• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原东部活动构造带大型滑坡成灾背景与灾变机制

    郭长宝 吴瑞安 钟宁 杨志华 袁浩 李彩虹 邱振东 曹世超

    郭长宝, 吴瑞安, 钟宁, 杨志华, 袁浩, 李彩虹, 邱振东, 曹世超, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
    引用本文: 郭长宝, 吴瑞安, 钟宁, 杨志华, 袁浩, 李彩虹, 邱振东, 曹世超, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
    Guo Changbao, Wu Rui'an, Zhong Ning, Yang Zhihua, Yuan Hao, Li Caihong, Qiu Zhendong, Cao Shichao, 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
    Citation: Guo Changbao, Wu Rui'an, Zhong Ning, Yang Zhihua, Yuan Hao, Li Caihong, Qiu Zhendong, Cao Shichao, 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124

    青藏高原东部活动构造带大型滑坡成灾背景与灾变机制

    doi: 10.3799/dqkx.2024.124
    基金项目: 

    中国地质调查局项目 DD20221816

    国家自然科学基金项目 42372339

    详细信息
      作者简介:

      郭长宝(1980-),男,博士,研究员,主要从事工程地质与地质灾害调查研究.ORCID:0000⁃0002⁃1764⁃9792.E⁃mail:guochangbao@163.com

    • 中图分类号: P694;P642

    Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation

    • 摘要: 活动构造带内大型特大型滑坡成灾机理复杂、危害严重,以往关于其发育特征、成灾背景与灾变机理等研究主要侧重于降雨、地层岩性、地震等因素分析,关于其内动力控灾背景和机理研究一直是学术界和工程界的难题.基于遥感解译、资料收集、野外调查和典型案例剖析,建立了青藏高原东部川藏交通廊道地质灾害数据库,提出了一种考虑地形起伏度的区域地壳稳定性评价方法,研究表明约62%的地质灾害发育于地壳不稳定区和较不稳定区内,内动力地质条件对地质灾害的时空分布具有极大影响.大型滑坡的发育分布受活动构造带控制显著,主要表现为复杂地质构造孕育大型滑坡、特殊岩土结构控制大型滑坡、强烈地震活动诱发大型滑坡、断裂持续蠕滑促进大型滑坡灾变等4类特征,具有显著的活动构造带孕灾-控灾-诱灾-促灾等复杂灾变演化过程.研究结果对于促进青藏高原大型特大型滑坡灾害的成因机理,提升特大滑坡灾害风险防范研究具有重要指导意义.

       

    • 图  1  青藏高原主要活动断裂与地质灾害分布特征

      Fig.  1.  Distribution characteristics of major active faults and geological hazards in the Tibetan Plateau

      图  2  川藏交通廊道典型大型滑坡发育特征

      a. 西藏加查拉岗村滑坡(镜向N);b. 西藏江达白格滑坡(镜向NW);c. 四川泸定摩岗岭滑坡(镜向SW);d. 四川巴塘茶树山滑坡

      Fig.  2.  Characteristics of typical large landslides on the Sichuan-Xizang traffic corridor

      图  3  区域地壳稳定性评价因子

      a. 活动断裂影响等级;b. 工程地质岩组;c. 地震活动性;d. 构造应力场;e. 地形变场(据张郢珍等,1992,修改);f. 大地热流场;g. 地形起伏度;h. 因子叠加计算示意图

      Fig.  3.  Factors for regional crustal stability assessment

      图  4  基于专家打分与层次分析法的区域地壳稳定性评价

      Fig.  4.  Regional crustal stability assessment based on expert scoring and analytic hierarchy process

      图  5  区域地壳稳定性评价与地质灾害分布图

      a. 基于传统方法的区域地壳稳定性评价图;b. 考虑地形起伏度的区域地壳稳定性评价图;c. 基于传统方法评价的四川宝兴县地区局部放大图;d. 考虑地形起伏度评价的四川宝兴县地区局部放大图;e. 基于传统方法评价的朗县-加查县地区局部放大图;f. 考虑地形起伏度评价的朗县-加查县地区局部放大图

      Fig.  5.  Regional crustal stability assessment and geological hazard distribution maps

      图  6  汶川地震诱发大型滑坡分布(据张永双等, 2016)

      Fig.  6.  Distribution of large landslides induced by the Wenchuan earthquake(after Zhang et al., 2016)

      图  7  三峡库区谢家包背斜区滑坡发育特征(据王孔伟等, 2015)

      Fig.  7.  Landslide development characteristics in the Xiejiabao anticline area of the Three Gorges reservoir region (after Wang et al., 2015)

      图  8  正断层孕育大型滑坡的主要特征(据Chang et al., 2018)

      Fig.  8.  Main characteristics of large landslides associated with normal faults (after Chang et al., 2018)

      图  9  逆断层孕育大型滑坡的主要特征

      a. 谢家店子滑坡发育特征(据张永双等,2016);b. 逆断层促进谢家店子滑坡形成(据Dai et al.,2011a修编)

      Fig.  9.  Main characteristics of large landslides associated with reverse faults

      图  10  走滑断层孕育大型滑坡的主要特征

      a. 断层蠕滑导致滑坡产生裂缝;b. 降雨沿裂缝入渗导致滑坡蠕滑;c. 蠕滑加剧导致水渠损坏渗漏,加速了滑坡变形;d. 滑坡持续变形导致滑坡后缘不断拉裂;据Zhang et al.2023

      Fig.  10.  Main characteristics of large landslides associated with strike-slip faults

      图  11  背斜构造控制下的唐家山高位远程滑坡形成模式

      a. 唐家山滑坡受褶皱挤压影响;b. 唐家山滑坡形成滑坡-堵江灾害链

      Fig.  11.  Formation process of the Tangjiashan high-altitude and long run-out landslide controlled by anticline structures

      图  12  鲜水河断裂带岩土体与典型大型滑坡发育特征

      a. 鲜水河断裂带道孚亚拖村滑坡群;b. 鲜水河断裂带炉霍55道班滑坡;c. 鲜水河断裂带八美土石林;d. 鲜水河断裂带两侧近直立陡倾破碎岩体

      Fig.  12.  Characteristics of rock-soil masses and typical large landslides in the Xianshuihe fault zone

      图  13  怒江构造混杂岩带黏土化蚀变岩特征与剪切强度特征

      a. 怒江八宿多拉寺滑坡黏土化蚀变岩样品;b. 黏土化蚀变岩遇水崩解;c. 不同含水率条件下黏土化蚀变岩剪切强度;据张永双等(2023

      Fig.  13.  Characteristics of clayey altered rocks and shear strength in the Nujiang tectonic mélange belt

      图  14  汶川地震滑坡动力演化过程

      a. 初始斜坡;b. 地震抛掷;c. 撞击崩裂;d. 高速滑坡;据殷跃平(2008

      Fig.  14.  Dynamic evolution process of landslides during the Wenchuan earthquake

      图  15  大光包滑坡启动过程模型

      a. 地震动放大-振动冲击-滑带扩容阶段;b. 滑带水击-滑坡启程剧动阶段;c. 滑带扩容-水击效应滑体失稳阶段;d. 滑坡高速滑动-滑体扰动堆积阶段;据裴向军等(2018

      Fig.  15.  Model of Daguangbao landslide initiation

      图  16  断裂活动对斜坡变形的影响

      a~d. 正断层活动状态下斜坡体折减系数F分别为1.0、1.2、1.4、1.6条件下断错0.5 m时的斜坡塑性区分布特征;e~f. 正断层活动状态下斜坡体折减系数F分别为1.0、1.2、1.4、1.6条件下断错1.0 m时的斜坡塑性区分布特征;i~l. 逆断层活动状态下斜坡体折减系数F分别为1.0、1.2、1.4、1.6条件下断错0.5 m时的斜坡塑性区分布特征;m~p. 逆断层活动状态下斜坡体折减系数F分别为1.0、1.2、1.4、1.6条件下断错1.0 m时的斜坡塑性区分布特征;据郭长宝等(2012

      Fig.  16.  The influence of active fault slipping on slope deformation

      表  1  地壳稳定性评价结果统计

      Table  1.   Statisticsl table of crustal stability assessment results

      分区 基于传统方法的区域地壳稳定性评价
      (Crust_B)
      考虑地形起伏度的区域地壳稳定性评价
      (Relief_ Crust_B)
      面积(km2 面积占比(%) 面积(km2 面积占比(%)
      稳定区 227 370.15 27.12 179 799.60 21.45
      较稳定区 253 240.11 30.20 237 616.68 28.34
      较不稳定区 250 407.04 29.87 290 037.55 34.59
      不稳定区 107 363.10 12.81 130 926.57 15.62
      下载: 导出CSV

      表  2  地质灾害分布统计

      Table  2.   Statisticsl table of geological hazard distribution

      分区 基于传统方法的区域地壳稳定性评价
      (Crust_B)
      考虑地形起伏度的区域地壳稳定性评价
      (Relief_Crust_B)
      地质灾害数量(个) 数量占比(%) 地质灾害数量(个) 数量占比(%)
      稳定区 4 161 19.01 3 229 14.75
      较稳定区 5 760 26.32 5 039 23.02
      较不稳定区 7 604 34.74 7 769 35.50
      不稳定区 4 363 19.93 5 851 26.73
      下载: 导出CSV
    • Barbano, M. S., Pappalardo, G., Pirrotta, C., et al., 2014. Landslide Triggers along Volcanic Rock Slopes in Eastern Sicily (Italy). Natural Hazards, 73(3): 1587-1607. https://doi.org/10.1007/s11069-014-1160-1
      Brideau, M. A., Pedrazzini, A., Stead, D., et al., 2011. Three-Dimensional Slope Stability Analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides, 8(2): 139-158. https://doi.org/10.1007/s10346-010-0242-8
      Brideau, M. A., Yan, M., Stead, D., 2009. The Role of Tectonic Damage and Brittle Rock Fracture in the Development of Large Rock Slope Failures. Geomorphology, 103(1): 30-49. https://doi.org/10.1016/j.geomorph.2008.04.010
      Brune, J. N., 2001. Shattered Rock and Precarious Rock Evidence for Strong Asymmetry in Ground Motions during Thrust Faulting. Bulletin of the Seismological Society of America, 91(3): 441-447. https://doi.org/10.1785/0120000118
      Bucci, F., Santangelo, M., Cardinali, M., et al., 2016. Landslide Distribution and Size in Response to Quaternary Fault Activity: The Peloritani Range, NE Sicily, Italy. Earth Surface Processes and Landforms, 41(5): 711-720. https://doi.org/10.1002/esp.3898
      Chai, J. F., Zhu, S. J., Wu, F. Q., et al., 2004. State of Art: Regional Crustal Stability. Journal of Engineering Geology, 12(4): 401-407(in Chinese with English abstract).
      Chang, K. J., Chan, Y. C., Chen, R. F., et al., 2018. Geomorphological Evolution of Landslides near an Active Normal Fault in Northern Taiwan, as Revealed by Lidar and Unmanned Aircraft System Data. Natural Hazards and Earth System Sciences, 18(3): 709-727. https://doi.org/10.5194/nhess-18-709-2018
      Chen, Q., Cheng, H. Q., Yang, Y. H., et al., 2014. Quantification of Mass Wasting Volume Associated with the Giant Landslide Daguangbao Induced by the 2008 Wenchuan Earthquake from Persistent Scatterer InSAR. Remote Sensing of Environment, 152: 125-135. https://doi.org/10.1016/j.rse.2014.06.002
      Chen, Q. X., 1992. An Approach to Assessment of Regional Crustal Stability. Quaternary Sciences, 12(4): 289-292(in Chinese with English abstract).
      Cruden, D. M., Krahn, J., 1973. A Reexamination of the Geology of the Frank Slide. Canadian Geotechnical Journal, 10(4): 581-591. https://doi.org/10.1139/t73-054
      Cui, S. H., Pei, X. J., Huang, R. Q., 2019. An Initiation Model of DGB Landslide: Non-Coordinated Deformation Inducing Rock Damage in Sliding Zone during Strong Seismic Shaking. Chinese Journal of Rock Mechanics and Engineering, 38(2): 237-253(in Chinese with English abstract).
      Cui, S. H., Pei, X. J., Huang, R. Q., et al., 2020. Excess Interstitial Water Pressure within Sliding Zone Induced by Strong Seismic Shaking: An Initiation Model of the Daguangbao Landslide. Chinese Journal of Rock Mechanics and Engineering, 39(3): 522-539(in Chinese with English abstract).
      Dai, F. C., Tu, X. B., Xu, C., et al., 2011a. Rock Avalanches Triggered by Oblique-Thrusting during the 12 May 2008 Ms 8.0 Wenchuan Earthquake, China. Geomorphology, 132(3-4): 300-318. https://doi.org/10.1016/j.geomorph.2011.05.016
      Dai, F. C., Xu, C., Yao, X., et al., 2011b. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883-895. https://doi.org/10.1016/j.jseaes.2010.04.010
      Deng, Q. D., 1996. Active Tectonics in China. Geological Review, 42(4): 295-299(in Chinese with English abstract).
      Deng, Q. D., Zhang, P. Z., Ran, K. Y., et al., 2002. The Basic Characteristics of Active Tectonics in China. Science China: Earth Science, 32(12): 1020-1030, 1057(in Chinese).
      Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2003. Active Tectonics and Seismic Activity in China. Earth Science Frontiers, 10(Suppl. 1): 66-73(in Chinese with English abstract).
      Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4
      Gao, S. S., Silver, P. G., Linde, A. T., 2000. Analysis of Deformation Data at Parkfield, California: Detection of a Long-Term Strain Transient. Journal of Geophysical Research: Solid Earth, 105(B2): 2955-2967. https://doi.org/10.1029/1999jb900383
      Gu, D. Z., 1965. Geological Tectonic Problems in the Construction of Water Conservancy Projects. Open Laboratory of Engineering Geomechanics, Institute of Geology, Chinese Academy of Sciences, ed., Gu, D. Z. Anthology. Earthquake Press, Beijing(in Chinese).
      Gu, D. Z., 1979. Fundamentals of Rock Engineering Geomechanics. Science Press, Beijing(in Chinese).
      Guo, C. B., Du, Y. B., Zhang, Y. S., et al., 2015. Geohazard Effects of the Xianshuihe Fault and Characteristics of Typical Landslides in Western Sichuan. Geological Bulletin of China, 34(1): 121-134(in Chinese with English abstract).
      Guo, C. B., Meng, Q. W., Zhang, Y. S., et al., 2012. Numerical Simulation of Fault Structure Influence on Stress Field of Slope Body and Study on Disaster-Causing Mechanism. Journal of Disaster Prevention and Mitigation Engineering, 32(5): 592-599(in Chinese with English abstract).
      Guo, C. B., Montgomery, D. R., Zhang, Y. S., et al., 2020a. Evidence for Repeated Failure of the Giant Yigong Landslide on the Edge of the Tibetan Plateau. Scientific Reports, 10: 14371. https://doi.org/10.1038/s41598-020-71335-w
      Guo, C. B., Wu, R. A., Jiang, L. W., et al., 2021. Typical Geohazards and Engineering Geological Problems along the Ya'an-Linzhi Section of the Sichuan-Tibet Railway, China. Geoscience, 35(1): 1-17(in Chinese with English abstract).
      Guo, C. B., Wu, R. A., Li, X., et al., 2020. Developmental Characteristics and Formation Mechanism of the Rizha Potential Giant Rock Landslide, Western Sichuan Province, China. Journal of Engineering Geology, 28(4): 772-783(in Chinese with English abstract).
      Guo, C. B., Zhang, Y. S., Li, X., et al., 2020b. Reactivation of Giant Jiangdingya Ancient Landslide in Zhouqu County, Gansu Province, China. Landslides, 17(1): 179-190. https://doi.org/10.1007/s10346-019-01266-9
      Guo, C. B., Zhang, Y. S., Jiang, L. W., et al., 2017. Discussion on the Environmental and Engineering Geological Problems along the Sichuan-Tibet Railway and Its Adjacent Area. Geoscience, 31(5): 877-889(in Chinese with English abstract).
      Hu, H. T., Liu, C. Z., 1993. Review and Prospect on Regional Crustal Stability of Engineering Sites. Journal of Engineering Geology, 1(1): 7-13(in Chinese with English abstract).
      Hu, H. T., Yi, M. C., 1988. Discussion on Crustal Stability and Reservior-Induced Seismicity of the Changjiang Gorge Area. Bulletin of the Institute of Geomechanics CAGS, 153-167(in Chinese).
      Huang, R. Q., 2008. Geodynamical Process and Stability Control of High Rock Slope Development. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544(in Chinese with English abstract).
      Huang, R. Q., Li, W. L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract).
      Huang, R. Q., Pei, X. J., Fan, X. M., et al., 2012. The Characteristics and Failure Mechanism of the Largest Landslide Triggered by the Wenchuan Earthquake, May 12, 2008, China. Landslides, 9(1): 131-142. https://doi.org/10.1007/s10346-011-0276-6
      Huang, R. Q., Pei, X. J., Li, T. B., 2008. Basic Characteristics and Formation Mechanism of the Largest Scale Landslide at Dagungbao Occurred during the Wenchuan Earthquake. Journal of Engineering Geology, 16(6): 730-741(in Chinese with English abstract).
      Huang, R. Q., Zhang, W. F., Pei, X. J., 2014. Engineering Geological Study on Daguangbao Landslide. Journal of Engineering Geology, 22(4): 557-585(in Chinese with English abstract).
      Iverson, R. M., 2000. Landslide Triggering by Rain Infiltration. Water Resources Research, 36(7): 1897-1910. https://doi.org/10.1029/2000wr900090
      Ju, N. P., Deng, T. X., Li, L. Q., et al., 2019. Centrifugal Shaking Table Test on Toppling Deformation Mechanism of Steep Bedding Slope under Strong Earthquake. Rock and Soil Mechanics, 40(1): 99-108, 117(in Chinese with English abstract).
      Kellogg, K. S., 2001. Tectonic Controls on a Large Landslide Complex: Williams Fork Mountains near Dillon, Colorado. Geomorphology, 41(4): 355-368. https://doi.org/10.1016/s0169-555x(01)00067-8
      Korup, O., 2004. Geomorphic Implications of Fault Zone Weakening: Slope Instability along the Alpine Fault, South Westland to Fiordland. New Zealand Journal of Geology and Geophysics, 47(2): 257-267. https://doi.org/10.1080/00288306.2004.9515052
      Li, J. Q., Zhang, Y. S., Ren, S. S., et al., 2024. Catastrophic Mechanical Behavior of Clay-Altered Rock in the Baige Landslide Upstream of the Jinsha River. Advanced Engineering Sciences, 56(3): 72-82(in Chinese with English abstract).
      Li, S. Z., Dai, S., Wang, H. W., et al., 2015. Fault Features and Their Implications on Distribution and Formation of Landslides in Bailongjiang Region. Journal of Lanzhou University (Natural Sciences), 51(2): 145-152(in Chinese with English abstract).
      Li, Y. Q., Zhang, Y., Meng, X. M., et al., 2021. Analysis the Activity Characteristics of the Giant Landslide in Active Tectonic Fault Zone: A Case Study of Daxiaowan Landslide in Bailong River Basin. Journal of Lanzhou University (Natural Sciences), 57(3): 360-368(in Chinese with English abstract).
      Li, Y. Y., 2007. The Deformation Mechanics and Stability Study of Bedding Bank Rock Slopes in the Head Area of the Three Gorges Reservoir (Dissertation). China University of Geoscience, Wuhan(in Chinese with English abstract).
      Liu, G. C., 1965. Regional Engineering Geology of China. China Industry Press, Beijing(in Chinese).
      Liu, G. C., 1992. New Development of Engineering Geology Theory and Practice. In: Liu, G. C., ed., Engineering Geology Anthology. Shaanxi Science and Technology Press, Xi'an, 196-206(in Chinese).
      Liu, G. C., 1993. Regional Stability Engineering Geology. Jilin University Press, Changchun(in Chinese).
      Luo, Y. H., Wang, Y. S., 2013. Mountain Slope Ground Motion Topography Amplification Effect Induced by Wenchuan Earthquake. Journal of Mountain Science, 31(2): 200-210(in Chinese with English abstract).
      Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract).
      Pei, X. J., Cui, S. H., Huang, R. Q., 2018. A Model of Initiation of Daguangbao Landslide: Dynamic Dilation and Water Hammer in Sliding Zone during Strong Seismic Shaking. Chinese Journal of Rock Mechanics and Engineering, 37(2): 430-448(in Chinese with English abstract).
      Pei, X. J., Huang, R. Q., Cui, S. H., et al., 2015. The Rock Mass Cataclastic Characteristics of Daguangbao Landslide and Its Engineering Geological Significance. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 1): 3106-3115(in Chinese with English abstract).
      Peng, J. B., Ma, R. Y., Shao, T. Q., 2004. Basic Relation between Structural Geology and Engineering Geology. Earth Science Frontiers, 11(4): 535-549(in Chinese with English abstract).
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Qi, S. W., He, J. X., Zhan, Z. F., 2022. A Single Surface Slope Effects on Seismic Response Based on Shaking Table Test and Numerical Simulation. Engineering Geology, 306: 106762. https://doi.org/10.1016/j.enggeo.2022.106762
      Qi, T. J., Meng, X. M., Zhao, Y., et al., 2023. Formation and Distribution of Landslides Controlled by Thrust-Strike-Slip Fault Zones and Fluvial Erosion in the Western Qinling Mountains, China. Engineering Geology, (323): 107209. https://doi.org/10.1016/j.enggeo.2023.107209
      Rao, G., Cheng, Y. L., Lin, A. M., et al., 2017. Relationship between Landslides and Active Normal Faulting in the Epicentral Area of the AD 1 556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3): 545-554. https://doi.org/10.1007/s12583-017-0900-z
      Scheingross, J. S., Minchew, B. M., MacKey, B. H., et al., 2013. Fault-Zone Controls on the Spatial Distribution of Slow-Moving Landslides. Geological Society of America Bulletin, 125(3-4): 473-489. https://doi.org/10.1130/b30719.1
      Sun, D., Yin, Z. Q., Li, D. M., et al., 2019. Development of the Large-Scale Landslides Controlled by Geological Structures in Meigu River Basin. The Chinese Journal of Geological Hazard and Control, 30(6): 49-58, 67(in Chinese with English abstract).
      Sun, P., Zhang, Y. S., Yin, Y. P., et al., 2009. Discussion on Long Run-Out Sliding Mechanism of Donghekou Landslide-Debris Flow. Journal of Engineering Geology, 17(6): 737-744(in Chinese with English abstract).
      Sun, Y., Tan, C. X., Yang, G. S., et al., 1997. Quantitative Assessment and Zonation of Regional Crustal Stability in China. Journal of Geomechanics, 3(3): 44-54(in Chinese with English abstract).
      Tai, D. P., Qi, S. W., Zheng, B. W., et al., 2024. Effect of Excitation Frequency and Joint Density on the Dynamic Amplification Effect of Slope Surface on Jointed Rock Slopes. Engineering Geology, 330: 107385. https://doi.org/10.1016/j.enggeo.2023.107385
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1
      Wang, H. Q., Tan, C. X., Feng, C. J., et al., 2022. Activity Structure and Crustal Stability in Beijing-Tianjin-Hebei Collaborative Development Zone. Geological Bulletin of China, 41(8): 1322-1341(in Chinese with English abstract).
      Wang, K. W., Zhao, X. M., Zhang, F., 2015. Relationship between the Xiejiabao Anticline and Landslides in the Three Gorges Reservoir Area. Geological Journal of China Universities, 21(2): 255-267(in Chinese with English abstract).
      Wang, S. J., 2002. Coupling of Earth's Endogenic and Exogenic Geological Processes and Origins on Serious Geological Disasters. Journal of Engineering Geology, 10(2): 115-117(in Chinese with English abstract).
      Wang, S. W., Ma, Q. Q., Fan, X. G., et al., 2020. Numerical Simulation Study on Floor Water Inrush Mechanism under Influence of Fault. Coal Technology, 39(5): 112-115(in Chinese with English abstract).
      Wu, S. R., Wang, R. J., 1996. Some Development Trends of Geological Disasters and Regional Crustal Stability Research. Journal of Geomechanics, 2(3): 78-80(in Chinese).
      Xie, F. R., Zhang, H. Y., Cui, X. F., et al., 2011. The Modern Tectonic Stress Field and Strong Earthquakes in China. Recent Developments in World Seismology, 41(1): 4-12(in Chinese with English abstract).
      Xu, Q., Huang, R. Q., 2008. Kinetics Charateristics of Large Landlides Triggered by May 12th Wenchuan Earthquake. Journal of Engineering Geology, 16(6): 721-729(in Chinese with English abstract).
      Xu, Q., Li, W. L., 2010a. Study on the Direction Effects of Landslides Triggered by Wenchuan Earthquake. Journal of Sichuan University (Engineering Science Edition), 42(Suppl. 1): 7-14(in Chinese with English abstract).
      Xu, Q., Li, W. L., 2010b. Distribution of Large-Scale Landslides Induced by the Wenchuan Earthquake. Journal of Engineering Geology, 18(6): 818-826(in Chinese with English abstract).
      Xu, Z. M., Zhang, S., Yang, L. Z., et al., 1996. The Application of Coupling Analysis of Seepage Field and Stress Field to Geological Science. Acta Geologica Sichuan, 16(4): 361-365(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238(in Chinese with English abstract).
      Yan, Y. Q., Guo, C. B., Zhang, Y. N., et al., 2024. Comprehensive Evaluation and Prediction of Potential Long-Runout Landslide in Songrong, Tibetan Plateau: Insights from Remote Sensing Interpretation, SBAS-InSAR, and Massflow Numerical Simulation. Bulletin of Engineering Geology and the Environment, 83(5): 198. https://doi.org/10.1007/s10064-024-03682-1
      Yang, W. M., Huang, X., Zhang, C. S., et al., 2014. Deformation Behavior of Landslides and Their Formation Mechanism along Pingding-Huama Active Fault in Bailongjiang River Region. Journal of Jilin University (Earth Science Edition), 44(2): 574-583(in Chinese with English abstract).
      Yao, X., Li, L. J., Zhang, Y. S., et al., 2015. Regional Crustal Stability Assessment of the Eastern Margin of Tibetan Plateau. Geological Bulletin of China, 34(1): 32-44(in Chinese with English abstract).
      Yin, X. X., Li, S. H., Zou, X. B., et al., 2020. Characteristics of Tectonic Stress Field in Tibetan Plateau. China Earthquake Engineering Journal, 42(5): 1065-1076, 1084(in Chinese with English abstract).
      Yin, Y. P., 1990. Expert Knowledge Structure Modelling for Regional Crustal Stability Studies. Hydrogeology and Engineering Geology, 17(2): 30-33(in Chinese).
      Yin, Y. P., 2000. Overview of the Yigong Giant Landslide in Bomi, Tibet. The Chinese Journal of Geological Hazard and Control, 11(2): 103(in Chinese).
      Yin, Y. P., 2008. Researches on the Geo-Hazards Triggered by Wenchuan Earthquake, Sichuan. Journal of Engineering Geology, 16(4): 433-444(in Chinese with English abstract).
      Yin, Y. P., 2009. Rapid and Long Run-Out Features of Landslides Triggered by the Wenchuan Earthquake. Journal of Engineering Geology, 17(2): 153-166(in Chinese with English abstract).
      Yin, Y. P., Wang, M., Li, B., et al., 2012. Dynamic Response Characteristics of Daguangbao Landslide Triggered by Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(10): 1969-1982(in Chinese with English abstract).
      Yin, Y. P., Wang, W. P., 2014. Researches on Seismic Landslide Stability Analysis. Journal of Engineering Geology, 22(4): 586-600(in Chinese with English abstract).
      Yin, Y. P., Wang, W. P., Li, B., et al., 2016. Study of Stratigraphic Site Effect on the Failure Mechanism of Donghekou Rockslide Triggered by Wenchuan Earthquake. China Civil Engineering Journal, 49(Suppl. 2): 126-131(in Chinese with English abstract).
      Yin, Y. P., Zhang, Y. S., Wu, F. Q., et al., 2014. Research Achievements and Prospects on Wenchuan Earthquake-Induced Geohazard Investigation. Geological Survey of China, 1(1): 1-9(in Chinese with English abstract).
      Yin, Z. Q., Sun, D., Zhang, Y., et al., 2018. Study on Spatial-Temporal Distribution Characteristics and Forming Mechanism of Landslides in the Meigu River Basin. Quaternary Sciences, 38(6): 1358-1368(in Chinese with English abstract).
      Zhang, P. Z., Deng, Q. D., Zhang, Z. Q., et al., 2013. Active Faults, Seismic Hazards and Dynamical Processes in China. Science China: Earth Science, 43(10): 1607-1620(in Chinese).
      Zhang, P. Z., Zhang, H. P., Zheng, W. J., et al., 2014. Cenozoic Tectonic Evolution of Continental Eastern Asia. Seismology and Geology, 36(3): 574-585(in Chinese with English abstract).
      Zhang, Y. B., Zhang, J., Chen, G. Q., et al., 2015. Effects of Vertical Seismic Force on Initiation of the Daguangbao Landslide Induced by the 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, 73: 91-102. https://doi.org/10.1016/j.soildyn.2014.06.036
      Zhang, Y. S., Du, G. L., Guo, C. B., et al., 2021. Research on Typical Geomechanical Model of High-Position Landslides on the Sichuan-Tibet Traffic Corridor. Acta Geologica Sinica, 95(3): 605-617(in Chinese with English abstract).
      Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286(in Chinese with English abstract).
      Zhang, Y. S., Lei, W. Z., Shi, J. S., et al., 2008. Crustal Stability of the Leigu Basin in Beichuan County, Sichuan Province and Its Possibility for a New Town Site. Acta Geologica Sinica, 82(12): 1758-1768(in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Guo, C. B., et al., 2019. Research on Engineering Geology Related with Active Fault Zone. Acta Geologica Sinica, 93(4): 763-775(in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Li, J. Q., et al., 2023. Prone Sliding Geo-Structure and High-Position Initiating Mechanism of Duolasi Landslide in Nu River Tectonic Mélange Belt. Earth Science, 48(12): 4668-4679(in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Liu, X. Y., et al., 2023. Reactivation Mechanism of Old Landslide Triggered by Coupling of Fault Creep and Water Infiltration: A Case Study from the East Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 82(8): 291. https://doi.org/10.1007/s10064-023-03290-5
      Zhang, Y. S., Yao, X., Hu, D. G., et al., 2012. Quantitative Zoning Assessment of Crustal Stability along the Yunnan-Tibet Railway Line, Western China. Acta Geologica Sinica, 86(4): 1004-1012. https://doi.org/10.1111/j.1755-6724.2012.00724.x
      Zhang, Y. S., Shi, J. S., Sun, P., et al., 2009. Coupling between Endogenic and Exogenic Geological Processes in the Wenchuan Earthquake and Example Analysis of Geo-Hazards. Journal of Geomechanics, 15(2): 131-141(in Chinese with English abstract).
      Zhang, Y. S., Wang, D. B., Li, X., et al., 2024. Research on Hazard Prone Geological Genes and Major Engineering Geological Problems in Tectonic Mélange Belts of Tibetan Plateau. Acta Geologica Sinica, 98(3): 992-1005(in Chinese with English abstract).
      Zhang, Y. S., Wu, R. A., Guo, C. B., et al., 2022. Geological Safety Evaluation of Railway Engineering Construction Inplateau Mountainous Region: Ideas and Methods. Acta Geologica Sinica, 96(5): 1736-1751(in Chinese with English abstract).
      Zhang, Y. Z., Zhang, L. R., Su, S. P., et al., 1992. Gradients of Vertical Deformation Rates and High-Risk Areas of Strong Earthquake in China. Seismology and Geology, 14(3): 237-244(in Chinese with English abstract).
      Zhong, D. L., Ding, L., Ji, J. Q., et al., 2001. Coupling of the Lithospheric Convergence of West China and Dispersion of East China in Cenozoic: Link with Paleoenvironmental Changes. Quaternary Sciences, 21(4): 303-312(in Chinese with English abstract).
      Zhou, G. S., Zhou, Y., Zhou, Z. H., et al., 2022. Topographic Effect of Ridge Terrains Based on Strong Motion Observation Data. China Earthquake Engineering Journal, 44(5): 1110-1116(in Chinese with English abstract).
      柴建峰, 朱时杰, 伍法权, 等, 2004. 区域地壳稳定性研究现状与趋势. 工程地质学报, 12(4): 401-407.
      陈庆宣, 1992. 探索区域地壳稳定性评价途径. 第四纪研究, 12(4): 289-292.
      崔圣华, 裴向军, 黄润秋, 2019. 大光包滑坡启动机制: 强震过程滑带非协调变形与岩体动力致损. 岩石力学与工程学报, 38(2): 237-253.
      崔圣华, 裴向军, 黄润秋, 等, 2020. 强震过程滑带超间隙水压力效应研究: 大光包滑坡启动机制. 岩石力学与工程学报, 39(3): 522-539.
      邓起东, 1996. 中国活动构造研究. 地质论评, 42(4): 295-299.
      邓起东, 张培震, 冉勇康, 等, 2002. 中国活动构造基本特征. 中国科学: 地球科学, 32(12): 1020-1030, 1057.
      邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动. 地学前缘, 10(增刊1): 66-73.
      谷德振, 1965. 水利工程建设中的地质构造问题. 见: 中国科学院地质研究所工程地质力学开放实验室编, 谷德振文集. 北京: 地震出版社.
      谷德振, 1979. 岩体工程地质力学基础. 北京: 科学出版社.
      郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理. 地质通报, 34(1): 121-134.
      郭长宝, 孟庆伟, 张永双, 等, 2012. 断裂构造对斜坡应力场影响的数值模拟及成灾机理研究. 防灾减灾工程学报, 32(5): 592-599.
      郭长宝, 吴瑞安, 蒋良文, 等, 2021. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题. 现代地质, 35(1): 1-17.
      郭长宝, 吴瑞安, 李雪, 等, 2020. 川西日扎潜在巨型岩质滑坡发育特征与形成机理研究. 工程地质学报, 28(4): 772-783.
      郭长宝, 张永双, 蒋良文, 等, 2017. 川藏铁路沿线及邻区环境工程地质问题概论. 现代地质, 31(5): 877-889.
      胡海涛, 刘传正, 1993. 区域地壳稳定性研究的后顾与前瞻. 工程地质学报, 1(1): 7-13.
      胡海涛, 易明初, 1988. 长江三峡地区地壳稳定性及水库诱发地震问题的探讨. 中国地质科学院地质力学研究所所刊, 153-167.
      黄润秋, 2008. 岩石高边坡发育的动力过程及其稳定性控制. 岩石力学与工程学报, 27(8): 1525-1544.
      黄润秋, 李为乐, 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592.
      黄润秋, 裴向军, 李天斌, 2008. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析. 工程地质学报, 16(6): 730-741.
      黄润秋, 张伟锋, 裴向军, 2014. 大光包滑坡工程地质研究. 工程地质学报, 22(4): 557-585.
      巨能攀, 邓天鑫, 李龙起, 等, 2019. 强震作用下陡倾顺层斜坡倾倒变形机制离心振动台试验. 岩土力学, 40(1): 99-108, 117.
      李金秋, 张永双, 任三绍, 等, 2024. 金沙江上游白格滑坡黏土化蚀变岩的灾变力学行为研究. 工程科学与技术, 56(3): 72-82.
      李淑贞, 戴霜, 王华伟, 等, 2015. 白龙江地区断裂构造与滑坡分布及发生关系. 兰州大学学报(自然科学版), 51(2): 145-152.
      李远耀, 2007. 三峡库首区顺层基岩岸坡变形机制与稳定性研究(硕士学位论文). 武汉: 中国地质大学.
      李媛茜, 张毅, 孟兴民, 等, 2021. 活动构造断裂带巨型滑坡活动特性研究: 以白龙江流域大小湾滑坡为例. 兰州大学学报(自然科学版), 57(3): 360-368.
      刘国昌, 1965. 中国区域工程地质学. 北京: 中国工业出版社.
      刘国昌, 1992. 工程地质理论与实践的新发展. 见: 刘国成主编, 刘国昌工程地质文集. 西安: 陕西科学技术出版社, 196-206.
      刘国昌, 1993. 区域稳定工程地质. 长春: 吉林大学出版社.
      罗永红, 王运生, 2013. 汶川地震诱发山地斜坡震动的地形放大效应. 山地学报, 31(2): 200-210.
      潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304.
      裴向军, 崔圣华, 黄润秋, 2018. 大光包滑坡启动机制: 强震过程滑带动力扩容与水击效应. 岩石力学与工程学报, 37(2): 430-448.
      裴向军, 黄润秋, 崔圣华, 等, 2015. 大光包滑坡岩体碎裂特征及其工程地质意义. 岩石力学与工程学报, 34(增刊1): 3106-3115.
      彭建兵, 马润勇, 邵铁全, 2004. 构造地质与工程地质的基本关系. 地学前缘, 11(4): 535-549.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114.
      孙东, 殷志强, 李大猛, 等, 2019. 美姑河流域地质构造对大型滑坡孕育的控制作用. 中国地质灾害与防治学报, 30(6): 49-58, 67.
      孙萍, 张永双, 殷跃平, 等, 2009. 东河口滑坡-碎屑流高速远程运移机制探讨. 工程地质学报, 17(6): 737-744.
      孙叶, 谭成轩, 杨贵生, 等, 1997. 中国区域地壳稳定性定量化评价与分区. 地质力学学报, 3(3): 44-54.
      王惠卿, 谭成轩, 丰成君, 等, 2022. 京津冀协同发展区活动构造与地壳稳定性. 地质通报, 41(8): 1322-1341.
      王孔伟, 赵小明, 张帆, 2015. 三峡库区谢家包背斜与滑坡分布关系. 高校地质学报, 21(2): 255-267.
      王士伟, 马钱钱, 范晓刚, 等, 2020. 断层影响下底板突水机理数值模拟研究. 煤炭技术, 39(5): 112-115.
      王思敬, 2002. 地球内外动力耦合作用与重大地质灾害的成因初探. 工程地质学报, 10(2): 115-117.
      吴树仁, 王瑞江, 1996. 地质灾害与区域地壳稳定性研究的某些发展趋势. 地质力学学报, 2(3): 78-80.
      谢富仁, 张红艳, 崔效锋, 等, 2011. 中国大陆现代构造应力场与强震活动. 国际地震动态, 41(1): 4-12.
      徐则民, 张塞, 杨立中, 等, 1996. 渗流场与应力场耦合分析在地质科学中的应用. 四川地质学报, 16(4): 361-365.
      许强, 黄润秋, 2008. "5·12"汶川大地震诱发大型崩滑灾害动力特征初探. 工程地质学报, 16(6): 721-729.
      许强, 李为乐, 2010a. 汶川地震诱发大型滑坡分布规律研究. 工程地质学报, 18(6): 818-826.
      许强, 李为乐, 2010b. 汶川地震诱发滑坡方向效应研究. 四川大学学报(工程科学版), 42(增刊1): 7-14.
      许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238.
      杨为民, 黄晓, 张春山, 等, 2014. 白龙江流域坪定-化马断裂带滑坡特征及其形成演化. 吉林大学学报(地球科学版), 44(2): 574-583.
      姚鑫, 李凌婧, 张永双, 等, 2015. 青藏高原东缘区域地壳稳定性评价. 地质通报, 34(1): 32-44.
      殷跃平, 1990. 区域地壳稳定性研究的专家知识结构模型. 水文地质工程地质, 17(2): 30-33.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡概况. 中国地质灾害与防治学报, 11(2): 100-100.
      殷跃平, 2008. 汶川八级地震地质灾害研究. 工程地质学报, 16(4): 433-444.
      殷跃平, 2009. 汶川八级地震滑坡高速远程特征分析. 工程地质学报, 17(2): 153-166.
      殷跃平, 王猛, 李滨, 等, 2012. 汶川地震大光包滑坡动力响应特征研究. 岩石力学与工程学报, 31(10): 1969-1982.
      殷跃平, 王文沛, 2014. 论滑坡地震力. 工程地质学报, 22(4): 586-600.
      殷跃平, 王文沛, 李滨, 等, 2016. 地层场地效应对东河口地震滑坡发生影响研究. 土木工程学报, 49(S2): 126-131.
      殷跃平, 张永双, 伍法权, 等, 2014. 汶川地震地质灾害调查成果与展望. 中国地质调查, 1(1): 1-9.
      殷志强, 孙东, 张瑛, 等, 2018. 美姑河流域滑坡时空展布及成生机制研究. 第四纪研究, 38(6): 1358-1368.
      尹欣欣, 李少华, 邹小波, 等, 2020. 青藏高原区域构造应力场特征分析. 地震工程学报, 42(5): 1065-1076, 1084.
      张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学: 地球科学, 43(10): 1607-1620.
      张培震, 张会平, 郑文俊, 等, 2014. 东亚大陆新生代构造演化. 地震地质, 36(3): 574-585.
      张郢珍, 张立人, 粟生平, 等, 1992. 中国大陆垂直形变速率梯度与强震危险区. 地震地质, 14(3): 237-244.
      张永双, 杜国梁, 郭长宝, 等, 2021. 川藏交通廊道典型高位滑坡地质力学模式. 地质学报, 95(3): 605-617.
      张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286.
      张永双, 雷伟志, 石菊松, 等, 2008. 四川省北川县擂鼓盆地地壳稳定性与城镇选址. 地质学报, 82(12): 1758-1768.
      张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763-775.
      张永双, 任三绍, 李金秋, 等, 2023. 怒江构造混杂岩带多拉寺滑坡的易滑地质结构及高位启滑运动机制. 地球科学, 48(12): 4668-4679.
      张永双, 石菊松, 孙萍, 等, 2009. 汶川地震内外动力耦合及灾害实例. 地质力学学报, 15(2): 131-141.
      张永双, 王冬兵, 李雪, 等, 2024. 青藏高原构造混杂岩带的孕灾地质基因与重大工程地质问题研究. 地质学报, 98(3): 992-1005.
      张永双, 吴瑞安, 郭长宝, 等, 2022. 高原山区铁路工程建设地质安全评价: 思路与方法. 地质学报, 96(5): 1736-1751.
      钟大赉, 丁林, 季建清, 等, 2001. 中国西部新生代岩石圈汇聚和东部岩石圈离散的耦合关系与古环境格局演变的探讨. 第四纪研究, 21(4): 303-312.
      周港圣, 周游, 周正华, 等, 2022. 山脊地形效应的强震动观测研究. 地震工程学报, 44(5): 1110-1116.
    • 加载中
    图(16) / 表(2)
    计量
    • 文章访问数:  428
    • HTML全文浏览量:  131
    • PDF下载量:  88
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-24
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回