• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    升温和水位下降对泥炭地碳库稳定性的影响

    黄咸雨 张一鸣 薛建涛 于小芳

    黄咸雨, 张一鸣, 薛建涛, 于小芳, 2025. 升温和水位下降对泥炭地碳库稳定性的影响. 地球科学, 50(3): 846-856. doi: 10.3799/dqkx.2024.119
    引用本文: 黄咸雨, 张一鸣, 薛建涛, 于小芳, 2025. 升温和水位下降对泥炭地碳库稳定性的影响. 地球科学, 50(3): 846-856. doi: 10.3799/dqkx.2024.119
    Huang Xianyu, Zhang Yiming, Xue Jiantao, Yu Xiaofang, 2025. Influence of Warming and Water Level Drawdown on the Stability of Peatland Carbon Stock. Earth Science, 50(3): 846-856. doi: 10.3799/dqkx.2024.119
    Citation: Huang Xianyu, Zhang Yiming, Xue Jiantao, Yu Xiaofang, 2025. Influence of Warming and Water Level Drawdown on the Stability of Peatland Carbon Stock. Earth Science, 50(3): 846-856. doi: 10.3799/dqkx.2024.119

    升温和水位下降对泥炭地碳库稳定性的影响

    doi: 10.3799/dqkx.2024.119
    基金项目: 

    国家自然科学基金项目 42472368

    湖北省地球科学基础学科研究中心重点项目 HRCES-202402

    详细信息
      作者简介:

      黄咸雨(1981-),男,教授,主要从事泥炭地碳循环与全球变化研究. ORCID:0000-0001-6175-9158. E-mail:xyhuang@cug.edu.cn

    • 中图分类号: P94

    Influence of Warming and Water Level Drawdown on the Stability of Peatland Carbon Stock

    • 摘要: 泥炭地作为全球重要的碳汇,也是最重要的天然CH4排放源.气候变化如何影响泥炭碳库的稳定性,这是泥炭地碳循环研究的热点问题.本文综述了升温、水位下降等因素对泥炭地碳库稳定性的影响,还介绍了植被在升温、干旱等影响中的调节作用.现有的研究显示,泥炭地碳循环对温度变化非常敏感,其中氧化层的分解速率在小幅度升温下显著加快,而缺氧层则需要更大的温度提升和更长的时间才能显著分解.此外,升温导致CH4/CO2比值增大,这将会增大泥炭地的全球增温潜势.水位下降是影响泥炭地碳循环的关键因素,干旱事件不仅直接导致CO2释放,还可能通过火灾间接影响碳库稳定性.研究还表明,维管束植物能促进老碳的释放.未来的研究需要关注代谢产物的原位观测技术,极端气候事件的地质记录,以及气候变化条件下泥炭碳库的响应与反馈机制.

       

    • 图  1  泥炭地碳循环主要过程及垂向分层(修改自Crump, 2017

      Fig.  1.  Carbon cycling and vertical stratification in peatlands (modified from Crump, 2017)

    • Baysinger, M. R., Wilson, R. M., Hanson, P. J., et al., 2022. Compositional Stability of Peat in Ecosystem-Scale Warming Mesocosms. PLoS One, 17(3): e0263994. https://doi.org/10.1371/journal.pone.0263994
      Blaauw, M., van der Plicht, J., van Geel, B., 2004. Radiocarbon Dating of Bulk Peat Samples from Raised Bogs: Non-Existence of a Previously Reported 'Reservoir Effect'? Quaternary Science Reviews, 23(14-15): 1537-1542. https://doi.org/10.1016/j.quascirev.2004.04.002
      Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., et al., 2013. Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Global Change Biology, 19(5): 1325-1346. https://doi.org/10.1111/gcb.12131
      Campeau, A., Bishop, K. H., Billett, M. F., et al., 2017. Aquatic Export of Young Dissolved and Gaseous Carbon from a Pristine Boreal Fen: Implications for Peat Carbon Stock Stability. Global Change Biology, 23(12): 5523-5536. https://doi.org/10.1111/gcb.13815
      Chanton, J. P., Glaser, P. H., Chasar, L. S., et al., 2008. Radiocarbon Evidence for the Importance of Surface Vegetation on Fermentation and Methanogenesis in Contrasting Types of Boreal Peatlands. Global Biogeochemical Cycles, 22(4): GB4022. https://doi.org/10.1029/2008GB003274
      Chen, H. Y., Xu, X., Fang, C. M., et al., 2021. Differences in the Temperature Dependence of Wetland CO2 and CH4 Emissions Vary with Water Table Depth. Nature Climate Change, 11: 766-771. https://doi.org/10.1038/s41558-021-01108-4
      Clymo, R. S., 1984. The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society B-Biological Sciences, 303: 605-654.
      Clymo, R. S., Bryant, C. L., 2008. Diffusion and Mass Flow of Dissolved Carbon Dioxide, Methane, and Dissolved Organic Carbon in a 7 m Deep Raised Peat Bog. Geochimica et Cosmochimica Acta, 72(8): 2048-2066. https://doi.org/10.1016/j.gca.2008.01.032
      Crow, S. E., Wieder, R. K., 2005. Sources of CO2 Emission from a Northern Peatland: Root Respiration, Exudation, and Decomposition. Ecology, 86(7): 1825-1834. https://doi.org/10.1890/04-1575
      Crump, J., 2017. Smoke on Water-Countering Global Threats From Peatland Loss and Degradation. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal. https://www.unep.org/resources/publication/smoke-water-countering-global-threats-peatland-loss-and-degradation-rapid
      Cui, S. H., Liu, P. F., Guo, H. N., et al., 2024. Wetland Hydrological Dynamics and Methane Emissions. Communications Earth & Environment, 5: 470. https://doi.org/10.1038/s43247-024-01635-w
      Dorodnikov, M., Knorr, K. H., Fan, L., et al., 2022. A Novel Belowground In-Situ Gas Labeling Approach: CH4 Oxidation in Deep Peat Using Passive Diffusion Chambers and 13C Excess. Science of the Total Environment, 806: 150457. https://doi.org/10.1016/j.scitotenv.2021.150457
      Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., et al., 2009. Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic. Nature, 460: 616-619. https://doi.org/10.1038/nature08216
      Duchesneau, K., Defrenne, C. E., Petro, C., et al., 2024. Responses of Vascular Plant Fine Roots and Associated Microbial Communities to Whole-Ecosystem Warming and Elevated CO2 in Northern Peatlands. New Phytologist, 242(3): 1333-1347. https://doi.org/10.1111/nph.19690
      Evans, C. D., Peacock, M., Baird, A. J., et al., 2021. Overriding Water Table Control on Managed Peatland Greenhouse Gas Emissions. Nature, 593(7860): 548-552. https://doi.org/10.1038/s41586-021-03523-1
      Fontaine, S., Barot, S., Barré, P., et al., 2007. Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature, 450(7167): 277-280. https://doi.org/10.1038/nature06275
      Garcin, Y., Schefuß, E., Dargie, G. C., et al., 2022. Hydroclimatic Vulnerability of Peat Carbon in the Central Congo Basin. Nature, 612(7939): 277-282. https://doi.org/10.1038/s41586-022-05389-3
      Garnett, M. H., Hardie, S. M. L., Murray, C., 2012. Radiocarbon Analysis of Methane Emitted from the Surface of a Raised Peat Bog. Soil Biology and Biochemistry, 50: 158-163. https://doi.org/10.1016/j.soilbio.2012.03.018
      Garnett, M. H., Hardie, S. M. L., Murray, C., 2020. Radiocarbon Analysis Reveals that Vegetation Facilitates the Release of Old Methane in a Temperate Raised Bog. Biogeochemistry, 148(1): 1-17. https://doi.org/10.1007/s10533-020-00638-x
      Goodrich, J. P., Campbell, D. I., Roulet, N. T., et al., 2015. Overriding Control of Methane Flux Temporal Variability by Water Table Dynamics in a Southern Hemisphere, Raised Bog. Journal of Geophysical Research: Biogeosciences, 120(5): 819-831. https://doi.org/10.1002/2014jg002844
      Hanson, P. J., Griffiths, N. A., Iversen, C. M., et al., 2020. Rapid Net Carbon Loss from a Whole-Ecosystem Warmed Peatland. AGU Advances, 1(3): e2020AV000163. https://doi.org/10.1029/2020av000163
      Hardie, S. M. L., Garnett, M. H., Fallick, A. E., et al., 2009. Bomb-14C Analysis of Ecosystem Respiration Reveals that Peatland Vegetation Facilitates Release of Old Carbon. Geoderma, 153: 393-401. https://doi.org/10.1016/j.geoderma.2009.09.002
      Harris, L. I., Olefeldt, D., Pelletier, N., et al., 2023. Permafrost Thaw Causes Large Carbon Loss in Boreal Peatlands while Changes to Peat Quality Are Limited. Global Change Biology, 29(19): 5720-5735. https://doi.org/10.1111/gcb.16894
      Hodgkins, S. B., Richardson, C. J., Dommain, R., et al., 2018. Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance. Nature Communications, 9(1): 3640. https://doi.org/10.1038/s41467-018-06050-2
      Hopple, A. M., Wilson, R. M., Kolton, M., et al., 2020. Massive Peatland Carbon Banks Vulnerable to Rising Temperatures. Nature Communications, 11(1): 2373. https://doi.org/10.1038/s41467-020-16311-8
      Hu, H., Chen, J., Zhou, F., et al., 2024. Relative Increases in CH4 and CO2 Emissions from Wetlands under Global Warming Dependent on Soil Carbon Substrates. Nature Geoscience, 17: 26-31. https://doi.org/10.1038/s41561-023-01345-6
      Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467-018-03804-w
      Huang, X., Xue, J., Meyers, P. A., et al., 2014. Hydrologic influence on the δ13C variation in Long Chain n-Alkanes in the Dajiuhu Peatland, Central China. Organic Geochemistry, 69: 114-119. https://doi.org/10.1016/j.orggeochem.2014.01.016
      Huang, X., Xue, J., Zhang, J., et al., 2012. Effect of Different Wetness Conditions on Sphagnum Lipid Composition in the Erxianyan Peatland, Central China. Organic Geochemistry, 44: 1-7. https://doi.org/10.1016/j.orggeochem.2011.12.005
      IUCN, 2021. Peatlands and Climate Change. https://iucn.org/sites/default/files/2022-04/iucn_issues_brief_peatlands_and_climate_change_final_nov21.pdf
      Kilian, M. R., Van der Plicht, J., Van Geel, B., 1995. Dating Raised Bogs: New Aspects of AMS 14C Wiggle Matching, a Reservoir Effect and Climatic Change. Quaternary Science Reviews, 14(10): 959-966. https://doi.org/10.1016/0277-3791(95)00081-X
      Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-Moss Ecosystems. Nature Geoscience, 3: 617-621. https://doi.org/10.1038/ngeo939
      Krassovski, M. B., Riggs, J. S., Hook, L. A., et al., 2015. A Comprehensive Data Acquisition and Management System for an Ecosystem-Scale Peatland Warming and Elevated CO2 Experiment. Geoscientific Instrumentation, Methods and Data Systems, 4(2): 203-213. https://doi.org/10.5194/gi-4-203-2015
      Laine, A. M., Mäkiranta, P., Laiho, R., et al., 2019. Warming Impacts on Boreal Fen CO2 Exchange under Wet and Dry Conditions. Global Change Biology, 25(6): 1995-2008. https://doi.org/10.1111/gcb.14617
      Lamentowicz, M., Gałka, M., Marcisz, K., et al., 2019. Unveiling Tipping Points in Long-Term Ecological Records from Sphagnum-Dominated Peatlands. Biology Letters, 15(4): 20190043. https://doi.org/10.1098/rsbl.2019.0043[PubMed]
      Lamentowicz, M., Słowińska, S., Słowiński, M., et al., 2016. Combining Short-Term Manipulative Experiments with Long-Term Palaeoecological Investigations at High Resolution to Assess the Response of Sphagnum Peatlands to Drought, Fire and Warming. Mires and Peat, 18(20): 1-17
      LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030-2042. https://doi.org/10.1016/j.gca.2011.01.020
      Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications: A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg-5-1475-2008
      Lin, X. J., Tfaily, M. M., Steinweg, J. M., et al., 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 80(11): 3518-3530. https://doi.org/10.1128/aem.00205-14
      Liu, X. F., Wu, L., Wang, H., et al., 2020. Growth and Decomposition Characteristics of Sphagnum in a Subalpine Wetland, Southwestern Hubei, China. Chinese Journal of Plant Ecology, 44(3): 228-235 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0316
      Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., et al., 2021. Expert Assessment of Future Vulnerability of the Global Peatland Carbon Sink. Nature Climate Change, 11: 70-77. https://doi.org/10.1038/s41558-020-00944-0
      Ma, X. Y., Xu, H., Cao, Z. Y., et al., 2022. Will Climate Change Cause the Global Peatland to Expand or Contract? Evidence from the Habitat Shift Pattern of Sphagnum Mosses. Global Change Biology, 28(21): 6419-6432. https://doi.org/10.1111/gcb.16354
      Machmuller, M. B., Lynch, L. M., Mosier, S. L., et al., 2024. Arctic Soil Carbon Trajectories Shaped by Plant-Microbe Interactions. Nature Climate Change, 14: 1178-1185. https://doi.org/10.1038/s41558-024-02147-3
      Malhotra, A., Brice, D. J., Childs, J., et al., 2020. Peatland Warming Strongly Increases Fine-Foot Growth. Proceedings of the National Academy of Sciences, 117 (30): 17627-17634. https://doi.org/10.1073/pnas.200336111
      Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al., 2017. Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science, 358(6359): 101-105. https://doi.org/10.1126/science.aan2874
      Nichols, J. E., Walcott, M., Bradley, R., et al., 2009. Quantitative Assessment of Precipitation Seasonality and Summer Surface Wetness Using Ombrotrophic Sediments from an Arctic Norwegian Peatland. Quaternary Research, 72: 443-451. https://doi.org/10.1016/j.yqres.2009.07.007
      Page, S. E., Baird, A. J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41: 35-57. https://doi.org/10.1146/annurev-environ-110615-085520
      Page, S. E., Siegert, F., Rieley, J. O., et al., 2002. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature, 420(6911): 61-65. https://doi.org/10.1038/nature01131
      Pancost, R. D., 2024. Biomarker Carbon and Hydrogen Isotopes Reveal Changing Peatland Vegetation, Hydroclimate and Biogeochemical Tipping Points. Quaternary Science Reviews, 339: 108828. https://doi.org/10.1016/j.quascirev.2024.108828
      Pancost, R. D., van Geel, B., Baas, M., et al., 2000. δ13C Values and Radiocarbon Dates of Microbial Biomarkers as Tracers for Carbon Recycling in Peat Deposits. Geology, 28(7): 663-666. https://doi.org/10.1130/0091-7613(2000)0280663: cvardo>2.3.co;2 doi: 10.1130/0091-7613(2000)0280663:cvardo>2.3.co;2
      Poirier, V., Roumet, C., Munson, A. D., 2018. The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biology and Biochemistry, 120: 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016
      Price, G. D., McKenzie, J. E., Pilcher, J. R., et al., 1997. Carbon-Isotope Variation in Sphagnum from Hummock-Hollow Complexes: Implications for Holocene Climate Reconstruction. The Holocene, 7(2): 229-233. https://doi.org/10.1177/095968369700700211
      Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al., 2005. Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs. Nature, 436(7054): 1153-1156. https://doi.org/10.1038/nature03802
      Roth, S. W., Griffiths, N. A., Kolka, R. K., et al., 2023. Elevated Temperature Alters Microbial Communities, but not Decomposition Rates, during 3 Years of in Situ peat Decomposition. mSystems, 8(5): e00337-23. https://doi.org/10.1128/msystems.00337-23
      Salimi, S., Almuktar, S. A. A. A. N., Scholz, M., 2021. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. Journal of Environmental Management, 286: 112160. https://doi.org/10.1016/j.jenvman.2021.112160
      Smolders, A. J. P., Tomassenm, H. B. M., Pijnappelm, H. W., et al., 2001. Substrate‐Derived CO2 is Important in the Development of Sphagnum spp. New Phytologist, 152: 325-332. https://doi.org/10.1046/j.0028-646X.2001.00261.x
      Stirling, E., Fitzpatrick, R. W., Mosley, L. M., 2020. Drought Effects on Wet Soils in Inland Wetlands and Peatlands. Earth-Science Reviews, 210: 103387. https://doi.org/10.1016/j.earscirev.2020.103387
      Stuart, J. E. M., Tucker, C. L., Lilleskov, E. A., et al., 2023. Evidence for Older Carbon Loss with Lowered Water Tables and Changing Plant Functional Groups in Peatlands. Global Change Biology, 29(3): 780-793. https://doi.org/10.1111/gcb.16508
      Taillardat, P., Bodmer, P., Deblois, C. P., et al., 2022. Carbon Dioxide and Methane Dynamics in a Peatland Headwater Stream: Origins, Processes and Implications. Journal of Geophysical Research: Biogeosciences, 127(7): e2022JG006855. https://doi.org/10.1029/2022jg006855
      Turetsky, M. R., Benscoter, B., Page, S., et al., 2015. Global Vulnerability of Peatlands to Fire and Carbon Loss. Nature Geoscience, 8: 11-14. https://doi.org/10.1038/ngeo2325
      Walker, T. N., Garnett, M. H., Ward, S. E., et al., 2016. Vascular Plants Promote Ancient Peatland Carbon Loss with Climate Warming. Global Change Biology, 22(5): 1880-1889. https://doi.org/10.1111/gcb.13213
      Ward, S. E., Ostle, N. J., Oakley, S., et al., 2013. Warming Effects on Greenhouse Gas Fluxes in Peatlands Are Modulated by Vegetation Composition. Ecology Letters, 16(10): 1285-1293. https://doi.org/10.1111/ele.12167
      White, J. R., Shannon, R. D., Weltzin, J. F., et al., 2008. Effects of Soil Warming and Drying on Methane Cycling in a Northern Peatland Mesocosm Study. Journal of Geophysical Research: Biogeosciences, 113(G3): G00A06. https://doi.org/10.1029/2007JG000609
      Wiggins, E. B., Czimczik, C. I., Santos, G. M., et al., 2018. Smoke Radiocarbon Measurements from Indonesian Fires Provide Evidence for Burning of Millennia-Aged Peat. Proceedings of the National Academy of Sciences, 115(49): 12419-12424. https://doi.org/10.1073/pnas.1806003115
      Wilson, R. M., Griffiths, N. A., Visser, A., et al., 2021a. Radiocarbon Analyses Quantify Peat Carbon Losses with Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences, 126(11): e2021JG006511. https://doi.org/10.1029/2021JG006511
      Wilson, R. M., Hopple, A. M., Tfaily, M. M., et al., 2016. Stability of Peatland Carbon to Rising Temperatures. Nature Communications, 7: 13723. https://doi.org/10.1038/ncomms13723
      Wilson, R. M., Tfaily, M. M., Kolton, M., et al., 2021b. Soil Metabolome Response to Whole-Ecosystem Warming at the Spruce and Peatland Responses under Changing Environments Experiment. Proceedings of the National Academy of Sciences, 118(25): e2004192118. https://doi.org/10.1073/pnas.2004192118
      Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1
      Yang, G., Chen, H., Wu, N., et al., 2014. Effects of Soil Warming, Rainfall Reduction and Water Table Level on CH4 Emissions from the Zoigé Peatland in China. Soil Biology & Biochemistry, 78: 83-89. https://doi.org/10.1016/j.soilbio.2014.07.013
      Yang, T., He, Q., Jiang, J., et al., 2022. Impact of Water Table on Methane Emission Dynamics in Terrestrial Wetlands and Implications on Strategies for Wetland Management and Restoration. Wetlands, 42(8): 120. https://doi.org/10.1007/s13157-022-01634-7
      Yu, Z. C., 2011. Holocene Carbon Flux Histories of the World's Peatlands. The Holocene, 21(5): 761-774. https://doi.org/10.1177/0959683610386982
      Zhang, M. M., Huang, X. Y., Chen, X., 2021. Distribution Patterns and Controlling Factors of Peatlands in Subtropical Mountainous Areas of China. Wetland Science, 19(6): 753-761 (in Chinese with English abstract).
      Zhang, Y. M., Huang, X. Y., Xie, S. C., 2021. Compound-Specific Carbon Isotope Compositions of Microbial Phospholipid Fatty Acids Reveal Carbon Cycling Processes. Quaternary Sciences, 41(4): 877-892 (in Chinese with English abstract).
      Zhong, Y. H., Jiang, M., Middleton, B. A., 2020. Effects of Water Level Alteration on Carbon Cycling in Peatlands. Ecosystem Health and Sustainability, 6(1): 1806113. https://doi.org/10.1080/20964129.2020.1806113
      Zhu, B., Chen, Y., 2020. Techniques and Methods for Field Warming Manipulation Experiments in Terrestrial Ecosystems. Chinese Journal of Plant Ecology, 44(4): 330-339 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0179
      Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114
      刘雪飞, 吴林, 王涵, 等, 2020. 鄂西南亚高山湿地泥炭藓的生长与分解. 植物生态学报, 44(3): 228-235.
      张明明, 黄咸雨, 陈旭, 2021. 中国亚热带山区泥炭地分布规律及其控制因素. 湿地科学, 19(6): 753-761.
      张一鸣, 黄咸雨, 谢树成, 2021. 微生物磷脂脂肪酸单体碳同位素示踪碳循环过程. 第四纪研究, 41(4): 877-892.
      朱彪, 陈迎, 2020. 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44(4): 330-339.
    • 加载中
    图(1)
    计量
    • 文章访问数:  205
    • HTML全文浏览量:  98
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-06
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回