic Igneous Rocks from the Southern Lancangjiang Zone, SW China: Petrogenesis and Implications for the Evolution of Paleo-Tethys. Lithos, 168: 15-32. https://doi.org/10.1016/j.lithos.2013.01.015
      Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921-944. https://doi.org/10.1093/petrology/egi005
      Qian, X., Feng, Q. L., Chonglakmani, C., et al., 2013. Geochemical and Geochronological Constrains on the Chiang Khong Volcanic Rocks (Northwestern Thailand) and Its Tectonic Implications. Frontiers of Earth Science, 7(4): 508-521. https://doi.org/10.1007/s11707-013-0399-2
      Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016a. Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 245: 60-75. https://doi.org/10.1016/j.lithos.2015.07.019
      Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016b. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. Journal of Earth Science, 27(3): 365-377. https://doi.org/10.1007/s12583-016-0669-5
      Qian, X., Feng, Q. L., Wang, Y. J., et al., 2017a. Late Triassic Post-Collisional Granites Related to Paleotethyan Evolution in SE Thailand: Geochronological and Geochemical Constraints. Lithos, 286: 440-453. https://doi.org/10.1016/j.lithos.2017.06.026
      Qian, X., Wang, Y. J., Srithai, B., et al., 2017b. Geochronological and Geochemical Constraints on the Intermediate-Acid Volcanic Rocks along the Chiang Khong-Lampang-Tak Igneous Zone in NW Thailand and Their Tectonic Implications. Gondwana Research, 45: 87-99. https://doi.org/10.1016/j.gr.2016.12.011
      Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342-357. https://doi.org/10.1016/j.jseaes.2014.11.035
      Qian, X., Ma, S., Lu, X. H., et al., 2022. Late Permian Ultrapotassic Rhyolites in SE Thailand: Evidence for a Palaeotethyan Continental Rift Basin. Journal of the Geological Society, 179(2): jgs2021-jgs2079. https://doi.org/10.1144/jgs2021-079
      Qian, X., Wang, Y. J., Zhang, Y. Z., et al., 2019. Petrogenesis of Permian-Triassic Felsic Igneous Rocks along the Truong Son Zone in Northern Laos and Their Paleotethyan Assembly. Lithos, 328: 101-114. https://doi.org/10.1016/j.lithos.2019.01.006
      Qian, X., Wang, Y. J., Zhang, Y. Z., et al., 2020. Late Triassic Post-Collisional Granites Related to Paleotethyan Evolution in Northwestern Lao PDR: Geochronological and Geochemical Evidence. Gondwana Research, 84: 163-176. https://doi.org/10.1016/j.gr.2020.03.002
      Qian, X., Wang, Y. J., Zhang, Y. Z., et al., 2021. Constraints of Late Triassic Mafic-Felsic Volcanic Rocks in Northwestern Laos on the Eastern Paleotethyan Post-Collisional Setting. Journal of Asian Earth Sciences, 218: 104889. https://doi.org/10.1016/j.jseaes.2021.104889
      Ridd, M. F., 2015. East Flank of the Sibumasu Block in NW Thailand and Myanmar and Its Possible Northward Continuation into Yunnan: A Review and Suggested Tectono-Stratigraphic Interpretation. Journal of Asian Earth Sciences, 104: 160-174. https://doi.org/10.1016/j.jseaes.2014.01.023
      Ridd, M. F., Barber, A. J., Crow, M. J., 2011. The Geology of Thailand. Geological Society of London, London. https://doi.org/10.1144/goth
      Salam, A., Zaw, K., Meffre, S., et al., 2014. Geochemistry and Geochronology of the Chatree Epithermal Gold-Silver Deposit: Implications for the Tectonic Setting of the Loei Fold Belt, Central Thailand. Gondwana Research, 26(1): 198-217. https://doi.org/10.1016/j.gr.2013.10.008
      Sashida, K., Igo, H., Hisafa, K. I., et al., 1993. Occurrence of Paleozoic and Early Mesozoic Radiolaria in Thailand (Preliminary Report). Journal of Southeast Asian Earth Sciences, 8(1-4): 97-108. https://doi.org/10.1016/0743-9547(93)90011-d
      Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. https://doi.org/10.1126/science.1061372
      Searle, M. P., Whitehouse, M. J., Robb, L. J., et al., 2012. Tectonic Evolution of the Sibumasu-Indochina Terrane Collision Zone in Thailand and Malaysia: Constraints from New U-Pb Zircon Chronology of SE Asian Tin Granitoids. Journal of the Geological Society, 169(4): 489-500. https://doi.org/10.1144/0016-76492011-107
      Shi, M. F., Khin, Z., Liu, S. S., et al., 2021. Geochronology and Petrogenesis of Carboniferous and Triassic Volcanic Rocks in NW Laos: Implications for the Tectonic Evolution of the Loei Fold Belt. Journal of Asian Earth Sciences, 208: 104661. https://doi.org/10.1016/j.jseaes.2020.104661
      Shi, M. F., Wu, Z. B., Liu, S. S., et al., 2019. Geochronology and Petrochemistry of Volcanic Rocks in the Xaignabouli Area, NW Laos. Journal of Earth Science, 30(1): 37-51. https://doi.org/10.1007/s12583-018-0863-8
      Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2-3): 166-179. https://doi.org/10.1016/j.crte.2007.09.00
      Sone, M., Metcalfe, I., Chaodumrong, P., 2012. The Chanthaburi Terrane of Southeastern Thailand: Stratigraphic Confirmation as a Disrupted Segment of the Sukhothai Arc. Journal of Asian Earth Sciences, 61: 16-32. https://doi.org/10.1016/j.jseaes.2012.08.021
      Song, P. P., Ding, L., Lippert, P. C., et al., 2020. Paleomagnetism of Middle Triassic Lavas from Northern Qiangtang (Tibet): Constraints on the Closure of the Paleo-Tethys Ocean. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB017804. https://doi.org/10.1029/2019jb017804
      Srichan, W., Crawford, A. J., Berry, R. F., 2009. Geochemistry and Geochronology of Late Triassic Volcanic Rocks in the Chiang Khong Region, Northern Thailand. Island Arc, 18(1): 32-51. https://doi.org/10.1111/j.1440-1738.2008.00660.x
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      Uchida, E., Nagano, S., Niki, S., et al., 2022. Geochemical and Radiogenic Isotopic Signatures of Granitic Rocks in Chanthaburi and Chachoengsao Provinces, Southeastern Thailand: Implications for Origin and Evolution. Journal of Asian Earth Sciences: X, 8: 100111. https://doi.org/10.1016/j.jaesx.2022.100111
      Uchida, E., Nagano, S., Niki, S., et al., 2023. U-Pb Dating for Zircons from Granitic Rocks in Southwestern Cambodia. Heliyon, 9(9): e19734. https://doi.org/10.1016/j.heliyon.2023.e19734
      Udchachon, M., Thassanapak, H., Burrett, C., et al., 2024. Microfacies and Palaeoenvironments of Late Cisuralian and Guadalupian (Early to Middle Permian) Alatoconchid-Bearing Limestone in Loei Fold Belt, Indochina Terrane. Journal of Palaeogeography, 13(3): 453-474. https://doi.org/10.1016/j.jop.2024.03.003
      Ueno, K., 2003. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implications for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(1): 1-24. https://doi.org/10.1016/s0031-0182(02)00708-3
      Ueno, K., Charoentitirat, T., 2011. Carboniferous and Permian. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. The Geological Society of London, London. https://doi.org/10.1144/goth.5
      Ueno, K., Hisada, K. I., 2001. The Nan-Uttaradit-Sa Kaeo Suture as a Main Paleo-Tethyan Suture in Thailand: Is It Real? Gondwana Research, 4(4): 804-806. https://doi.org/10.1016/s1342-937x(05)70590-6
      Vander Auwera, J., Bogaerts, M., Liégeois, J. P., et al., 2003. Derivation of the 1.0-0.9 Ga Ferro-Potassic A-Type Granitoids of Southern Norway by Extreme Differentiation from Basic Magmas. Precambrian Research, 124(2-4): 107-148. https://doi.org/10.1016/s0301-9268(03)00084-6
      Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1-2): 79-99. https://doi.org/10.1016/s0012-821x(99)00047-3
      Wang, Y. J., He, H. Y., Cawood, P. A., et al., 2016. Geochronological, Elemental and Sr-Nd-Hf-O Isotopic Constraints on the Petrogenesis of the Triassic Post-Collisional Granitic Rocks in NW Thailand and Its Paleotethyan Implications. Lithos, 266: 264-286. https://doi.org/10.1016/j.lithos.2016.09.012
      Wang, Y. J., He, H. Y., Zhang, Y. Z., et al., 2017. Origin of Permian OIB-Like Basalts in NW Thailand and Implication on the Paleotethyan Ocean. Lithos, 274: 93-105. https://doi.org/10.1016/j.lithos.2016.12.021
      Wang, Y. J., Lu, X. H., Qian, X., et al., 2022. Prototethyan Orogenesis in Southwest Yunnan and Southeast Asia. Science China Earth Sciences, 65(10): 1921-1947. https://doi.org/10.1007/s11430-021-9958-7
      Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013
      Wang, Y. J., Qian, X., Cawood, P. A., et al., 2021a. Prototethyan Accretionary Orogenesis along the East Gondwana Periphery: New Insights from the Early Paleozoic Igneous and Sedimentary Rocks in the Sibumasu. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009622. https://doi.org/10.1029/2020gc009622
      Wang, Y. J., Yang, T. X., Zhang, Y. Z., et al., 2020. Late Paleozoic Back-Arc Basin in the Indochina Block: Constraints from the Mafic Rocks in the Nan and Luang Prabang Tectonic Zones, Southeast Asia. Journal of Asian Earth Sciences, 195: 104333. https://doi.org/10.1016/j.jseaes.2020.104333
      Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2010. Petrogenesis of Late Triassic Post-Collisional Basaltic Rocks of the Lancangjiang Tectonic Zone, Southwest China, and Tectonic Implications for the Evolution of the Eastern Paleotethys: Geochronological and Geochemical Constraints. Lithos, 120(3-4): 529-546. https://doi.org/10.1016/j.lithos.2010.09.012
      Wang, Y. J., Zhang, Y. Z., Qian, X., et al., 2021b. Early Paleozoic Accretionary Orogenesis in the Northeastern Indochina and Implications for the Paleogeography of East Gondwana: Constraints from Igneous and Sedimentary Rocks. Lithos, 382: 105921. https://doi.org/10.1016/j.lithos.2020.105921
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
      Xu, C., Wang, Y. J., Qian, X., et al., 2020. Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications. Earth Science, 45(6): 2077-2090(in Chinese with English abstract).
      Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
      Yang, W. Q., Qian, X., Feng, Q. L., et al., 2016. Zircon U-Pb Geochronological Evidence for the Evolution of the Nan-Uttaradit Suture in Northern Thailand. Journal of Earth Science, 27(3): 378-390. https://doi.org/10.1007/s12583-016-0670-z
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yu, X. Q., Qian, X., Lu, X. H., et al., 2021. Zircon U-Pb Geochronology of Late Triassic Granites from Sibolga Area in Western Sumatra and Its Tethyan Tectonic Implications. Earth Science, 46(8): 2873-2886(in Chinese with English abstract).
      Yu, Y. Q., Qian, X., Azlan Mustapha, K., et al., 2022. Late Paleozoic-Early Mesozoic Granitic Rocks in Eastern Peninsular Malaysia: New Insights for the Subduction and Evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 239: 105427. https://doi.org/10.1016/j.jseaes.2022.105427
      Yu, Y. Q., Qian, X., Ghani, A. A., et al., 2023. Triassic Felsic Magmatism in SE Peninsular Malaysia: Petrogenesis and Geodynamic Implications for the Eastern Paleotethyan Tectonic Transition. Lithos, 462: 107399. https://doi.org/10.1016/j.lithos.2023.107399
      Yu, Y. Q., Qian, X., Wang, Y. J., et al., 2024. Late Triassic Magmatism in Eastern Peninsular Malaysia and Its Paleotethyan Tectonic Implications. Geotectonica et Metallogenia, 48(3): 493-511(in Chinese with English abstract).
      Zhang, Q., Li, C. D., 2012. Granites: Implications for Continental Geodynamics. Ocean Press, Beijing (in Chinese).
      Zhang, Y. Z., Yu, X. Q., et al., 2023. Reconstructing the East Palaeo-Tethyan Assemblage Boundary in West Indonesia: Constraints from Triassic Granitoids in the Bangka and Belitung Islands. Geological Society, London, Special Publications, 531(1): 265-286. https://doi.org/10.1144/sp531-2022-144
      Zhang, Z. C., Wang, F. S., Hao, Y. L., et al., 2004. Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region. Acta Geologica Sinica, 78(2): 171-180(in Chinese with English abstract).
      Zhang, Z. W., Shu, Q., Yang, X. Y., et al., 2019. Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia. Journal of Earth Science, 30(1): 1-19. https://doi.org/10.1007/s12583-019-0858-0
      Zhao, T. Y., Qian, X., Feng, Q. L., 2016. Geochemistry, Zircon U-Pb Age and Hf Isotopic Constraints on the Petrogenesis of the Silurian Rhyolites in the Loei Fold Belt and Their Tectonic Implications. Journal of Earth Science, 27(3): 391-402. https://doi.org/10.1007/s12583-016-0671-y
      Zhong, D. L., 1998. The Gutethys Orogenic Belt in Western Yunnan and Sichuan. Science Press, Beijing (in Chinese).
      Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Generation of Early Indosinian Enriched Mantle-Derived Granitoid Pluton in the Sanjiang Orogen (SW China) in Response to Closure of the Paleo-Tethys. Lithos, 140: 166-182. https://doi.org/10.1016/j.lithos.2012.02.006
      李慧玲, 钱鑫, 余小清, 等, 2023. 越南昆嵩地体三叠纪花岗岩岩石成因及其特提斯构造意义. 地球科学, 48(4): 1441-1460. doi: 10.3799/dqkx.2022.335
      刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591.
      聂泽同, 梁定益, 宋志敏, 等, 1997. 早二叠世亲冈瓦纳相在思茅地块西缘的发现及其意义. 现代地质, 11(3): 261-268.
      吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
      徐畅, 王岳军, 钱鑫, 等, 2020. 苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义. 地球科学, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030
      余小清, 钱鑫, 卢向红, 等, 2021. 西苏门答腊实武牙地区晚三叠世花岗岩锆石年代学及其特提斯构造意义. 地球科学, 46(8): 2873-2886. doi: 10.3799/dqkx.2021.039
      余永琪, 钱鑫, 王岳军, 等, 2024. 马来半岛东部晚三叠世岩浆作用及其古特提斯构造意义. 大地构造与成矿学, 48(3): 493-511.
      张旗, 李承东, 2012. 花岗岩地球动力学意义. 北京: 海洋出版社.
      张招崇, 王福生, 郝艳丽, 等, 2004. 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束. 地质学报, 78(2): 171-180.
      钟大赉, 1998. 滇川西部古特提斯造山带. 北京: 科学出版社.
    • 加载中
    图(10)
    计量
    • 文章访问数:  16
    • HTML全文浏览量:  4
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-08-22
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回