Microscopic Damage Evolution of Moraine Soils under Freeze-Thaw Cycles Based on PFC2D Simulation
- 
					    摘要: 为探究冻融循环作用下冰碛土性质劣化的微观损伤机制,基于离散元理论提出一种通过水颗粒膨胀实现土体冻融损伤模拟的方法.利用颗粒流软件PFC2D模拟三轴压缩试验,结合室内试验结果对比分析,在模拟冰碛土的力学性质变化方面显示出高度的准确性和可靠性,揭示了冻融冰碛土受载时微裂隙、位移场和力链场的演化过程与破裂特征.结果表明:(1)试样冻融过程中微裂隙呈由四周产生并逐渐向中间扩展的“累计演化”趋势,其中张拉微裂隙占据主导地位,在冻融前期(2~5次)颗粒间以水平挤压为主从而大量发育偏90°倾向张拉微裂隙;(2)冻融作用引起的冰碛土性质劣化在冻融前期(2~5次)尤为明显,粘聚力c随冻融次数N的增加呈负指数函数递减规律,而内摩擦角φ呈小幅波动态势;(3)试样受载过程中剪切微裂隙占据主导地位,微裂隙发育呈“慢→陡→缓”趋势演化,根据其裂隙演化特点,将加载过程的应力-应变曲线划分为4个变形阶段;(4)冻融后试样受载时减速斜率转换点B移动到峰值应力点C之前,说明B点在微裂隙扩展-贯通-形成破坏过程中可以作为“前兆特征”;冻融20次试样受载时破坏程度更剧烈且形成明显剪切破坏带.Abstract: In order to investigate the microscopic damage mechanism of the degradation of the properties of freezing-thaw (F-T) damaged moraine soils, a method of simulating F-T damage of soils through water particle expansion is proposed based on the discrete element theory. Using the particle flow software PFC2D to simulate the triaxial compression test, combined with the comparative analysis of the test results, this method is accurate and reliable in modeling the changes in mechanical properties of moraine soils and reveals the evolution of microcrack; displacement field; force chain field and rupture characteristics of F-T moraine soils during the loading process. The results show follows (1) The microcracks in the F-T process show a trend of "cumulative evolution" that arises from the surrounding area and gradually expands to the middle, and the tensile microcracks are dominant; at 2-5 times of F-T processes, horizontal compression between particles dominated and a large number of tension microcracks inclined at 90° were developed. (2) The deterioration of moraine properties caused by F-T is particularly obvious in the early freeze-thaw period (2-5 times), the cohesion c decreases as a negative exponential function with the number of F-T cycles, while the internal friction angle φ shows a small fluctuation. (3) The specimen loaded process is dominated by shear cleavage, with the trend of "first slow, then steep, and finally slow" evolution, and the stress-strain curve is divided into four deformation stages according to the evolution characteristics. (4) When the sample is loaded after freeze-thaw, the transition point B of deceleration slope moves before the peak stress point C, indicating that point B can be used as a "precursor feature" in the process of microcrack expansion-through-formation failure; The specimen with 20 F-T cycles were more severely damaged when loaded and formed distinct shear zones.
 - 
						
    
    
    
    
    
    
    
    
    
表 1 基本物理性质及粒径分布
Table 1. Basic physical properties and particle size distribution
物理性质 干密度 
(g/cm3)比重 孔隙率 
(%)天然含水率(%) 1.7 2.66 18.3 10.71 粒径分布 d10(mm) d30(mm) d60(mm) Cu Cc 0.58 0.83 1.27 2.2 0.94 表 2 试验方案
Table 2. Test scheme
含水率(%) 围压(kPa) 冻融循环次数N 试样个数 10.71 2, 10, 20 0 3 2 3 5 3 10 3 15 3 20 3 表 3 平行粘结接触模型细观参数
Table 3. Parallel bonded contact model parameters
粘结类型 土-土粘结 水-水 
粘结土-水 
粘结颗粒接触模量(MPa) 12 12 12 颗粒刚度比 2 2 2 摩擦系数 0.67 0.50 0.50 平行粘结模量(MPa) 12 12 12 平行粘结法向与切向刚度比 1 1 1 平行粘结法向强度(kPa) 105. 3 1 263.6 1 263.6 平行粘结切向强度(kPa) 39 468 468 平行粘结摩擦角(º) 25 0 0 表 4 不同冻融次数下试样三轴压缩模拟起裂指标统计
Table 4. Statistics analysis of crack initiation indicators from triaxial compression simulations under different numbers of freeze-thaw cycles
冻融次数 剪切起裂应力 
σNs (kPa)剪切起裂应变 
εs(10-3)张拉起裂应力 
σNt (kPa)峰值应力 
σf(kPa)0 44.4 1.300 0.296 100.0 2 36.1 1.170 0.256 94.2 5 28.4 1.060 0.247 89.4 10 28.1 1.070 0.190 88.2 15 28.4 0.935 0.148 88.4 20 26.4 0.858 0.125 87.8 表 5 试样破坏形态对比(试验与数值模拟)
Table 5. Comparison of damage patterns of specimens (experimental and numerical simulation results)
试验试样 数值模拟 σ3 (kPa) 10 10 N=0 

N=20 

 - 
						
Chen, Z. M., Liu, Y. H., Li, N., 2024. Research on the Shear Characteristics of Moraine under Freeze-Thaw Action and the Surrounding Rock Pressure. Chinese Journal of Underground Space and Engineering, 20(2): 460-470 (in Chinese with English abstract). Deng, M. F., Chen, N. S., Liu, M., 2017. Meteorological Factors Driving Glacial till Variation and the Associated Periglacial Debris Flows in Tianmo Valley, South-Eastern Tibetan Plateau. Natural Hazards and Earth System Sciences, 17(3): 345-356. https://doi.org/10.5194/nhess-17-345-2017 Feng, J. D., Li, J. G., Wang, R., et al., 2008. Large Scale Direct Shear Test on Strength Behavior of Railway Moraine Soils in Yunnan. Rock and Soil Mechanics, 29(12): 3205-3210 (in Chinese with English abstract). Han, M. X., Peng, W., Ma, B., et al., 2023. Micro-Composition Evolution of the Undisturbed Saline Soil Undergoing Different Freeze-Thaw Cycles. Cold Regions Science and Technology, 210: 103825. https://doi.org/10.1016/j.coldregions.2023.103825 He, Y. H., Qu, Z. J., 1990. Mechanical Property and Microstructure Research of Glacial Till. Advanced Engineering Sciences, 22(5): 57-62 (in Chinese). Jiang, D. W., Cui, P., Wang, J., et al., 2019. Experimental Study on the Effect of Shear Strength of Moraine Soil with Fine Grain Content. Journal of Glaciology and Geocryology, 41(1): 129-139 (in Chinese with English abstract). Jiang, Q. Q., Xu, Y. Q., Wang, H., 2020. Research on Shear Deformation Characteristics of Soilrock Mixtures under Different Stone Contents. Journal of Engineering Geology, 28(5): 951-958 (in Chinese with English abstract). Jiang, T. T., Pan, H. L., Ai, Y. F., et al., 2024. Effect of Freeze-Thaw Cycles and Water Content on the Mechanical Properties of Moraine Soil. Bulletin of Geological Science and Technology, 43(2): 238-252 (in Chinese with English abstract). Konrad, J. M., 1989. Physical Processes during Freeze-Thaw Cycles in Clayey Silts. Cold Regions Science and Technology, 16(3): 291-303. https://doi.org/10.1016/0165-232X(89)90029-3 Kuenza, K., Towhata, I., Orense, R. P., et al., 2004. Undrained Torsional Shear Tests on Gravelly Soils. Landslides, 1(3): 185-194. https://doi.org/10.1007/s10346-004-0023-3 Leuther, F., Schlüter, S., 2021. Impact of Freeze-Thaw Cycles on Soil Structure and Soil Hydraulic Properties. SOIL, 7(1): 179-191. https://doi.org/10.5194/soil-7-179-2021 Liu, J. J., Zha, F. S., Xu, L., et al., 2020. Strength and Microstructure Characteristics of Cement-Soda Residue Solidified/Stabilized Zinc Contaminated Soil Subjected to Freezing-Thawing Cycles. Cold Regions Science and Technology, 172: 102992. https://doi.org/10.1016/j.coldregions.2020.102992 Liu, Y. H., Chen, Z. M., Guo, L. M., et al., 2023. Shear Characteristics of Frozen Moraine Soil under Freeze-Thaw Cycle. China Sciencepaper, 18(2): 166-171, 203 (in Chinese with English abstract). Lü, S. Z., Wang, R., Hu, M. J., et al., 2014. Computerized Tomography (CT) Scanning Test Research on Intact Moraine Soil on West Side of Yulong Snow Mountain. Rock and Soil Mechanics, 35(6): 1593-1599, 1622 (in Chinese with English abstract). Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract). Potyondy, D. O., Cundall, P. A., 2004. A Bonded-Particle Model for Rock. International Journal of Rock Mechanics and Mining Sciences, 41(8): 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011 Qiu, E. X., He, Q. L., Chen, Q. L., et al., 2023. Influence of Freeze-Thaw Cycles on Mechanical Properties of Moraine Soils. Transportation Geotechnics, 42: 101097. https://doi.org/10.1016/j.trgeo.2023.101097 Qiu, E. X., Pan, H. Y., He, Q. L., et al., 2024. Tests on the Mechanical Properties of Moraine Soils under Freeze-Thaw Conditions and the Modified Duncan-Zhang Model. Journal of Engineering Geology, 32(3): 772-784 (in Chinese with English abstract). Qu, Z. J., Liu, K. M., Xiao, X. J., et al., 1992. Study of Microstructure, Stress-Strain Behavior and Constitutive Model of Till. Chinese Journal of Geotechnical Engineering, 14(6): 19-28 (in Chinese). Rossi, A. M., Kendrick, K. J., Graham, R. C., 2019. Pedogenic Evolution on the Arid Bishop Creek Moraines, Eastern Sierra Nevada, California. CATENA, 183: 104222. https://doi.org/10.1016/j.catena.2019.104222 Song, Y. J., Sun, Y. W., Li, C. J., et al., 2023. Meso-Fracture Evolution Characteristics of Freeze-Thawed Sandstone Based on Discrete Element Method Simulation. Rock and Soil Mechanics, 44(12): 3602-3616 (in Chinese with English abstract). Sun, Y., Li, H., Chen, Z. F., et al., 2023. Numerical Simulation of Freeze-Thaw Damage of Root-Soil Composite Based on Discrete Element Method. Science Technology and Engineering, 23(16): 7025-7032 (in Chinese with English abstract). Tan, L., Wei, C. F., Tian, H. H., et al., 2015. Experimental Study of Unfrozen Water Content of Frozen Soils by Low-Field Nuclear Magnetic Resonance. Rock and Soil Mechanics, 36(6): 1566-1572 (in Chinese with English abstract). Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract). Tao, Y., Yang, P., Li, L., et al., 2023. Characterizing Unfrozen Water Content of Saline Silty Clay during Freezing and Thawing Based on Superposition of Freezing Point Reduction. Cold Regions Science and Technology, 213: 103933. https://doi.org/10.1016/j.coldregions.2023.103933 Veettil, B. K., Kamp, U., 2021. Glacial Lakes in the Andes under a Changing Climate: A Review. Journal of Earth Science, 32(6): 1575-1593. https://doi.org/10.1007/s12583-020-1118-z Wang, J. Q., Wang, Q., Kong, Y. Y., et al., 2020. Analysis of the Pore Structure Characteristics of Freeze-Thawed Saline Soil with Different Salinities Based on Mercury Intrusion Porosimetry. Environmental Earth Sciences, 79(7): 161. https://doi.org/10.1007/s12665-020-08903-w Wang, J. T., Zhou, W. J., Dong, G. C., et al., 2024. Repeated Glacial Fluctuations during the Last Glacial Maximum in the Southeastern Tibetan Plateau: 10Be Surface Exposure Dating of Moraines in the Lahaku Valley, Haizishan Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 636: 111959. https://doi.org/10.1016/j.palaeo.2023.111959 Wang, X. M., Yin, J., Luo, M. H., et al., 2023. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. Journal of Earth Science, 34(5): 1596-1615. https://doi.org/10.1007/s12583-021-1505-0 Wu, L. Y., Zhu, Y. H., Bai, H. B., et al., 2023. Study on the Correlation of Macro and Meso Parameters of Parallel Bond Model Sandstone. Journal of Mining Science and Technology, 8(4): 487-501 (in Chinese with English abstract). Xiao, D. H., Feng, W. J., Zhang, Z., 2014. The Changing Rule of Loess' s Porosity under Freezing-Thawing Cycles. Journal of Glaciology and Geocryology, 36(4): 907-912 (in Chinese with English abstract). Xie, S. B., Qu, J. J., Lai, Y. M., et al., 2015. Effects of Freeze-Thaw Cycles on Soil Mechanical and Physical Properties in the Qinghai-Tibet Plateau. Journal of Mountain Science, 12(4): 999-1009. https://doi.org/10.1007/s11629-014-3384-7 Xu, A. H., Yan, Y. H., Chang, D., et al., 2025. Study on Macroscopic and Microscopic Mechanical Properties of Frozen Clay. Journal of Glaciology and Geocryology, 47(2): 372-381 (in Chinese with English abstract). Xu, W. J., Wang, S., 2016. Meso-Mechanics of Soil-Rock Mixture with Real Shape of Rock Blocks Based on 3D Numerical Direct Shear Test. Chinese Journal of Rock Mechanics and Engineering, 35(10): 2152-2160 (in Chinese with English abstract). Zhang, Y. S., Guo, C. B., Shi, J. S., et al., 2007. Research on the Engineering Geological Properties of Moraine/Outwash Rocks on the West Side of the Yulong Mountains. Geoscience, 21(1): 150-156 (in Chinese with English abstract). Zhou, G. G. D., Chen, L. L., Mu, Q. Y., et al., 2019. Effects of Water Content on the Shear Behavior and Critical State of Glacial Till in Tianmo Gully of Tibet, China. Journal of Mountain Science, 16(8): 1743-1759. https://doi.org/10.1007/s11629-019-5440-9 Zhou, X. Q., Xu, W. Y., Niu, X. Q., et al., 2007. A Review of Distinct Element Method Researching Progress and Application. Rock and Soil Mechanics, 28(S1): 408-416 (in Chinese with English abstract). Zhu, T. T., Chen, J. X., Huang, D., et al., 2021. A DEM-Based Approach for Modeling the Damage of Rock under Freeze-Thaw Cycles. Rock Mechanics and Rock Engineering, 54(6): 2843-2858. https://doi.org/10.1007/s00603-021-02465-4 陈志敏, 刘耀辉, 李宁, 2024. 冻融作用下冰碛体剪切特性与围岩压力研究. 地下空间与工程学报, 20(2): 460-470. 冯俊德, 李建国, 汪稔, 等, 2008. 云南某铁路冰碛土大型直剪强度特性试验研究. 岩土力学, 29(12): 3205-3210. 何迎红, 屈智炯, 1990. 冰碛土力学性质与微观结构的研究. 成都科技大学学报, 22(5): 57-62. 蒋德旺, 崔鹏, 王姣, 等, 2019. 细粒含量对冰碛土抗剪强度影响的实验研究. 冰川冻土, 41(1): 129-139. 江强强, 徐杨青, 王浩, 2020. 不同含石量条件下土石混合体剪切变形特征的试验研究. 工程地质学报, 28(5): 951-958. 蒋婷婷, 潘华利, 艾一帆, 等, 2024. 冻融循环及含水率对冰碛土力学特性影响. 地质科技通报, 43(2): 238-252. 刘耀辉, 陈志敏, 郭利民, 等, 2023. 冻融循环作用下冻结冰碛土剪切特性. 中国科技论文, 18(2): 166-171, 203. 吕士展, 汪稔, 胡明鉴, 等, 2014. 玉龙雪山西麓原状冰碛土CT扫描试验研究. 岩土力学, 35(6): 1593-1599, 1622. 彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. 邱恩喜, 潘宏宇, 何巧玲, 等, 2024. 冻融条件下冰碛土力学特性试验及模型研究. 工程地质学报, 32(3): 772-784. 屈智炯, 刘开明, 肖晓军, 等, 1992. 冰碛土微观结构、应力应变特性及其模型研究. 岩土工程学报, 14(6): 19-28. 宋勇军, 孙银伟, 李晨婧, 等, 2023. 基于离散元法模拟的冻融砂岩细观破裂演化特征研究. 岩土力学, 44(12): 3602-3616. 孙渊, 李辉, 陈智峰, 等, 2023. 基于离散元方法的根土复合体冻融损伤数值模拟研究. 科学技术与工程, 23(16): 7025-7032. 谭龙, 韦昌富, 田慧会, 等, 2015. 冻土未冻水含量的低场核磁共振试验研究. 岩土力学, 36(6): 1566-1572. 汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. 吴禄源, 朱永恒, 白海波, 等, 2023. 砂岩颗粒流平行黏结模型宏细观参数关联性研究. 矿业科学学报, 8(4): 487-501. 肖东辉, 冯文杰, 张泽, 2014. 冻融循环作用下黄土孔隙率变化规律. 冰川冻土, 36(4): 907-912. 徐安花, 闫一辉, 常丹, 等, 2025. 冻结黏土宏细观力学特性研究. 冰川冻土, 47(2): 372-381. 徐文杰, 王识, 2016. 基于真实块石形态的土石混合体细观力学三维数值直剪试验研究. 岩石力学与工程学报, 35(10): 2152-2160. 张永双, 郭长宝, 石菊松, 等, 2007. 玉龙雪山西麓冰碛(水)砾岩的工程地质特性研究. 现代地质, 21(1): 150-156. 周先齐, 徐卫亚, 钮新强, 等, 2007. 离散单元法研究进展及应用综述. 岩土力学, 28(增刊1): 408-416.  - 
						
						
						
						
						
					 
		            
		        



 
							
							
下载: