• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    聚球藻XM24中发现疑似为硅酸转运子的基因

    韩雅波 孙军

    韩雅波, 孙军, 2025. 聚球藻XM24中发现疑似为硅酸转运子的基因. 地球科学, 50(6): 2444-2451. doi: 10.3799/dqkx.2024.146
    引用本文: 韩雅波, 孙军, 2025. 聚球藻XM24中发现疑似为硅酸转运子的基因. 地球科学, 50(6): 2444-2451. doi: 10.3799/dqkx.2024.146
    Han Yabo, Sun Jun, 2025. A Gene Suspected to be Silicon Transporter was Found in Synechococcus sp. XM24. Earth Science, 50(6): 2444-2451. doi: 10.3799/dqkx.2024.146
    Citation: Han Yabo, Sun Jun, 2025. A Gene Suspected to be Silicon Transporter was Found in Synechococcus sp. XM24. Earth Science, 50(6): 2444-2451. doi: 10.3799/dqkx.2024.146

    聚球藻XM24中发现疑似为硅酸转运子的基因

    doi: 10.3799/dqkx.2024.146
    基金项目: 

    国家重点研发计划项目 2019YFC1407800

    国家自然科学基金项目 41876134

    国家自然科学基金项目 41676112

    教育部长江学者奖励计划 T2014253

    详细信息
      作者简介:

      韩雅波(1998-),男,硕士研究生,主要从事聚球藻的硅质化相关研究. ORCID:0009-0003-2934-8625. E-mail:ybhan1222@163.com

      通讯作者:

      孙军,ORCID: 0000-0001-7369-7871. E-mail: phytoplankton@163.com

    • 中图分类号: Q172

    A Gene Suspected to be Silicon Transporter was Found in Synechococcus sp. XM24

    • 摘要: 硅是硅藻所必需的营养物质.硅藻可以通过硅酸转运子(Silicon Transporter,SIT)蛋白吸收环境中的溶解硅,在全球海洋的硅循环中起着重要作用.海洋单细胞聚球藻(Synechococcus)也被发现可以进行硅的累积作用.由于聚球藻进化出现的时间远远早于硅藻,推测也可以像硅藻一样通过SIT这样的转运蛋白来吸收海洋中的溶解硅.本研究在有硅和无硅两种条件下探究聚球藻中SIT存在的可能性,最终找到2条疑似为SIT基因序列,并成功预测得到其蛋白质序列及功能,结果显示均与膜转运过程有关.最终利用AutoDock4软件成功预测到蛋白质的活性位点.

       

    • 图  1  有硅和无硅条件下,细胞中硅累积量的变化

      a.表示总生物硅的浓度;b.表示新生生物硅的浓度.*.P < 0.01,代表具有显著差异

      Fig.  1.  Under Depleted-Repleted conditions, the amount of silicon accumulated in the cell changes

      图  2  A07_TRINITY_DN753_c0_g1蛋白质与硅酸分子对接结果

      白色为氢原子,红色为氧原子,蓝色为氮原子,黄色为碳原子,棕色为硅原子.SER代表丝氨酸残基,数字代表氨基酸残基在蛋白质中的位置

      Fig.  2.  The docking result of A07_TRINITY_DN753_c0_g1 protein and orthosilicic acid

      图  3  e_TRINITY_DN668_c0_g1蛋白质与硅酸分子对接结果

      白色为氢原子,红色为氧原子,蓝色为氮原子,橘黄色为碳原子,棕色为硅原子.LEU、ARG、ASP、GLY、PRO、CYS、PHE、SER分别代表亮氨酸残基、天冬氨酸残基、甘氨酸残基、脯氨酸残基、半胱氨酸残基、苯丙氨酸残基、丝氨酸残基,数字代表氨基酸残基在蛋白质中的位置

      Fig.  3.  The docking result of e_TRINITY_DN668_c0_g1 protein and orthosilicic acid

      表  1  A07_TRINITY_DN753_c0_g1蛋白质功能预测结果

      Table  1.   A07_TRINITY_DN753_c0_g1 protein function prediction results

      Category GO-Term GO-Name Confidence
      Biological process GO: 0051179 Localization 0.66
      Biological process GO: 0051234 Establishment of localization 0.65
      Biological process GO: 0006810 Transport 0.65
      Cellular component GO: 0031224 Intrinsic component of membrane 0.84
      Cellular component GO: 0016021 Integral component of membrane 0.84
      Cellular component GO: 0098796 Membrane protein complex 0.71
      下载: 导出CSV

      表  2  e_TRINITY_DN668_c0_g1蛋白质功能预测结果

      Table  2.   e_TRINITY_DN668_c0_g1 protein function prediction results

      Category GO-Term GO-Name Confidence
      Biological process GO: 0051179 Localization 0.55
      Biological process GO: 0051234 Establishment of localization 0.54
      Biological process GO: 0006810 Transport 0.53
      Cellular component GO: 0031224 Intrinsic component of membrane 0.72
      Cellular component GO: 0016021 Integral component of membrane 0.72
      下载: 导出CSV
    • Alverson, A. J., 2007. Strong Purifying Selection in the Silicon Transporters of Marine and Freshwater Diatoms. Limnology and Oceanography, 52(4): 1420-1429. https://doi.org/10.4319/lo.2007.52.4.1420
      Amo, Y. D., Brzezinski, M. A., 1999. The Chemical Form of Dissolved Si Taken up by Marine Diatoms. Journal of Phycology, 35(6): 1162-1170. https://doi.org/10.1046/j.1529⁃8817.1999.3561162.x
      Armbrust, E. V., Berges, J. A., Bowler, C., et al., 2004. The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 306(5693): 79-86. https://doi.org/10.1126/science.1101156
      Azam, F., Hemmingsen, B. B., Volcani, B. E., 1974. Role of Silicon in Diatom Metabolism: V. Silicic Acid Transport and Metabolism in the Heterotrophic Diatom Nitzschia Alba. Archives of Microbiology, 97(1): 103-114. https://doi.org/10.1007/bf00403050
      Bai, Y. L., Wang, J. L., Sun, H. T., et al., 2019. Determination of Silicon in Beryllium⁃Aluminium Alloy with High Content of Beryllium by Silicon Molybdenum Blue Spectrophotometry. Metallurgical Analysis, 39(9): 81-85 (in Chinese with English abstract).
      Baines, S. B., Twining, B. S., Brzezinski, M. A., et al., 2012. Significant Silicon Accumulation by Marine Picocyanobacteria. Nature Geoscience, 5(12): 886-891. https://doi.org/10.1038/ngeo1641
      Bäuerlein, E., 2000. Silicic Acid Transport and Its Control during Cell Wall Silicification in Diatoms. In: Hildebrand, M., ed., Biomineralization: From Biology to Biotechnology and Medical Application. Wiley‐VCH Verlag GmbH & Co. KGaA, New Jersey, 159-173.
      Bhattacharyya, P., Volcani, B. E., 1980. Sodium⁃Dependent Silicate Transport in the Apochlorotic Marine Diatom Nitzschia Alba. Proceedings of the National Academy of Sciences of the United States of America, 77(11): 6386-6390. https://doi.org/10.1073/pnas.77.11.6386
      Binder, B. J., Chisholm, S. W., Olson, R. J., et al., 1996. Dynamics of Picophytoplankton, Ultraphytoplankton and Bacteria in the Central Equatorial Pacific. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 43(4-6): 907-931. https://doi.org/10.1016/0967-0645(96)00023⁃9
      Brasier, M. D., Green, O. R., Jephcoat, A. P., et al., 2002. Questioning the Evidence for Earth's Oldest Fossils. Nature, 416(6876): 76-81. https://doi.org/10.1038/416076a
      Brzezinski, M. A., Krause, J. W., Baines, S. B., et al., 2017. Patterns and Regulation of Silicon Accumulation in Synechococcus Spp. Journal of Phycology, 53(4): 746-761. https://doi.org/10.1111/jpy.12545
      Buick, R., 1992. The Antiquity of Oxygenic Photosynthesis: Evidence from Stromatolites in Sulphate⁃Deficient Archaean Lakes. Science, 255(5040): 74-77. https://doi.org/10.1126/science.11536492
      Chen, C. J., Wu, Y., Li, J. W., et al., 2023. TBtools⁃Ⅱ: A "One for All, All for One" Bioinformatics Platform for Biological Big⁃Data Mining. Molecular Plant, 16(11): 1733-1742. https://doi.org/10.1016/j.molp.2023.09.010
      Conley, D. J., Frings, P. J., Fontorbe, G., et al., 2017. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 4: 397. https://doi.org/10.3389/fmars.2017.00397
      Curnow, P., Senior, L., Knight, M. J., et al., 2012. Expression, Purification, and Reconstitution of a Diatom Silicon Transporter. Biochemistry, 51(18): 3776-3785. https://doi.org/10.1021/bi3000484
      Deng, W., Monks, L., Neuer, S., 2015. Effects of Clay Minerals on the Aggregation and Subsequent Settling of Marine Synechococcus. Limnology and Oceanography, 60(3): 805-816. https://doi.org/10.1002/lno.10059
      Guidi, L., Chaffron, S., Bittner, L., et al., 2016. Plankton Networks Driving Carbon Export in the Oligotrophic Ocean. Nature, 532: 465-470. https://doi.org/10.1038/nature16942
      Hildebrand, M., Dahlin, K., Volcani, B. E., 1998. Characterization of a Silicon Transporter Gene Family in Cylindrotheca Fusiformis: Sequences, Expression Analysis, and Identification of Homologs in Other Diatoms. Molecular and General Genetics MGG, 260(5): 480-486. https://doi.org/10.1007/s004380050920
      Hildebrand, M., Volcani, B. E., Gassmann, W., et al., 1997. A Gene Family of Silicon Transporters. Nature, 385: 688-689. https://doi.org/10.1038/385688b0
      Johnson, P. W., Sieburth, J. M., 1979. Chroococcoid Cyanobacteria in the Sea: A Ubiquitous and Diverse Phototrophic Biomass. Limnology and Oceanography, 24(5): 928-935. https://doi.org/10.4319/lo.1979.24.5.0928
      Kang, L., Feng, C. C., Chang, J., et al., 2015. Diversity and Expression of Diatom Silicon Transporter Genes during a Flood Event in the East China Sea. Marine Biology, 162(7): 1511-1522. https://doi.org/10.1007/s00227⁃015⁃2687⁃8
      Krause, J. W., Brzezinski, M. A., Baines, S. B., et al., 2017. Picoplankton Contribution to Biogenic Silica Stocks and Production Rates in the Sargasso Sea. Global Biogeochemical Cycles, 31(5): 762-774. https://doi.org/10.1002/2017gb005619
      Krauskopf, K. B., 1956. Dissolution and Precipitation of Silica at Low Temperatures. Geochimica et Cosmochimica Acta, 10(1-2): 1-26. https://doi.org/10.1016/0016⁃7037(56)90009⁃6
      Leblanc, K., Hutchins, D. A., 2005. New Applications of a Biogenic Silica Deposition Fluorophore in the Study of Oceanic Diatoms. Limnology and Oceanography: Methods, 3(10): 462-476. https://doi.org/10.4319/lom.2005.3.462
      Lomas, M. W., Moran, S. B., 2011. Evidence for Aggregation and Export of Cyanobacteria and Nano⁃Eukaryotes from the Sargasso Sea Euphotic Zone. Biogeosciences, 8(1): 203-216. https://doi.org/10.5194/bg-8-203-201110.5194/bgd⁃7⁃7173⁃2010
      Lupas, A., Van Dyke, M., Stock, J., 1991. Predicting Coiled Coils from Protein Sequences. Science, 252(5009): 1162-1164. https://doi.org/10.1126/science.252.5009.1162
      Mann, D. G., 1999. The Species Concept in Diatoms. Phycologia, 38(6): 437-495. https://doi.org/10.2216/i0031⁃8884⁃38⁃6⁃437.1
      Marchenkov, A. M., Bondar, A. A., Petrova, D. P., et al., 2016. Unique Configuration of Genes of Silicon Transporter in the Freshwater Pennate Diatom Synedra Acus Subsp. Radians. Doklady Biochemistry and Biophysics, 471(1): 407-409. https://doi.org/10.1134/S1607672916060089
      Marchenkov, A. M., Petrova, D. P., Morozov, A. A., et al., 2018. A Family of Silicon Transporter Structural Genes in a Pennate Diatom Synedra Ulna Subsp. Danica (KÜTZ. ) Skabitsch. PLoS One, 13(8): e0203161. https://doi.org/10.1371/journal.pone.0203161
      Milligan, A. J., Morel, F. M. M., 2002. A Proton Buffering Role for Silica in Diatoms. Science, 297(5588): 1848-1850. https://doi.org/10.1126/science.1074958
      Morris, G. M., Huey, R., Lindstrom, W., et al., 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16): 2785-2791. https://doi.org/10.1002/jcc.21256
      Ohnemus, D. C., Rauschenberg, S., Krause, J. W., et al., 2016. Silicon Content of Individual Cells of Synechococcus from the North Atlantic Ocean. Marine Chemistry, 187: 16-24. https://doi.org/10.1016/j.marchem.2016.10.003
      Richardson, T. L., Jackson, G. A., 2007. Small Phytoplankton and Carbon Export from the Surface Ocean. Science, 315(5813): 838-840. https://doi.org/10.1126/science.1133471
      Sapriel, G., Quinet, M., Heijde, M., et al., 2009. Genome⁃Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum Tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters. PLoS One, 4(10): e7458. https://doi.org/10.1371/journal.pone.0007458
      Shen, W., Le, S., Li, Y., et al., 2016. SeqKit: A Cross⁃Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One, 11(10): e0163962. https://doi.org/10.1371/journal.pone.0163962
      Struyf, E., Smis, A., Van Damme, S., et al., 2009. The Global Biogeochemical Silicon Cycle. Silicon, 1(4): 207-213. https://doi.org/10.1007/s12633⁃010⁃9035⁃x
      Sun, J., Li, X. Q., Chen, J. F., et al., 2016. Progress in Oceanic Biological Pump. Haiyang Xuebao, 38(4): 1-21 (in Chinese with English abstract).
      Sun, J., Wei, Y. Q., 2018. Preliminary Thoughts on Silicon Accumulation in Synechococcus. Acta Ecologica Sinica, 38(14): 5234-5243 (in Chinese with English abstract).
      Tang, T. T., Kisslinger, K., Lee, C., 2014. Silicate Deposition during Decomposition of Cyanobacteria may Promote Export of Picophytoplankton to the Deep Ocean. Nature Communications, 5: 4143. https://doi.org/10.1038/ncomms5143
      Thamatrakoln, K., Alverson, A. J., Hildebrand, M., 2006. Comparative Sequence Analysis of Diatom Silicon Transporters: Toward a Mechanistic Model of Silicon Transport. Journal of Phycology, 42(4): 822-834. https://doi.org/10.1111/j.1529⁃8817.2006.00233.x
      Wang, G. X., Fang, X. M., Wu, Z. H., et al., 2022. HelixFold: An Efficient Implementation of AlphaFold2 Using PaddlePaddle. ArXiv. https://doi.org/10.48550/arXiv.2207.05477
      Waterbury, J. B., Watson, S. W., Guillard, R. R. L., et al., 1979. Widespread Occurrence of a Unicellular, Marine, Planktonic, Cyanobacterium. Nature, 277: 293-294. https://doi.org/10.1038/277293a0
      Wei, Y. Q., Sun, J., Li, L. Y., et al., 2022. Synechococcus Silicon Accumulation in Oligotrophic Oceans. Limnology and Oceanography, 67(3): 552-566. https://doi.org/10.1002/lno.12015
      Werner, D., 1977. The Biology of Diatoms. In: Werner, D., ed., Silicate Metabolism, University of California Press, Berkeley, 498.
      Zheng, Q., Wang, Y., Xie, R., et al., 2018. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Applied and Environmental Microbiology, 84(3): e01517-17. https://doi.org/10.1128/aem.01517⁃17
      白英丽, 王佳丽, 孙洪涛, 等, 2019. 硅钼蓝分光光度法测定高铍铍铝合金中硅. 冶金分析, 39(9): 81-85.
      孙军, 李晓倩, 陈建芳, 等, 2016. 海洋生物泵研究进展. 海洋学报, 38(4): 1-21.
      孙军, 魏玉秋, 2018. 聚球藻硅质化作用初探. 生态学报, 38(14), 5234-5243.
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  4
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-07
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回