Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis
-
摘要: 高砷地下水造成的砷中毒对人体健康产生巨大威胁,砷甲基化过程可将毒性更高的无机砷转化为毒性低的甲基砷,在一定程度上可以降低砷的环境风险从而减轻对人体的毒害,有望成为调控地下水砷污染问题的有效途径.然而目前高砷地下水的研究主要侧重于无机砷的迁移转化,对于甲基砷富集的关键过程与控制因素研究还十分有限.本研究选取江汉平原长江与汉江沿岸的浅层地下水开展无机碳同位素示踪与溶解性有机质三维荧光光谱分析,解析江汉平原地下水中控制甲基砷富集的有机质降解途径,识别关键生物地球化学过程.研究发现江汉平原的甲基砷浓度范围为 < 0.01~444 μg/L(平均值为30 μg/L),长江沿岸和汉江沿岸地下水甲基砷的富集主控过程有明显差异:长江沿岸地下水中,以高分子量芳香族有机化合物降解驱动的产甲烷过程为主导,促进砷的生物甲基化过程;此外,伴随有机质发酵的硫酸盐还原过程也可导致地下水中甲基砷的富集.汉江沿岸地下水中,以小分子活性有机质发酵过程为主导,促进了砷生物甲基化过程.Abstract: Arsenic poisoning caused by high-arsenic groundwater represents a significant threat to human health. The arsenic methylation process, which converts highly toxic inorganic arsenic into less toxic methylated arsenic species, has the potential to mitigate the environmental risk of arsenic contamination and reduce its toxicity to humans. This process may provide an effective approach to managing arsenic pollution in groundwater. However, current research predominantly focuses on the migration of inorganic arsenic, with limited understanding of the key processes and controlling factors that govern the enrichment of methylated arsenic. In this study, it analyzed shallow groundwater from the Jianghan plain, located along the Yangtze and Han rivers, using inorganic carbon isotope tracing and EEMs of dissolved organic matter. The aim of this study is to elucidate the organic matter degradation pathways that regulate the enrichment of methylated arsenic and to identify the key biogeochemical processes involved. It found that methylated arsenic concentrations in the Jianghan plain ranged from < 0.01 to 444 μg/L, with an average concentration of 30 μg/L. The processes controlling methylated arsenic enrichment differed significantly between groundwater from the Yangtze River and the Han River. Along the Yangtze River, the degradation of high-molecular-weight aromatic organic compounds drives methanogenesis, which in turn promotes arsenic biomethylation and the subsequent enrichment of methylated arsenic in groundwater. Additionally, the sulfate reduction process, associated with the fermentation of organic matter, also supports arsenic biomethylation. In contrast, in the Han River region, the arsenic biomethylation process is primarily driven by the fermentation of small-molecule reactive organic matter.
-
表 1 江汉平原长江汉江沿岸地下水砷形态及水化学特征统计
Table 1. Hydrochemical characteristics of groundwater from Jianghan plain
指标 长江沿岸地下水 汉江沿岸地下水 最小值 最大值 平均值 标准差 变异系数 最小值 最大值 平均值 标准差 变异系数 pH 6.70 7.57 7.13 0.22 0.03 6.50 7.73 6.89 0.38 0.06 Eh(mV) ‒171.10 ‒62.20 ‒130.47 28.72 ‒0.22 ‒149.90 85.50 ‒103.69 79.40 ‒0.77 DO (mg/L) 0.15 4.75 1.04 0.92 0.88 0.94 7.20 2.56 2.06 0.80 EC (μs/cm) 108 2 023 997 268 0.27 302 1 422 859 307 0.36 DOC (mg/L) 3.52 28.17 9.57 5.07 0.53 0.00 14.90 4.14 4.13 1.00 δ13C‒DIC ‒16.39 10.50 ‒6.28 7.05 ‒1.12 ‒17.53 0.85 ‒8.79 5.84 ‒0.67 NH4‒N(mg/L) 0.44 35.50 8.31 9.52 1.15 0.45 45.30 6.76 14.08 2.08 K (mg/L) 0.44 9.28 2.87 1.96 0.68 0.46 3.71 1.99 0.99 0.50 Na (mg/L) 9.71 33.45 19.37 7.00 0.36 6.40 31.51 17.39 8.06 0.46 Ca (mg/L) 84.26 275.11 155.54 34.96 0.22 47.85 261.09 148.39 61.41 0.41 Mg (mg/L) 24.00 103.10 41.62 12.79 0.31 7.78 55.01 33.21 14.10 0.42 HCO3- (mg/L) 536 1 495 728 164 0.23 115 713 528 192 0.36 As (μg/L) 60.98 5 812 4 476.74 929 2.08 2.90 1 884 254 559 2.20 Fe2+ (mg/L) 0.21 38.50 8.91 7.74 0.87 0.71 22.30 8.45 6.54 0.77 S2‒ (μg/L) 0.00 58.00 5.54 10.03 1.81 1.00 12.00 3.07 3.68 1.20 As(III) (μg/L) 50.37 5 332 375 857 2.28 16.50 1 450 213 449 2.11 As(V) (μg/L) 1.75 282 23.46 56.78 2.42 0.93 346 29.90 113 3.77 MMA(μg/L) 3.38 350 26.79 56.36 2.10 0.00 54.70 9.52 16.84 1.77 DMA(μg/L) 2.78 94.59 9.89 15.13 1.53 0.00 37.33 7.36 11.15 1.52 ∑MeAs(μg/L) 6.16 444 36.69 71.23 1.94 0.00 92.04 14.77 26.92 1.82 表 2 研究区地下水中3个荧光组分特征与已有文献报道的对比
Table 2. Descriptions of the three-component PARAFAC model of Ex/Em wavelengths data and their comparison with previous identified components
组分 Ex/Em.max(nm) 荧光类型 文献报道 C1 255(340)/466 陆源类腐殖质;分子量大;与高分子量的芳香族有关 C2:350/454 (Lambert et al., 2017)
C2: < 260/448-480 (Fellman et al., 2010)
C3:250(330)/456 (Yang et al., 2020a, 2020b)C2 < 220/418 陆源类富里酸,分子量较低 C3:240(305)/425 (Osburn et al., 2017)
C2: < 240/404 (Walker et al., 2009)
C4: < 240/405 (Lambert et al., 2016)C3 240(320)/398 微生物源类腐殖质;中等分子量大小 C2:325(< 260)/385 (Yamashita et al., 2010)
C1:240(310)/405 (Chen et al., 2017)
C3:315/410 (Lambert et al., 2017) -
Bethke, C. M., Sanford, R. A., Kirk, M. F., et al., 2011. The Thermodynamic Ladder in Geomicrobiology. American Journal of Science, 311(3): 183-210. https://doi.org/10.2475/03.2011.01 Brammer, H., Ravenscroft, P., 2009. Arsenic in Groundwater: A Threat to Sustainable Agriculture in South and South⁃East Asia. Environment International, 35(3): 647-654. https://doi.org/10.1016/j.envint.2008.10.004 Chen, C., Yang, B. Y., Shen, Y., et al., 2021. Sulfate Addition and Rising Temperature Promote Arsenic Methylation and the Formation of Methylated Thioarsenates in Paddy Soils. Soil Biology and Biochemistry, 154: 108129. https://doi.org/10.1016/j.soilbio.2021.108129 Chen, Y. H., Yu, K. F., Zhou, Y. Q., et al., 2017. Characterizing Spatiotemporal Variations of Chromophoric Dissolved Organic Matter in Headwater Catchment of a Key Drinking Water Source in China. Environmental Science and Pollution Research International, 24(36): 27799-27812. https://doi.org/10.1007/s11356⁃017⁃0307⁃5 Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166 Fellman, J. B., Hood, E., Spencer, R. G. M., 2010. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnology and Oceanography, 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452 Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974 Gan, S. C., Schmidt, F., Heuer, V. B., et al., 2020. Impacts of Redox Conditions on Dissolved Organic Matter (DOM) Quality in Marine Sediments off the River Rhône, Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 276: 151-169. https://doi.org/10.1016/j.gca.2020.02.001 Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013 Huang, S. B., Wang, Y. X., Liu, C. R., et al., 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. Earth Science, 38(5): 1091-1098 (in Chinese with English abstract). Huang, S. B., Wang, Y. X., Ma, T., et al., 2015. Linking Groundwater Dissolved Organic Matter to Sedimentary Organic Matter from a Fluvio⁃Lacustrine Aquifer at Jianghan Plain, China by EEM⁃PARAFAC and Hydrochemical Analyses. Science of the Total Environment, 529: 131-139. https://doi.org/10.1016/j.scitotenv.2015.05.051 Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002 Kocar, B. D., Borch, T., Fendorf, S., 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023 Kump, L. R., Arthur, M. A., 1999. Interpreting Carbon⁃ Isotope Excursions: Carbonates and Organic Matter. Chemical Geology, 161(1/2/3): 181-198. https://doi.org/10.1016/S0009⁃2541(99)00086⁃8 Lambert, T., Bouillon, S., Darchambeau, F., et al., 2017. Effects of Human Land Use on the Terrestrial and Aquatic Sources of Fluvial Organic Matter in a Temperate River Basin (the Meuse River, Belgium). Biogeochemistry, 136(2): 191-211. https://doi.org/10.1007/s10533⁃017⁃0387⁃9 Lambert, T., Teodoru, C. R., Nyoni, F. C., et al., 2016. Along⁃Stream Transport and Transformation of Dissolved Organic Matter in a Large Tropical River. Biogeosciences, 13(9): 2727-2741. https://doi.org/10.5194/bg⁃13⁃2727⁃2016 Liang, S. K., Zhang, M. Z., Wang, X. K., et al., 2023. Seasonal Dynamics of Dissolved Organic Matter Bioavailability Coupling with Water Mass Circulation in the South Yellow Sea. Science of the Total Environment, 904: 166671. https://doi.org/10.1016/j.scitotenv.2023.166671 Lu, Z. J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract). Maguffin, S. C., Kirk, M. F., Daigle, A. R., et al., 2015. Substantial Contribution of Biomethylation to Aquifer Arsenic Cycling. Nature Geoscience, 8: 290-293. https://doi.org/10.1038/ngeo2383 Nowak, M. E., Schwab, V. F., Lazar, C. S., et al., 2017. Carbon Isotopes of Dissolved Inorganic Carbon Reflect Utilization of Different Carbon Sources by Microbial Communities in Two Limestone Aquifer Assemblages. Hydrology and Earth System Sciences, 21(9): 4283-4300. https://doi.org/10.5194/hess⁃21⁃4283⁃2017 Osburn, C. L., Anderson, N. J., Stedmon, C. A., et al., 2017. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes along a Regional Hydro⁃Climatic Gradient. Journal of Geophysical Research: Biogeosciences, 122(12): 3431-3445. https://doi.org/10.1002/2017jg003999 Sansonetti, J. E., 2007. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data, 36(2): 497-507. https://doi.org/10.1063/1.2719251 Schaefer, M. V., Guo, X. X., Gan, Y. Q., et al., 2017. Redox Controls on Arsenic Enrichment and Release from Aquifer Sediments in Central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119. https://doi.org/10.1016/j.gca.2017.01.035 Song, X. W., Li, Y. Q., Stirling, E., et al., 2022. Asgene DB: A Curated Orthology Arsenic Metabolism Gene Database and Computational Tool for Metagenome Annotation. NAR Genomics and Bioinformatics, 4(4): lqac080. https://doi.org/10.1093/nargab/lqac080. Stolz, J. F., Basu, P., Santini, J. M., et al., 2006. Arsenic and Selenium in Microbial Metabolism. Annual Review of Microbiology, 60: 107-130. https://doi.org/10.1146/annurev.micro.60.080805.142053 Stuckey, J., Schaefer, M., Kocar, B., et al., 2016. Arsenic Release Metabolically Limited to Permanently Water⁃Saturated Soil in Mekong Delta. Nature Geoscience, 9: 70-76. https://doi.org/10.1038/ngeo2589 Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134 Tao, D. Y., Shi, C. Z., Guo, W., et al., 2022. Determination of As Species Distribution and Variation with Time in Extracted Groundwater Samples by On⁃Site Species Separation Method. Science of the Total Environment, 808: 151913. https://doi.org/10.1016/j.scitotenv.2021.151913 Thomas, F., Diaz⁃Bone, R. A., Wuerfel, O., et al., 2011. Connection between Multimetal(Loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis. Applied and Environmental Microbiology, 77(24): 8669-8675. https://doi.org/10.1128/AEM.06406⁃11 Tian, T., Yan, M. M., Zeng, X. B., et al., 2020. Effect of Dissolved Organic Matter from Different Sources on Arsenic Methylation in Paddy Soils. Journal of Agro⁃ Environment Science, 39(3): 511-520 (in Chinese with English abstract). Walker, S. A., Amon, R. M. W., Stedmon, C., et al., 2009. The Use of PARAFAC Modeling to Trace Terrestrial Dissolved Organic Matter and Fingerprint Water Masses in Coastal Canadian Arctic Surface Waters. Journal of Geophysical Research: Biogeosciences, 114(G4): G00F06. https://doi.org/10.1029/2009jg000990 Wang, P. P., Bao, P., Sun, G. X., 2015. Identification and Catalytic Residues of the Arsenite Methyltransferase from a Sulfate⁃Reducing Bacterium, Clostridium Sp. BXM. FEMS Microbiology Letters, 362(1): 1-8. https://doi.org/10.1093/femsle/fnu003 Wang, Y. H., Li, P., Jiang, Z., et al., 2018. Diversity and Abundance of Arsenic Methylating Microorganisms in High Arsenic Groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology, 27(8): 1047-1057. https://doi.org/10.1007/s10646⁃018⁃1958⁃9 Xu, Y. X., Liu, D., Yuan, X. F., et al., 2024. Deciphering the Spatial Heterogeneity of Groundwater Arsenic in Quaternary Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 929: 172405. https://doi.org/10.1016/j.scitotenv.2024.172405 Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391 Yamashita, Y., Scinto, L. J., Maie, N., et al., 2010. Dissolved Organic Matter Characteristics across a Subtropical Wetland's Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems, 13(7): 1006-1019. https://doi.org/10.1007/s10021⁃010⁃9370⁃1 Yan, M. M., Zeng, X. B., Wang, J., et al., 2020. Dissolved Organic Matter Differentially Influences Arsenic Methylation and Volatilization in Paddy Soils. Journal of Hazardous Materials, 388: 121795. https://doi.org/10.1016/j.jhazmat.2019.121795 Yang, Y. J., Yuan, X. F., Deng, Y. M., et al., 2020a. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120 Yang, Y. P., Tang, X. J., Zhang, H. M., et al., 2020b. The Characterization of Arsenic Biotransformation Microbes in Paddy Soil after Straw Biochar and Straw Amendments. Journal of Hazardous Materials, 391: 122200. https://doi.org/10.1016/j.jhazmat.2020.122200 Yuan, X. F., Deng, Y. M., Du, Y., et al., 2020. Characteristics of Stable Carbon Isotopes and Its Implications on Arsenic Enrichment in Shallow Groundwater of the Jianghan Plain. Bulletin of Geological Science and Technology, 39(5): 156-163 (in Chinese with English abstract). Zhang, J. W., Ma, T., Yan, Y. N., et al., 2018. Effects of Fe⁃S⁃As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092 Zhao, F. J., Harris, E., Yan, J., et al., 2013. Arsenic Methylation in Soils and Its Relationship with Microbial arsM Abundance and Diversity, and As Speciation in Rice. Environmental Science & Technology, 47(13): 7147-7154. https://doi.org/10.1021/es304977m Zhu, Y. G., Yoshinaga, M., Zhao, F. J., et al., 2014. Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 42: 443-467. https://doi.org/10.1146/annurev⁃earth⁃060313⁃054942 黄爽兵, 王焰新, 刘昌蓉, 等, 2013. 含水层中砷活化迁移的水化学与DOM三维荧光证据. 地球科学, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107 鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065 田腾, 颜蒙蒙, 曾希柏, 等, 2020. 不同来源可溶性有机质对稻田土壤中砷甲基化的影响. 农业环境科学学报, 39(3): 511-520. 袁晓芳, 邓娅敏, 杜尧, 等, 2020. 江汉平原高砷地下水稳定碳同位素特征及其指示意义. 地质科技通报, 39(5): 156-163. -