Sedimentary Environment and Organic Matter Enrichment Mechanism of the Lower Member of the Xingouzui Formation in the Jianghan Basin during the Early Eocene
-
摘要: 中国陆相页岩油资源潜力巨大,早始新世新沟嘴组下段(新下段)作为江汉盆地页岩油勘探的主要层位,先前的研究主要集中在生烃潜力及储层特征方面,有关其沉积环境演化及有机质富集机理方面的讨论仍相对缺乏.以江汉盆地SKD1和CY1钻孔早始新世新下段地层为主要研究对象,基于岩相分析及元素和同位素地球化学方法对新下段古环境变化及有机质富集机理进行了研究.结果表明:新下段有机质含量整体较低,总有机碳(TOC)均值为0.9%.在古新世-始新世极热时期(PETM),快速增温和氧化环境加速了有机质的分解,导致有机质含量较低,TOC仅为0.5%;在气候干旱时期,湖水盐度上升,硬石膏、钙芒硝等蒸发盐矿物陆续沉积,高盐度条件下嗜盐生物贡献了部分生产力,并且高盐、缺氧的环境促进了有机质的保存,TOC含量增大为2.56%.指示了早始新世江汉盆地古湖泊的有机质富集主要受生产力和保存条件协同控制.本研究为温室气候条件下陆相咸化湖盆中的有机质富集机制做出了解释,同时为未来油气资源有利层段勘探提供了理论依据.Abstract: The potential of continental shale oil resources in China is enormous, and the lower member of the Xingouzui Formation (LXF) from the Early Eocene serves as the primary target for shale oil exploration in the Jianghan basin. Previous research has mainly focused on hydrocarbon generation potential and reservoir characteristics, while discussions regarding its depositional environment evolution and mechanisms of organic matter enrichment remain relatively scarce.This study takes the Early Eocene LXF from the SKD1 and CY1 boreholes as the main research object. Based on lithofacies, elemental, and isotopic geochemical analyses, it investigates the paleoenvironmental changes and organic matter enrichment mechanisms of the LXF. The results indicate that organic matter content in the LXF is relatively low, with an average total organic carbon (TOC) of 0.9%. During the Paleocene-Eocene Thermal Maximum (PETM), rapid warming and oxidative conditions accelerated the decomposition of organic matter, resulting in relatively low organic matter content, with a TOC of only 0.5%. In contrast, during arid climatic periods, increasing lake salinity led to the sequential deposition of evaporative minerals such as anhydrite and glauberite. Under high-salinity conditions, halophilic organisms contribute to part of the productivity. High salt and hypoxic environment promotes the production and preservation of organic matter, with average TOC increaing to 2.56%. These findings indicate that organic matter enrichment in the Jianghan basin during the Eocene was primarily controlled by synergy of productivity and preservation conditions. This study provides insights into the mechanisms of organic matter preservation in continental saline lacustrine basins under greenhouse climate conditions and provides a theoretical basis for identifying favorable stratigraphic intervals for future oil and gas exploration.
-
图 1 江汉盆地构造单元及地层剖面
a.江汉盆地构造单元划分(据Huang and Hinnov, 2014);b.过江陵凹陷和陈沱口凹陷地层反射剖面;AA’剖面(据Teng et al., 2019);BB’剖面(据Li et al., 2022)
Fig. 1. Tectonic divisions and seismic profiles of the Jianghan basin
图 2 江汉盆地新生代地层综合柱状图(a)以及新沟组嘴下段地层对比(b)
岩性及含油层系据彭伟(2019);地层年龄据Huang and Hinnov(2019);构造演化据Wu et al.(2017)
Fig. 2. Simplified Cenozoic stratigraphic column of Jianghan basin (a) and stratigraphic comparison of the lower member of the Xingouzui Formation (b)
图 3 沙市组上段及新沟嘴下段岩相特征
a.石膏,CY1井,2 638.40 m;b.纹层状泥质钙芒硝,CY1井,2 754.50 m;c.钙芒硝,CY1井,2 677.4 m;d.石盐,SKD1井,1 261.7 m;e.粉砂岩,SKD1井,1 340.7 m;f.泥质粉砂岩,SKD1井,1 220.5 m;g.层状云质泥岩,CY1井,2 635.70 m;h.粉砂质泥岩,CY1井,2 719.30 m;i.钙芒硝质泥岩,CY1井,2 725.30 m;j.块状泥质白云岩,CY1井,2 647.83 m;k.层状泥质白云岩,CY1井,2 702.00 m;l.纹层状泥质白云岩,CY1井,2 704.69 m
Fig. 3. Lithofacies charactersticis of the upper Shashi and lower member of Xingouzui Formation
图 4 CY1井新下段代表性薄片
f,h,i据Gou et al.(2023);a. 钙芒硝交代石膏,单偏光,2 730.58 m;b.钙芒硝晶体,单偏光,2 724.41 m;c.泥质粉砂岩,单偏光,2 732.94 m;d.层状白云质泥岩,单偏光,2 706.63 m;e.粉砂质泥岩,单偏光,2 719.89 m;f.泥晶白云石,单偏光,2 635.64 m;g.纹层状泥质白云岩,单偏光,2 635.64 m;h.纹层状泥质白云岩,单偏光,2 706.63 m;i.纹层状泥质白云岩,单偏光,2 635.64 m
Fig. 4. Representative thin sections of the lower member of Xingouzui Formation
图 5 沙市组上段及新下段古环境参数垂向变化
SKD1井δ13Ccarb和δ18Ocarb值据Teng et al.(2021)
Fig. 5. Vertical variation characteristic proxies indicating changes in paleoenvironment of the upper Shashi and lower member of Xingouzui Formation
表 1 沙市组上段及新下段古环境参数范围和均值
Table 1. Ranges and averages of the geochemical data of the upper Shashi and lower member of Xingouzui Formation
阶段 Al2O3(%) TiO2(%) UEF MoEF Mg/Ca Sr/Ba Ni (μg/g) Ni/Al(10‒4) Ⅳ 最小值 0.7 0.04 5 1 0.05 0.8 6 4.00 最大值 12.8 0.67 22 87 0.87 9.0 33 14.75 均值 6.4 0.30 11 23 0.45 4.4 18 6.62 Ⅲ 最小值 0.1 0.06 5 1 0.12 1.5 1 4.43 最大值 11.6 0.51 47 189 2.20 34.1 38 37.75 均值 5.2 0.26 18 53 0.51 12.5 17 9.06 Ⅱ 最小值 0.2 0.18 0 0 0.05 0.5 2 0.19 最大值 16 0.69 23 38 0.68 14.5 57 16.67 均值 11.9 0.54 5 5 0.31 3.4 30 5.71 Ⅰ 最小值 0.9 0.05 1 3 0.07 0.8 8 0.77 最大值 19 0.68 91 207 6.55 31.6 58 32.92 均值 8.2 0.35 21 59 0.88 15.2 24 11.76 -
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009 Barbe, A., Grimalt, J. O., Pueyo, J. J., et al., 1990. Characterization of Model Evaporitic Environments through the Study of Lipid Components. Organic Geochemistry, 16(4-6): 815-828. https://doi.org/10.1016/0146-6380(90)90120-o Berner, R. A., 2003. The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature, 426(6964): 323-326. https://doi.org/10.1038/nature02131 Cavinato, G. P., Carusi, C., Dall'Asta, M., et al., 2002. Sedimentary and Tectonic Evolution of Plio-Pleistocene Alluvial and Lacustrine Deposits of Fucino Basin (Central Italy). Sedimentary Geology, 148(1/2): 29-59. https://doi.org/10.1016/S0037-0738(01)00209-3 Chivas, A. R., De Deckker, P., Shelley, J. M. G., 1985. Strontium Content of Ostracods Indicates Lacustrine Palaeosalinity. Nature, 316: 251-253. https://doi.org/10.1038/316251a0 Dasch, E. J., 1969. Strontium Isotopes in Weathering Profiles, Deep-Sea Sediments, and Sedimentary Rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. https://doi.org/10.1016/0016-7037(69)90153-7 Deng, S. C., Dong, H. L., Lv, G., et al., 2010. Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3-4): 151-159. https://doi.org/10.1016/j.chemgeo.2010.09.008 Dickens, G. R., O'Neil, J. R., Rea, D. K., et al., 1995. Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 10(6): 965-971. https://doi.org/10.1029/95pa02087 Feng, Y. L., Li, S. T., Lu, Y. C., 2013. Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China. Sedimentary Geology, 295: 1-26. https://doi.org/10.1016/j.sedgeo.2013.07.004 Gou, Q. Y., Xu, S., Hao, F., et al., 2023. Petrography and Mineralogy Control the Nm-Μm-Scale Pore Structure of Saline Lacustrine Carbonate-Rich Shales from the Jianghan Basin, China. Marine and Petroleum Geology, 155: 106399. https://doi.org/10.1016/j.marpetgeo.2023.106399 Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4(3): 153-174. https://doi.org/10.5194/cp-4-153-2008 Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010 Hu, S. B., Kohn, B. P., Raza, A., et al., 2006. Cretaceous and Cenozoic Cooling History across the Ultrahigh Pressure Tongbai-Dabie Belt, Central China, from Apatite Fission-Track Thermochronology. Tectonophysics, 420(3-4): 409-429. https://doi.org/10.1016/j.tecto.2006.03.027 Hu, T., Pang, X. Q., Jiang, S., et al., 2018. Impact of Paleosalinity, Dilution, Redox, and Paleoproductivity on Organic Matter Enrichment in a Saline Lacustrine Rift Basin: A Case Study of Paleogene Organic-Rich Shale in Dongpu Depression, Bohai Bay Basin, Eastern China. Energy & Fuels, 32(4): 5045-5061. https://doi.org/10.1021/acs.energyfuels.8b00643 Huang, C. J., Hinnov, L., 2014. Evolution of an Eocene- Oligocene Saline Lake Depositional System and Its Controlling Factors, Jianghan Basin, China. Journal of Earth Science, 25(6): 959-976. https://doi.org/10.1007/s12583-014-0499-2 Huang, C. J., Hinnov, L., 2019. Astronomically Forced Climate Evolution in a Saline Lake Record of the Middle Eocene to Oligocene, Jianghan Basin, China. Earth and Planetary Science Letters, 528: 115846. https://doi.org/10.1016/j.epsl.2019.115846 Jiang, Z. X., Chen, D. Z., Qiu, L. W., et al., 2007. Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 54(2): 265-292. https://doi.org/10.1111/j.1365-3091.2006.00834.x Kim, S. T., Coplen, T. B., Horita, J., 2015. Normalization of Stable Isotope Data for Carbonate Minerals: Implementation of IUPAC Guidelines. Geochimica et Cosmochimica Acta, 158: 276-289. https://doi.org/10.1016/j.gca.2015.02.011 Kumar, S., Bhavya, P. S., Ramesh, R., et al., 2018. Nitrogen Uptake Potential under Different Temperature- Salinity Conditions: Implications for Nitrogen Cycling under Climate Change Scenarios. Marine Environmental Research, 141: 196-204. https://doi.org/10.1016/j.marenvres.2018.09.001 Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7-8): 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012 Li, Q. Q., Xu, S., Hao, F., et al., 2021. Geochemical Characteristics and Organic Matter Accumulation of Argillaceous Dolomite in a Saline Lacustrine Basin: A Case Study from the Paleogene Xingouzui Formation, Jianghan Basin, China. Marine and Petroleum Geology, 128: 105041. https://doi.org/10.1016/j.marpetgeo.2021.105041 Li, Q. Q., Xu, S., Zhang, L., et al., 2022. Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China. Energies, 15(11): 4038. https://doi.org/10.3390/en15114038 Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2018. Sedimentary Characteristics and Origin of Lacustrine Organic-Rich Shales in the Salinized Eocene Dongying Depression. GSA Bulletin, 130(1-2): 154-174. https://doi.org/10.1130/b31584.1 Liang, C., Yang, B., Cao, Y. C., et al., 2024. Salinization Mechanism of Lakes and Controls on Organic Matter Enrichment: From Present to Deep-Time Records. Earth-Science Reviews, 251: 104720. https://doi.org/10.1016/j.earscirev.2024.104720 Lin, C., Eriksson, K., Li, S., et al., 2001. Sequence Architecture, Depositional Systems, and Controls on Development of Lacustrine Basin Fills in Part of the Erlian Basin, Northeast China. AAPG, 85(11): 2017-2043. https://doi.org/10.1306/8626D0DB-173B-11D7-8645000102C1865D Liu, J. S., Algeo, T. J., 2020. Beyond Redox: Control of Trace-Metal Enrichment in Anoxic Marine Facies by Watermass Chemistry and Sedimentation Rate. Geochimica et Cosmochimica Acta, 287: 296-317. https://doi.org/10.1016/j.gca.2020.02.037 Liu, Q. Y., Li, P., Jin, Z. J., et al., 2022. Organic-Rich Formation and Hydrocarbon Enrichment of Lacustrine Shale Strata: A Case Study of Chang 7 Member. Science China Earth Sciences, 52(2): 270-290 (in Chinese). https://doi.org/10.1007/s11430-021-9819-y Lu, Y. B., Hao, F., Lu, Y. C., et al., 2020. Lithofacies and Depositional Mechanisms of the Ordovician-Silurian Wufeng-Longmaxi Organic-Rich Shales in the Upper Yangtze Area, Southern China. AAPG Bulletin, 103(1): 97-129. https://doi.org/10.1306/04301918099 McBride, E. F., 1974. Significance of Color in Red, Green, Purple, Olive, Brown, and Gray Beds of Difunta Group, Northeastern Mexico. SEPM Journal of Sedimentary Research, 44: 760-773. https://doi.org/10.1306/212F6B9A-2B24-11D7-8648000102C1865D McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021-1024. https://doi.org/10.1029/2000GC000109 Mendonça, R., Müller, R. A., Clow, D., et al., 2017. Organic Carbon Burial in Global Lakes and Reservoirs. Nature Communications, 8(1): 1694. https://doi.org/10.1038/s41467-017-01789-6 Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114(3-4): 289-302. https://doi.org/10.1016/0009-2541(94)90059-0 Peng, W., 2019. The Beach Bar Sand Deposit in the Lower Segment of Xingouzui Formation and Its Distribution Characteristics. Journal of Yangtze University (Natural Science Edition), 16(3): 9-15 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1409.2019.03.003 Raiswell, R., Buckley, F., Berner, R. A., et al., 1988. Degree of Pyritization of Iron as a Paleoenvironmental Indicator of Bottom-Water Oxygenation. Journal of Sedimentary Research, 58: 812-819. Raven, M. R., Fike, D. A., Gomes, M. L., et al., 2018. Organic Carbon Burial during OAE2 Driven by Changes in the Locus of Organic Matter Sulfurization. Nature Communications, 9(1): 3409. https://doi.org/10.1038/s41467-018-05943-6 Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001 Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002 Sluijs, A., Röhl, U., Schouten, S., et al., 2008. Arctic Late Paleocene-Early Eocene Paleoenvironments with Special Emphasis on the Paleocene-Eocene Thermal Maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography, 23(1): 2007PA001495. https://doi.org/10.1029/2007pa001495 Soliman, M. F., Aubry, M. P., Schmitz, B., et al., 2011. Enhanced Coastal Paleoproductivity and Nutrient Supply in Upper Egypt during the Paleocene/Eocene Thermal Maximum (PETM): Mineralogical and Geochemical Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3-4): 365-377. https://doi.org/10.1016/j.palaeo.2011.07.027 Stoll, H. M., Shimizu, N., Archer, D., et al., 2007. Coccolithophore Productivity Response to Greenhouse Event of the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 258(1/2): 192-206. https://doi.org/10.1016/j.epsl.2007.03.037 Strahl, H., Greie, J. C., 2008. The Extremely Halophilic Archaeon Halobacterium Salinarum R1 Responds to Potassium Limitation by Expression of the K+-Transporting KdpFABC P-Type ATPase and by a Decrease in Intracellular K+. Extremophiles, 12(6): 741-752. https://doi.org/10.1007/s00792-008-0177-3 Teng, X. H., Wang, C. L., Liu, C. L., et al., 2021. Paleocene-Eocene Thermal Maximum Lacustrine Sediments in Deep Drill Core SKD1 in the Jianghan Basin: A Record of Enhanced Precipitation in Central China. Global and Planetary Change, 205: 103620. https://doi.org/10.1016/j.gloplacha.2021.103620 Teng, X. H., Fang, X. M., Kaufman, A. J., et al., 2019. Sedimentological and Mineralogical Records from Drill Core SKD1 in the Jianghan Basin, Central China, and Their Implications for Late Cretaceous-Early Eocene Climate Change. Journal of Asian Earth Sciences, 182: 103936. https://doi.org/10.1016/j.jseaes.2019.103936 Teng, X. H., Han, W. X., Ye, C. C., et al., 2013. Asian Inland Drought and Its Origin in Carbonate Isotope Records from Hole SG-1 in Qaidam Basin since 1.0 Ma. Quaternary Sciences, 33(5): 866-875 (in Chinese with English abstract). Teng, X. H., Wang, C. L., Shen, L. J., et al., 2022. Paleoclimate during the Paleocene-Eocene Extreme Thermal Event Recorded by the Deep Drill Core SKD1 in the Jianghan Basin. Acta Geoscientica Sinica, 43(1): 65-72 (in Chinese with English abstract). Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 Tyson, R. V., 2001. Sedimentation Rate, Dilution, Preservation and Total Organic Carbon: Some Results of a Modelling Study. Organic Geochemistry, 32(2): 333-339. https://doi.org/10.1016/S0146-6380(00)00161-3 Wang, B. J., Lin, C. S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230, 248 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.2006.02.022 Wei, D. Y., 1998. Glauberite in Salt Deposits and Its Genesis. Minerals and Rocks, 8(2): 92-98 (in Chinese with English abstract). Wei, W., Algeo, T. J., Lu, Y. B., et al., 2018. Identifying Marine Incursions into the Paleogene Bohai Bay Basin Lake System in Northeastern China. International Journal of Coal Geology, 200: 1-17. https://doi.org/10.1016/j.coal.2018.10.001 Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth's Climate and Its Predictability over the Last 66 Million Years. Science, 369(6509): 1383-1387. https://doi.org/10.1126/science.aba6853 Wu, L. L., Mei, L. F., Liu, Y. S., et al., 2017. Multiple Provenance of Rift Sediments in the Composite Basin-Mountain System: Constraints from Detrital Zircon U-Pb Geochronology and Heavy Minerals of the Early Eocene Jianghan Basin, Central China. Sedimentary Geology, 349: 46-61. https://doi.org/10.1016/j.sedgeo.2016.12.003 Xie, Y. L., Wu, F. L., Fang, X. M., 2022. A Transient South Subtropical Forest Ecosystem in Central China Driven by Rapid Global Warming during the Paleocene-Eocene Thermal Maximum. Gondwana Research, 101: 192-202. https://doi.org/10.1016/j.gr.2021.08.005 Xu, L. X., Yan, C. D., Yu, H. L., et al., 1995. Age of Eogene Volcanic Rocks in Jianghan Basin. Oil & Gas Geology, 16(2): 132-137 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.1995.02.010 Zhang, J. Y., Wang, C. L., Teng, X. H., et al., 2024. Orbital Modulation of an Intensified Hydrological Cycle during the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 635: 118693. https://doi.org/10.1016/j.epsl.2024.118693 Zou, C. N., Yang, Z., Li, G. X., et al., 2022. Why can China Realize the Continental'Shale Oil Revolution'?. Earth Science, 47(10): 3860-3863 (in Chinese with English abstract). 刘全有, 李鹏, 金之钧, 等, 2022. 湖相泥页岩层系富有机质形成与烃类富集——以长7为例. 中国科学: 地球科学, 52(2): 270-290. 彭伟, 2019. 江汉盆地新沟嘴组下段滩坝砂沉积及分布特征. 长江大学学报(自然科学版), 16(3): 9-15. doi: 10.3969/j.issn.1673-1409.2019.03.003 滕晓华, 韩文霞, 叶程程, 等, 2013. 柴达木盆地SG-1孔1.0 Ma以来碳酸盐同位素记录的亚洲内陆干旱化及成因. 第四纪研究, 33(5): 866-875. 滕晓华, 王春连, 沈立建, 等, 2022. 江汉盆地SKD1深钻记录的古新世——始新世极热事件时期的古气候. 地球学报, 43(1): 65-72. 王必金, 林畅松, 陈莹, 等, 2006. 江汉盆地幕式构造运动及其演化特征. 石油地球物理勘探, 41(2): 226-230, 248. doi: 10.3321/j.issn:1000-7210.2006.02.022 魏东岩, 1988. 盐类沉积中的钙芒硝及其成因. 矿物岩石, 8(2): 92-98. 徐论勋, 阎春德, 俞惠隆, 等, 1995. 江汉盆地下第三系火山岩年代. 石油与天然气地质, 16(2): 132-137. doi: 10.3321/j.issn:0253-9985.1995.02.010 邹才能, 杨智, 李国欣, 等, 2022. 中国为什么可以实现陆相"页岩油革命"?. 地球科学, 47(10): 3860-3863. doi: 10.3799/dqkx.2022.841 -