Depositional Character and Influencing Factors of Fine-Grained Gravity Flow of Chang 73 Submember in Longdong Area of Ordos Basin
-
摘要: 为研究鄂尔多斯盆地陇东地区延长组长73亚段细粒重力流沉积特征,通过岩心描述、显微薄片观察、X射线衍射分析、微量元素分析等实验方法.揭示了研究区域主要发育7种细粒沉积岩相组合:细粒静水沉淀、细粒泥质湍流-泥流、细粒过渡流-泥流、细粒滑塌-碎屑流-泥流、浪涌状浊流、细粒异重流和细粒浓缩密度流.细粒重力流沉积的发育主要受到构造运动、古气候变化以及湖盆古地貌展布等因素的控制.构造运动的活跃性是诱发滑塌型重力流发育的关键因素,气候控制的洪泛事件促进了洪水型细粒重力流的发育,湖床古地貌对细粒重力流沉积的展布具有显著的控制作用,坡折角的高低可影响滑塌型细粒重力流沉积的发育.Abstract: To examine the fine-grained gravity flow sedimentation of the Chang 73 submember in the Longdong area, Ordos basin, through observation of core and thin sections, XRD analysis, and trace elements analysis, the sedimentary characteristics and influencing factors of fine-grained gravity flow sedimentation were studied. 7 lithofacies assemblages were formed due to different depositional processes: the shale with lamina tuffaceous assemblage, the fine-grained turbidity currents to mud flow assemblage, the transitional flow to mud flow assemblage, the slump to debris flow to mud flow assemblage, the surge-like turbidity flow assemblage, the quasi-steady turbidity current assemblage, and the concentrated density flow assemblage. The development of fine-grained gravity flow is mostly controlled by tectonic activities, paleo-climate change, and paleo-topography of the lacustrine basin. Tectonic activities are the key factors in inducing the development of slump-triggered fine-grained gravity flow sedimentation, while flood events promote the development of flood-triggered fine-grained gravity flow sedimentation. The characteristics of the paleogeomorphology have a significant control effect on the distribution of fine-grained gravity flow sedimentation, the gradient of the slope significantly influences the depositional characteristics of slump-triggered fine-grained gravity flows.
-
图 1 鄂尔多斯盆地构造单元划分及延长组综合柱状图(修改自操应长等,2017)
Fig. 1. The structural division map and comprehensive diagram of Yanchang Formation in Ordos basin (modified from Cao et al., 2017)
图 2 陇东地区长73亚段“粉砂质-黏土矿物-碳酸盐矿物”三角图中样品的岩性分布(修改自Shepard, 1954)
Fig. 2. Lithology distribution on "silt-clay-carbonate" ternary diagram of Chang 73 submember in Longdong area (modified from Shepard, 1954)
图 4 细粒重力流划分方案
修改自Mulder and Alexander(2001)和Baas et al.(2011)
Fig. 4. Classification of fine-grained gravity flow sedimentation
图 8 陇东地区长73亚段岩相组合6和7
a.细粒异重流沉积岩相组合,①Z80,长73,2 273.2 m;②Z80,长73,2 272.8 m;③Z80,长73,2 272.3 m;④Z80,长73,2 272 m;⑤Z80,长73,2 271.85 m;⑥Z80,长73,2 271.4 m;⑦Z80,长73,2 271 m;⑧Z80,长73,2 269.7 m. b.细粒浓缩密度流沉积岩相组合,①C257,长73,2 526.75 m;②Z233,长73,1 821.62 m;③Z80,长73,2 276.3 m
Fig. 8. Lithofacies assemblages 6 and 7 of Chang 73 submember in Longdong area
图 10 陇东地区长73亚段受构造活动影响的沉积构造特征
a.砂质注入构造,Z40,长73,1 470.58 m,Z233,长73,1 797.2 m;b.发育软沉积物变形构造的细粉砂岩,C257,长73,2 506.6 m,G347,长73,2 437.18 m,D214,长73,1 189.98 m;c.发育泥质撕裂屑的细粉砂岩,Z70,长73,1 645.4 m;d.含凝灰质泥岩,Z233,长73,1 797.6 m;C30,长73,1 966 m
Fig. 10. Depositional characteristics caused by tectonic activities of Chang 73 submember in Longdong area
图 12 Z40井岩相组合和元素地球化学综合柱状图(修改自刘翰林等,2023)
Fig. 12. The comprehensive column map of lithofacies assemblages and element geochemical index of well Z40 (modified from Liu et al., 2023)
图 13 鄂尔多斯盆地长73沉积期古地貌控砂示意图(修改自杨哲翰,2023)
Fig. 13. Sand control diagram of paleogeomorphology in Chang 73 sedimentary period in Ordos basin (modified from Yang, 2023)
-
Aplin, A. C., MacQuaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031-2059. https://doi.org/10.1306/03281110162 Baas, J. H., Best, J. L., Peakall, J., 2011. Depositional Processes, Bedform Development and Hybrid Bed Formation in Rapidly Decelerated Cohesive (Mud-Sand) Sediment Flows. Sedimentology, 58(7): 1953-1987. https://doi.org/10.1111/j.1365-3091.2011.01247.x Bai, Y. Y., Liu, Z. J., Sun, P. C., et al., 2015. Rare Earth and Major Element Geochemistry of Eocene Fine-Grained Sediments in Oil Shale- and Coal-Bearing Layers of the Meihe Basin, Northeast China. Journal of Asian Earth Sciences, 97: 89-101. https://doi.org/10.1016/j.jseaes.2014.10.008 Cao, Y. C., Yang, T., Wang, Y. Z., et al., 2017. Types and Genesis of Deep-Water Hybrid Event Beds Comprising Debris Flow and Turbidity Current. Earth Science Frontiers, 24(3): 234-248(in Chinese with English abstract). Chen, A. Q., Chen, H. D., Hou, M. C., et al., 2011. The Middle-Late Triassic Event Sediments in Ordos Basin: Indicators for Episode Ⅰ of the Indosinian Movement. Acta Geologica Sinica, 85(10): 1681-1690(in Chinese with English abstract). Fan, H. J., Wang, X. B., Chen, F., et al., 2024. Research Progress on Main Controlling Factors and Classification Schemes of Lacustrine Gravity Flow Deposits. Petroleum Science Bulletin, 9(2): 167-182(in Chinese with English abstract). Feng, Y. L., Li, S. T., Lu, Y. C., 2013. Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China. Sedimentary Geology, 295: 1-26. https://doi.org/10.1016/j.sedgeo.2013.07.004 Feng, Y. L., Yang, Z., Zhang, H., et al., 2023. Fine-Grained Gravity Flow Sedimentary Features and Their Petroleum Significance within Saline Lacustrine basins: A Case Study of the Fengcheng Formation in Mahu Depression, Junggar Basin, China. Acta Geologica Sinica, 97(3): 839-863(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2023.03.013 Fu, J. H., Li, S. X., Xu, L. M., et al., 2018. Paleo-Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 936-946(in Chinese with English abstract). Guan, Y. Z., 1992. The Element, Clay Mineral and Depositional Environment in Horqin Sand Land. Journal of Desert Research, 12(1): 9-15(in Chinese with English abstract). Li, X. B., Zhu, R. K., Hui, X., et al., 2023. Sedimentological Response of a Lacustrine Basin to the Late Triassic Carnian Pluvial Episode(CPE): Case Study from the Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 41(2): 511-526(in Chinese with English abstract). Li, Z. L., Li, H., Li, W. H., 2023. Sedimentary Characteristics of Late Triassic Deep Water Gravity Flow in Weibei Area. Journal of Xi'an University of Science and Technology, 43(1): 135-142(in Chinese with English abstract). Lin, C. S., Zheng, H. R., Ren, J. Y., et al., 2003. The Control of Early Tertiary Syndepositional Faults on Sedimentary Fill in the Dongying and Zhanhua Depressions of the Bohai Bay Basin. Science in China (Series D), 33(11): 1025-1036(in Chinese). Liu, H. L., Zou, C. N., Qiu, Z., et al., 2023. Sedimentary Depositional Environment and Organic Matter Enrichment Mechanism of Lacustrine Black Shales: A Case Study of the Chang 7 Member in the Ordos Basin. Acta Sedimentologica Sinica, 41(6): 1810-1829(in Chinese with English abstract). Liu, R., Zhang, K., Liu, Q. Z. J., et al., 2021. Oil Shale Mineralization and Geological Events in China. Acta Sedimentologica Sinica, 39(1): 10-28(in Chinese with English abstract). Lowe, D. R., 1982. Sediment Gravity Flows: Ⅱ Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. SEPM Journal of Sedimentary Research, (52). https://doi.org/10.1306/212f7f31-2b24-11d7-8648000102c1865d Lyu, Q. Q., Xin, H. G., Wang, L., et al., 2023. Sedimentary Types, Characteristics and Model of Lacustrine Fine-Grained Gravity Flow in the Member 7 of Trassic Yanchang Formation in Ningxian Area, Ordos Basin. Journal of Palaeogeography, 25(4): 823-840(in Chinese with English abstract). Meng, Q. A., Ji, Y. L., 2009. Controlling of Paleo Geomorphology to Distribution of Sedimentary System in the Cretaceous of Tanan Depression. Acta Petrolei Sinica, 30(6): 843-848, 855(in Chinese with English abstract). Middleton, G. V., Hampton, M. A., 1973. Sediment Gravity Flows: Mechanics of Flow and Deposition. In: Middleton, G. V., Bouma, A. H., eds., Turbidites and Deep Water Sedimentation. SEPM Pacific Section Short Course, McMaster University, Hamilton, Ontario and University of Rhode Island, Kingston, R. I.. Mulder, T., Alexander, J., 2001. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology, (48): 269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x Mulder, T., Syvitski, J. P., Migeon, S., et al., 2003. Marine Hyperpycnal Flows: Initiation, Behavior and Related Deposits: A Review. Marine and Petroleum Geology, (20): 861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003 Picard, M. D., 1971. Classification of Fine-Grained Sedimentary Rocks. Journal of Sedimentary Research, 41(1): 179-195. https://doi.org/10.1306/74d7221b-2b21-11d7-8648000102c1865d Schieber, J., Southard, J., Thaisen, K., 2007. Accretion of Mudstone Beds from Migrating Floccule Ripples. Science, 318(5857): 1760-1763. https://doi.org/10.1126/science.1147001 Selvaraj, K, Chen, C. 2006. Moderate Chemical Weathering of Subtropical Taiwan: Constraints from Solid‐Phase Geochemistry of Sediments and Sedimentary Rocks. The Journal of Geology, 114(1): 101-116. https://doi.org/10.1086/498102 Shanmugam, G., 1996. High-Density Turbidity Currents; Are They Sandy Debris Flows? Journal of Sedimentary Research, 66(1): 2-10. https://doi.org/10.1306/d426828e-2b26-11d7-8648000102c1865d Shanmugam, G., 2000.50 Years of the Turbidite Paradigm (1950s-1990s): Deep-Water Processes and Facies Models: A Critical Perspective. Marine and Petroleum Geology, (17): 285-342. https://doi.org/10.1016/S0264-8172(99)00011-2 Shepard, F. P., 1954. Nomenclature Based on Sand-Silt-Clay Ratios. Journal of Sedimentary Research, 24 (3): 151-158. Talling, P. J., 2013. Hybrid Submarine Flows Comprising Turbidity Current and Cohesive Debris Flow: Deposits, Theoretical and Experimental Analyses, and Generalized Models. Geosphere, 9(3): 460-488. https://doi.org/10.1130/ges00793.1 Talling, P. J, Masson, D. G, Sumner, E. J., et al., 2012. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, (59): 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x Tian, J. C., Wu, Q., Wang, F., et al., 2011. Research on Development Factors and the Deposition Model of Large Area Reservoir Sandstones of He8 Section of Xiashihezi Formation of Permian in Ordos Basin. Acta Petrologica Sinica, 27(8): 2403-2412(in Chinese with English abstract). Wang, L., Li, W. H., Liu, Q., et al., 2023. Lithofacies Characteristics and Sedimentary Environment of Chang 7 Black Shale in the Yanchang Formation, Ordos Basin. Journal of Palaeogeography (Chinese Edition), 25(3): 598-613(in Chinese with English abstract). Wang, L. L., Fu, Y., Fang, S. J., 2018. Elemental Geochemical Characteristics and Geological Significance of Majiagou Formation, Eastern Ordos Basin. Petroleum Geology & Experiment, 40(4): 519-525(in Chinese with English abstract). Yang, H., Deng, X. Q., 2013. Deposition of Yanchang Formation Deep-Water Sandstone under the Control of Tectonic Events, Ordos Basin. Petroleum Exploration and Development, 40(5): 513-520(in Chinese with English abstract). Yang, T., Cao, Y. C., Tian, J. C., et al., 2021. Deposition of Deep-Water Gravity-Flow Hybrid Event Beds in Lacustrine Basins and Their Sedimentological Significance. Acta Geologica Sinica, 95(12): 3842-3857(in Chinese with English abstract). Yang, T., Cao, Y. C., Wang, Y. Z., et al., 2015. Types, Sedimentary Characteristics and Genetic Mechanisms of Deep-Water Gravity Flows: A Case Study of the Middle Submember in Member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 36(9): 1048-1059(in Chinese with English abstract). Yang, Z. H., Liu, J. Y., Lü, Q. Q., et al., 2023. Paleogeomorphological Restoration and Its Control on Gravity Flow Sand bodies: A Case Study of the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin. Bulletin of Geological Science and Technology, 42(2): 146-158(in Chinese with English abstract). Zhang, C. L., Zhang, L., Chen, T. S., et al., 2013. Provenance and Parent-Rock Types of Member 7 of Yanchang Formation (Triassic), Ordos Basin. Acta Sedimentologica Sinica, 31(3): 430-439(in Chinese with English abstract). Zhang, X. H., Feng, S. Y., Liang, X. W., et al., 2020. Sedimentary Microfacies Identification and Inferred Evolution of the Chang 7 Member of Yanchang Formation in the Longdong Area, Ordos Basin. Acta Geologica Sinica, 94(3): 957-967(in Chinese with English abstract). Zhao, J. H., Jin, Z. J., Jin, Z. K., et al., 2016. Lithofacies Types and Sedimentary Environment of Shale in Wufeng-Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 37(5): 572-586(in Chinese with English abstract). Zhu, R. K., Li, M. Y., Yang, J. R., et al., 2022. Advances and Trends of Fine-Grained Sedimentology. Oil & Gas Geology, 43(2): 251-264(in Chinese with English abstract). Zou, C. N., Feng, Y. L., Yang, Z., et al., 2022. What Are the Lacustrine Fine-Grained Gravity Flow Sedimentation Process and the Genetic Mechanism of Sweet Sections for Shale Oil? Earth Science, 47(10): 3864-3866(in Chinese with English abstract). Zou, C. N., Feng, Y. L., Yang, Z., et al., 2023. Fine-Grained Gravity Flow Sedimentation and Its Influence on Development of Shale Oil Sweet Spot Intervals in Lacustrine Basins in China. Petroleum Exploration and Development, 50(5): 883-897(in Chinese with English abstract). Zou, C. N., Zhao, Z. Z., Yang, H., et al., 2009. Genetic Mechanism and Distribution of Sandy Debris Flows in Terrestrial Lacustrine Basin. Acta Sedimentologica Sinica, 27(6): 1065-1075(in Chinese with English abstract). 操应长, 杨田, 王艳忠, 等, 2017. 深水碎屑流与浊流混合事件层类型及成因机制. 地学前缘, 24(3): 234-248. 陈安清, 陈洪德, 侯明才, 等, 2011. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示. 地质学报, 85(10): 1681-1690. 范洪军, 王夏斌, 陈飞, 等, 2024. 湖相重力流沉积主控因素与分类方案研究进展. 石油科学通报, 9(2): 167-182. 冯有良, 杨智, 张洪, 等, 2023. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义: 以准噶尔盆地玛湖凹陷风城组为例. 地质学报, 97(3): 839-863. 付金华, 李士祥, 徐黎明, 等, 2018. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义. 石油勘探与开发, 45(6): 936-946. 关有志, 1992. 科尔沁沙地的元素、粘土矿物与沉积环境. 中国沙漠, 12(1): 9-15. 李相博, 朱如凯, 惠潇, 等, 2023. 晚三叠世卡尼期梅雨事件(CPE)在陆相盆地中的沉积学响应: 以鄂尔多斯盆地延长组为例. 沉积学报, 41(2): 511-526. 李宗霖, 李红, 李文厚, 2023. 渭北地区晚三叠世深水重力流沉积特征. 西安科技大学学报, 43(1): 135-142. 林畅松, 郑和荣, 任建业, 等, 2003. 渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制. 中国科学(D辑: 地球科学), 33(11): 1025-1036. 刘翰林, 邹才能, 邱振, 等, 2023. 陆相黑色页岩沉积环境及有机质富集机制: 以鄂尔多斯盆地长7段为例. 沉积学报, 27(6): 1810-1829. 柳蓉, 张坤, 刘招君, 等, 2021. 中国油页岩富集与地质事件研究. 沉积学报, 39(1): 10-28. 吕奇奇, 辛红刚, 王林, 等, 2023. 鄂尔多斯盆地宁县地区三叠系延长组7段湖盆细粒重力流沉积类型、特征及模式. 古地理学报, 25(4): 823-840. 蒙启安, 纪友亮, 2009. 塔南凹陷白垩纪古地貌对沉积体系分布的控制作用. 石油学报, 30(6): 843-848, 855. 田景春, 吴琦, 王峰, 等, 2011. 鄂尔多斯盆地下石盒子组盒8段储集砂体发育控制因素及沉积模式研究. 岩石学报, 27(8): 2403-2412. 王岚, 李文厚, 刘群, 等, 2023. 鄂尔多斯盆地延长组长7黑色页岩岩相分类与沉积环境恢复. 古地理学报, 25(3): 598-613. 王琳霖, 浮昀, 方诗杰, 2018. 鄂尔多斯盆地东缘马家沟组元素地球化学特征及古沉积环境. 石油实验地质, 40(4): 519-525. 杨华, 邓秀芹, 2013. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响. 石油勘探与开发, 40(5): 513-520. 杨田, 操应长, 田景春, 等, 2021. 陆相湖盆深水重力流混合事件层沉积及沉积学意义. 地质学报, 95(12): 3842-3857. 杨田, 操应长, 王艳忠, 等, 2015. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例. 石油学报, 36(9): 1048-1059. 杨哲翰, 刘江艳, 吕奇奇, 等, 2023. 古地貌恢复及其对重力流沉积砂体的控制作用: 以鄂尔多斯盆地三叠系延长组长73亚段为例. 地质科技通报, 42(2): 146-158. 张才利, 张雷, 陈调胜, 等, 2013. 鄂尔多斯盆地延长组长7沉积期物源分析及母岩类型研究. 沉积学报, 31(3): 430-439. 张晓辉, 冯顺彦, 梁晓伟, 等, 2020. 鄂尔多斯盆地陇东地区延长组长7段沉积微相及沉积演化特征. 地质学报, 94(3): 957-967. 赵建华, 金之钧, 金振奎, 等, 2016. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境. 石油学报, 37(5): 572-586. 朱如凯, 李梦莹, 杨静儒, 等, 2022. 细粒沉积学研究进展与发展方向. 石油与天然气地质, 43(2): 251-264. 邹才能, 冯有良, 杨智, 等, 2022. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么? 地球科学, 47(10): 3864-3866. doi: 10.3799/dqkx.2022.842 邹才能, 冯有良, 杨智, 等, 2023. 中国湖盆细粒重力流沉积作用及其对页岩油"甜点段"发育的影响. 石油勘探与开发, 50(5): 883-897. 邹才能, 赵政璋, 杨华, 等, 2009. 陆相湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例. 沉积学报, 27(6): 1065-1075. -