• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束

    甘圣添 孙茂妤 董磊磊

    甘圣添, 孙茂妤, 董磊磊, 2025. 藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束. 地球科学, 50(11): 4208-4228. doi: 10.3799/dqkx.2024.151
    引用本文: 甘圣添, 孙茂妤, 董磊磊, 2025. 藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束. 地球科学, 50(11): 4208-4228. doi: 10.3799/dqkx.2024.151
    Gan Shengtian, Sun Maoyu, Dong Leilei, 2025. Exhumation History and Preservation Degree of Yulong Porphyry Copper Deposit in East Xizang: Constrained by Thermochronology. Earth Science, 50(11): 4208-4228. doi: 10.3799/dqkx.2024.151
    Citation: Gan Shengtian, Sun Maoyu, Dong Leilei, 2025. Exhumation History and Preservation Degree of Yulong Porphyry Copper Deposit in East Xizang: Constrained by Thermochronology. Earth Science, 50(11): 4208-4228. doi: 10.3799/dqkx.2024.151

    藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束

    doi: 10.3799/dqkx.2024.151
    基金项目: 

    西部地区铜金多金属成矿作用及找矿模型 2022YFC2903304

    中国地质调查局地质调查项目 DD20243512

    国家自然科学基金资助项目 42302113

    详细信息
      作者简介:

      甘圣添(1998-),男,助理工程师,硕士,主要从事矿床学研究. ORCID:0009-0001-1958-0215. E‐mail:gst1940208241@163.com

      通讯作者:

      孙茂妤, ORCID: 0000-0002-1127-8185. E‐mail: maoyu.sun@hotmail.com

    • 中图分类号: P597;P612

    Exhumation History and Preservation Degree of Yulong Porphyry Copper Deposit in East Xizang: Constrained by Thermochronology

    • 摘要:

      玉龙斑岩铜矿是玉龙斑岩铜矿带内唯一的超大型斑岩矿床,以往对该矿床的研究多与成因有关,未突出成矿后改造对制定找矿策略的重要意义.运用锆石U-Pb、磷灰石裂变径迹、磷灰石和锆石(U-Th)/He等热年代学方法进行了定年及相关热历史反演模拟研究.结果表明,玉龙矿床含矿二长花岗斑岩的锆石U-Pb谐和年龄为(41.7±0.5)Ma,锆石(U-Th)/He年龄在34.9~39.3 Ma,说明玉龙矿床的岩浆‒热液演化过程可能至少持续了5 Ma.磷灰石裂变径迹年龄在34.7~ 19.7 Ma,磷灰石(U-Th)/He年龄在20.7~18.4 Ma.这几个年龄大致依次降低,能代表冷却和剥蚀事件发生的时间.热历史反演模拟结果显示玉龙矿床经历了大致三个阶段的冷却过程,结合区域构造演化,34~30 Ma经历的相对快速冷却可能与同期印度大陆与亚欧大陆持续碰撞引起的青藏高原快速隆升有关;30~21 Ma相对缓慢的冷却可能是与碰撞活动的减弱有关;21~14 Ma相对快速冷却可能是与同期由构造缩短或者岩浆底垫造成的北羌塘地体地壳加厚事件有关.热历史模拟法计算得到的玉龙矿床剥蚀量为3.45 km,考虑到玉龙矿床4~5 km的成矿深度,矿床深部还有0.5~1.5 km的找矿空间.

       

    • 图  1  三江北段地质图(a)和玉龙斑岩铜矿带南段构造和斑岩分布简图(b)(据Yang and Cooke, 2019修改)

      Fig.  1.  Geological map of the northern segment of the Sanjiang belt (a) and structural features and porphyry distribution in the southern segment of the Yulong porphyry Cu belt (b) (modified after Yang and Cooke, 2019)

      图  2  玉龙矿区地质图(据Chen et al., 2021修改)

      Fig.  2.  Geological map of the Yulong mining area (modified after Chen et al., 2021)

      图  3  玉龙矿床露头采坑和代表性矿石

      a.露天采场全景图;b.含孔雀石次生氧化矿石;c.斑岩硫化物矿石;d.褐铁矿. Cv.蓝铜矿;Mal.孔雀石;Py.黄铁矿;Ccp.黄铜矿;Lm.褐铁矿

      Fig.  3.  Outcrop pits and representative ores of the Yulong deposit

      图  4  典型原生矿石镜下照片

      a,c,e.反光镜下;b,d,f.正交偏光镜下. Qtz.石英;Py.黄铁矿;Ser.绢云母;Cpy.黄铜矿;Bn.斑铜矿

      Fig.  4.  Microscopic photographs of typical primary ores

      图  5  玉龙矿床二长花岗斑岩锆石阴极发光(CL)图

      Fig.  5.  Zircon cathodoluminescence (CL) images of monzogranite porphyry, Yulong deposit

      图  6  锆石U-Pb谐和年龄及加权平均年龄

      Fig.  6.  Zircon U-Pb concordia diagrams and weighted mean age plots

      图  7  围陷径迹长度分布直方图

      Fig.  7.  Confined fission-track length distribution histograms

      图  8  二长花岗斑岩磷灰石裂变径迹年龄雷达图

      Fig.  8.  Apatite fission track age radar chart of monzogranite porphyry

      图  9  用于(U-Th)/He测试的磷灰石颗粒尺寸照片(a)和锆石颗粒尺寸照片(b)

      Fig.  9.  Apatite crystals (a) and zircon crystals (b) photographs of mineral grains for (U-Th)/He dating

      图  10  玉龙矿床热史反演模拟结果(a)及年龄预测图(b)

      Fig.  10.  Thermal history inversion modeling results for the Yulong deposit: time-temperature paths (a) and predicted age patterns (b)

      图  11  (U-Th)/He年龄‒等效U浓度图(a,b)(U-Th)/He年龄‒等效球体半径图(c,d)

      Fig.  11.  (U-Th)/He age versus eU concentration plots (a, b) and (U-Th)/He age versus equivalent sphere radius plots (c, d)

      图  12  玉龙矿床热历史演化

      锆石U-Pb年龄数据来源:本研究;辉钼矿Re-Os年龄数据来源:Hou et al.(2006);黑云母Ar-Ar年龄数据来源:梁华英等(2008);锆石(U-Th)/He、磷灰石裂变径迹、磷灰石(U-Th)/He年龄数据来源:本研究

      Fig.  12.  Thermal history evolution of the Yulong deposit

      图  13  玉龙矿床热历史模拟最佳曲线与区域构造事件响应图

      图中红色曲线为热历史反演模拟得到的期望模型曲线,33~30 Ma青藏高原快速隆升参考Zhong and Ding(1996)Dai(2005);20~15 Ma北羌塘地体快速隆升参考Staisch et al.(2016)Chen et al.(2018);其中ZPRZ为锆石He部分保留带(180~140 ℃),参考Reiners et al.(2004);APAZ为磷灰石裂变径迹部分退火带(120~60 ℃),参考Laslett et al.(1982);APRZ为磷灰石He部分保留带(80~40 ℃),参考Wolf et al.(1998)

      Fig.  13.  Coupled thermal-tectonic evolution of the Yulong deposit: best-fit thermal history path and its response to regional tectonic events

      表  1  玉龙矿床热年代学样品信息

      Table  1.   Thermochronological sample information of the Yulong deposit

      样品编号 岩性 测试方法 经度(E) 纬度(N) 高程(m)
      ZK1303-681 二长花岗斑岩 锆石U-Pb、磷灰石裂变径迹、锆石(U-Th)/He和磷灰石(U-Th)/He 97°44 '05.37 " 31°24'16.26 " 4 050
      ZK1303-371 二长花岗斑岩 磷灰石裂变径迹 97°44 '05.37 " 31°24'16..26 " 4 360
      YL23-3-2 二长花岗斑岩 锆石U-Pb、磷灰石裂变径迹、锆石(U-Th)/He和磷灰石(U-Th)/He 97°43'22.26" 31°24'33.33" 4 730
      ZK1203-229 二长花岗斑岩 磷灰石裂变径迹 97°43'42.17" 31°24'18.42" 4 470
      下载: 导出CSV

      表  2  磷灰石裂变径迹实验结果

      Table  2.   Experimental results of apatite fission tracks

      样品号 颗粒数 ρs(106cm‒2) 238U/43Ca err(238U/43Ca) P(X2) 中值年龄(Ma) MTL(µm) 围陷径迹数量
      ZK1303-681 20 860 282.5 0.231 6 0.002 5 99.00 20.71±2.7 11.41 18
      ZK1303-371 20 782 342.2 0.216 1 0.002 5 99.00 19.7±2.8 12.98 15
      YL23-3-2 10 724 515.3 0.088 0 0.001 8 100.00 34.7±7.2 12.35 20
      ZK1203-229 7 947 724.3 0.150 2 0.002 5 66.00 31.5±9.4 11.96 13
      下载: 导出CSV

      表  3  锆石和磷灰石(U-Th)/He热年代学结果

      Table  3.   Zircon and apatite (U-Th)/He thermochronology results

      样品号 质量(µg) U(10‒6) Th(10‒6) Th/U eU(10‒6) He(nmol/g) ESR(µm) 年龄(Ma) ±σ(Ma) FT 校正年龄(Ma) ±σ(Ma)
      YL23-3-2-A2 8.29 3.93 11.58 2.95 6.65 1.13 48.46 31.36 1.37 0.769 40.78 1.8
      ZK1303-681-A1 2.18 12.22 10.74 0.88 14.74 1.11 36.75 14 0.78 0.677 20.68 1.2
      ZK1303-681-A3 3.51 4.68 5.27 1.13 5.92 0.43 47.09 13.54 0.74 0.736 18.40 1.0
      YL23-3-2-Z1 4.16 476.57 272.15 0.57 540.53 75.48 36.41 25.76 1.48 0.656 39.27 2.3
      YL23-3-2-Z3 6.44 297.13 91.86 0.31 318.72 45.2 50.22 26.24 1.58 0.751 34.94 2.1
      ZK1303-681-Z2 3.53 411.27 168.24 0.41 450.81 76.2 41.95 31.32 1.86 0.703 44.55 2.6
      ZK1303-681-Z3 8.74 337.66 136.7 0.4 369.78 55.02 57.47 27.74 1.65 0.779 35.61 2.1
      下载: 导出CSV

      表  4  玉龙矿床热年代学数据汇总

      Table  4.   Summary of Yulong geothermal chronological data

      岩性 年龄(Ma) 定年方法 数据来源
      二长花岗斑岩 43.8±0.7 Zircon U-Pb SHRIMP 王成辉等(2009)
      二长花岗斑岩 43±0.5 Zircon U-Pb SHRIMP 王成辉等(2009)
      二长花岗斑岩 41±1 Zircon U-Pb SHRIMP 郭利果等(2006)
      石英二长斑岩 41.3±0.3 Zircon U-Pb LA-ICP-MS Liang et al. (2006)
      正长花岗斑岩 41.2±0.3 Zircon U-Pb LA-ICP-MS Liang et al. (2006)
      二长花岗斑岩 40.6±0.3 Zircon U-Pb LA-ICP-MS Li et al. (2012)
      二长花岗斑岩 41±0.4 Zircon U-Pb LA-ICP-MS Li et al. (2012)
      二长花岗斑岩 40.7±0.4 Zircon U-Pb LA-ICP-MS Li et al. (2012)
      二长花岗斑岩 41.2±0.8 Zircon U-Pb LA-ICP-MS Li et al. (2012)
      二长花岗斑岩 42±0.3 Zircon U-Pb LA-ICP-MS Chang et al. (2017)
      钾长石花岗斑岩 41.2±0.3 Zircon U-Pb LA-ICP-MS Chang et al. (2017)
      石英钠长斑岩 40.2±0.3 Zircon U-Pb LA-ICP-MS Chang et al. (2017)
      二长花岗斑岩 41±0.3 Zircon U-Pb LA-ICP-MS Huang et al. (2019)
      二长花岗斑岩 40.9±0.3 Zircon U-Pb LA-ICP-MS Huang et al. (2019)
      二长花岗斑岩 41±0.2 Zircon U-Pb LA-ICP-MS Chen et al. (2021)
      二长花岗斑岩 41.8±0.5 Zircon U-Pb LA-ICP-MS 本研究
      二长花岗斑岩 41.5±0.2 Zircon U-Pb LA-ICP-MS 本研究
      石英‒绢云母蚀变带中的石英脉 40.5±0.7 Molybdenite Re-Os ID-ICPMS Hou et al. (2006)
      石英‒绢云母蚀变带中的石英脉 40.4±0.7 Molybdenite Re-Os ID-ICPMS Hou et al. (2006)
      石英‒绢云母蚀变带中的石英脉 41±0.8 Molybdenite Re-Os ID-ICPMS Hou et al. (2006)
      石英‒绢云母蚀变带中的石英脉 40.9±0.7 Molybdenite Re-Os ID-ICPMS Hou et al. (2006)
      二长花岗斑岩中的石英脉 40.9 ±0.6 Molybdenite Re-Os ID-ICPMS 唐菊兴等(2009)
      二长花岗斑岩中的石英脉 41.3 ±0.6 Molybdenite Re-Os ID-ICPMS 唐菊兴等(2009)
      二长花岗斑岩中的石英脉 40.7 ±0.6 Molybdenite Re-Os ID-ICPMS 唐菊兴等(2009)
      二长花岗斑岩中的石英脉 40.1 ±0.6 Molybdenite Re-Os ID-ICPMS 唐菊兴等(2009)
      二长花岗斑岩中的石英脉 39.7 ±0.6 Molybdenite Re-Os ID-ICPMS 唐菊兴等(2009)
      钾蚀变带热液黑云母 41.3 ±0.8 Biotite Ar-Ar 梁华英等(2008)
      二长花岗斑岩 37.8 ±1.3 Zircon (U-Th)/He Li et al. (2012)
      二长花岗斑岩 39.6 ±1.4 Zircon (U-Th)/He Li et al. (2012)
      二长花岗斑岩 39.6 ±1.4 Zircon (U-Th)/He Li et al. (2012)
      二长花岗斑岩 35.7 ±1.2 Zircon (U-Th)/He Li et al. (2012)
      二长花岗斑岩 37.7 ±1.3 Zircon (U-Th)/He Li et al. (2012)
      二长花岗斑岩 37.0 ±1.3 Zircon (U-Th)/He Li et al. (2012)
      二长花岗斑岩 39.3 ±2.3 Zircon (U-Th)/He 本研究
      二长花岗斑岩 34.9 ±2.1 Zircon (U-Th)/He 本研究
      二长花岗斑岩 35.6 ±2.1 Zircon (U-Th)/He 本研究
      二长花岗斑岩 20.7 ±2.7 Apatite Fission Track 本研究
      二长花岗斑岩 19.7 ±2.8 Apatite Fission Track 本研究
      二长花岗斑岩 34.7 ±7.2 Apatite Fission Track 本研究
      二长花岗斑岩 31.5±9.4 Apatite Fission Track 本研究
      二长花岗斑岩 20.7±1.2 Apatite (U-Th)/He 本研究
      二长花岗斑岩 18.4±1.1 Apatite (U-Th)/He 本研究
      下载: 导出CSV
    • Chang, J., Li, J. W., Audétat, A., 2018. Formation and Evolution of Multistage Magmatic-Hydrothermal Fluids at the Yulong Porphyry Cu-Mo Deposit, Eastern Tibet: Insights from LA-ICP-MS Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 232: 181-205. https://doi.org/10.1016/j.gca.2018.04.009
      Chang, J., Li, J. W., Selby, D., et al., 2017. Geological and Chronological Constraints on the Long-Lived Eocene Yulong Porphyry Cu-Mo Deposit, Eastern Tibet: Implications for the Lifespan of Giant Porphyry Cu Deposits. Economic Geology, 112(7): 1719-1746. https://doi.org/10.5382/econgeo.2017.4527
      Chen, J. L., Yin, A., Xu, J. F., et al., 2018. Late Cenozoic Magmatic Inflation, Crustal Thickening, and >2 km of Surface Uplift in Central Tibet. Geology, 46(1): 19-22. https://doi.org/10.1130/g39699.1
      Chen, Q., Wang, C., Bagas, L., et al., 2021. Time Scales of Multistage Magma-Related Hydrothermal Fluids at the Giant Yulong Porphyry Cu-Mo Deposit in Eastern Tibet: Insights from Titanium Diffusion in Quartz. Ore Geology Reviews, 39: 104459. https://doi.org/10.1016/j.oregeorev.2021.104459
      Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189
      Corti, G., Bonini, M., Conticelli, S., et al., 2003. Analogue Modelling of Continental Extension: A Review Focused on the Relations between the Patterns of Deformation and the Presence of Magma. Earth-Science Reviews, 63(3-4): 169-247. https://doi.org/10.1016/S0012-8252(03)00035-7
      Dai, S., 2005. Early Tectonic Uplift of the Northern Tibetan Plateau. Chinese Science Bulletin, 50(15): 1642. https://doi.org/10.1360/03wd0255
      Danišík, M., McInnes, B. I. A., Kirkland, C. L., et al., 2017. Seeing is Believing: Visualization of He Distribution in Zircon and Implications for Thermal History Reconstruction on Single Crystals. Science Advances, 3(2): e1601121. https://doi.org/10.1126/sciadv.1601121
      Donelick, R. A., 2005. Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. https://doi.org/10.2138/rmg.2005.58.3
      Farley, K. A., 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999JB900348
      Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha-Stopping Distances on (U‐Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7
      Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., et al., 2006. Interpretation of (U-Th)/He Single Grain Ages from Slowly Cooled Crustal Terranes: A Case Study from the Transantarctic Mountains of Southern Victoria Land. Chemical Geology, 225(1-2): 91-120. https://doi.org/10.1016/j.chemgeo.2005.09.001
      Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8): 2347-2365. https://doi.org/10.1016/j.gca.2009.01.015
      Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts. Journal of the International Association for Mathematical Geology, 13(6): 471-478. https://doi.org/10.1007/BF01034498
      Gallagher, K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2): 408. https://doi.org/10.1029/2011JB008825
      Gautheron, C., Tassan-Got, L., Barbarand, J., et al., 2009. Effect of Alpha-Damage Annealing on Apatite (U-Th)/He Thermochronology. Chemical Geology, 266(3-4): 157-170. https://doi.org/10.1016/j.chemgeo.2009.06.001
      Glorie, S., Otasevic, A., Gillespie, J., et al., 2019. Thermo-Tectonic History of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): Insights from Integrated Apatite U/Pb, Fission Track and (U-Th)/He Thermochronology. Geoscience Frontiers, 10(6): 2153-2166. https://doi.org/10.1016/j.gsf.2019.05.005
      Guenthner, W. R., Reiners, P. W., Ketcham, R. A., et al., 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology. American Journal of Science, 313(3): 145-198. https://doi.org/10.2475/03.2013.01
      Guo, L. G., Liu Y. P., Xu W., et al., 2006. Constraints to the Mineralization Age of the Yulong Porphyry Copper Deposit from SHRIMP U-Pb Zircon Data in Tibet. Acta Petrologica Sinica, 22(4): 1009-1016 (in Chinese with English abstract).
      Hasebe, N., Barbarand, J., Jarvis, K., et al., 2004. Apatite Fission-Track Chronometry Using Laser Ablation ICP-MS. Chemical Geology, 207(3-4): 135-145. https://doi.org/10.1016/j.chemgeo.2004.01.007
      Hou, Z. Q., Ma, H. W., Zaw, K., et al., 2003. The Himalayan Yulong Porphyry Copper Belt: Product of Large-Scale Strike-Slip Faulting in Eastern Tibet. Economic Geology, 98(1): 125-145. https://doi.org/10.2113/gsecongeo.98.1.125
      Hou, Z. Q., Xie, Y. L., Xu, W. Y., et al., 2007. Yulong Deposit, Eastern Tibet: A High-Sulfidation Cu-Au Porphyry Copper Deposit in the Eastern Indo-Asian Collision Zone. International Geology Review, 49: 235-258. doi: 10.2747/0020-6814.49.3.235
      Hou, Z. Q., Zeng, P. S., Gao, Y. F., et al., 2006. Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Collision Zone: Constraints from Re-Os Dating of Molybdenite. Mineralium Deposita, 41(1): 33-45. https://doi.org/10.1007/s00126-005-0038-2
      Hou, Z. Q., Zhong, D. L., Deng, W. M., 2004. A Tectonic Model for Porphyry Copper-Molybdenum-Gold Metallogenic Belts on the Eastern Margin of the Qinghai-Tibet Plateau. Geology in China, 31(1): 1-14 (in Chinese with English abstract).
      Huang, M. L., Bi, X. W., Hu, R. Z., et al., 2019. Geochemistry, In-Situ Sr-Nd-Hf-O Isotopes, and Mineralogical Constraints on Origin and Magmatic-Hydrothermal Evolution of the Yulong Porphyry Cu-Mo Deposit, Eastern Tibet. Gondwana Research, 76: 98-114. https://doi.org/10.1016/j.gr.2019.05.012
      Huang, M. L., Bi, X. W., Hu, R. Z., et al., 2024. Linking Porphyry Cu Formation to Tectonic Change in Postsubduction Settings: A Case Study from the Giant Yulong Belt, Eastern Tibet. Economic Geology, 119(2): 279-304. https://doi.org/10.5382/econgeo.5052
      Huang, M. L., Zhu, J. J., Bi, X. W., et al., 2022. Low Magmatic Cl Contents in Giant Porphyry Cu Deposits Caused by Early Fluid Exsolution: A Case Study of the Yulong Belt and Implication for Exploration. Ore Geology Reviews, 141: 104664. https://doi.org/10.1016/j.oregeorev.2021.104664
      Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2006. Low-Degree Melting of a Metasomatized Lithospheric Mantle for the Origin of Cenozoic Yulong Monzogranite-Porphyry, East Tibet: Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints. Earth and Planetary Science Letters, 241(3-4): 617-633. https://doi.org/10.1016/j.epsl.2005.11.023
      Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007. Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist, 92(5/6): 799-810. https://doi.org/10.2138/am.2007.2281
      Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variability of Apatite Fission-Track Annealing Kinetics; Ⅲ, Extrapolation to Geological Time Scales. American Mineralogist, 84(9): 1235-1255. https://doi.org/10.2138/am-1999-0903
      Laslett, G. M., Kendall, W. S., Gleadow, A. J. W., et al., 1982. Bias in Measurement of Fission-Track Length Distributions. Nuclear Tracks and Radiation Measurements (1982), 6(2-3): 79-85. https://doi.org/10.1016/0735-245X(82)90031-X
      Leng, C. B., Cooke, D. R., Hou, Z. Q., et al., 2018. Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating. Economic Geology, 113(5): 1077-1092. https://doi.org/10.5382/econgeo.2018.4582
      Li, J. X., Qin, K. Z., Li, G. M., et al., 2012. Petrogenesis and Thermal History of the Yulong Porphyry Copper Deposit, Eastern Tibet: Insights from U-Pb and U-Th/He Dating, and Zircon Hf Isotope and Trace Element Analysis. Mineralogy and Petrology, 105(3): 201-221. https://doi.org/10.1007/s00710-012-0211-0
      Li, Y. Q., Rui, Z. Y., Cheng, L. X., 1981. Fluid Inclusion and Mineralization of the Yulong Porphyry Copper (Molybdenum) Deposit. Acta Geologica Sinica, 55(3): 216-231 (in Chinese with English abstract).
      Liang, H. Y., Campbell, I. H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126-005-0047-1
      Liang, H. Y., Mo, J. H., Sun, W. D., et al., 2008. Study on the Duration of the Ore-Forming System of the Yulong Giant Porphyry Copper Deposit in Eastern Tibet, China. Acta Petrologica Sinica, 24(10): 2352-2358 (in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1-75.
      McDowell, F. W., Keizer, R. P., 1977. Timing of Mid- Tertiary Volcanism in the Sierra Madre Occidental between Durango City and Mazatlan, Mexico. Geological Society of America Bulletin, 88(10): 1479. https://doi.org/10.1130/0016-7606(1977)881479:tomvit>2.0.co;2 doi: 10.1130/0016-7606(1977)881479:tomvit>2.0.co;2
      McInnes, B. I. A., 2005. Application of Thermochronology to Hydrothermal Ore Deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467-498. https://doi.org/10.2138/rmg.2005.58.18
      Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al., 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040
      Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. 10.1029/2009gc002618 doi: 10.1029/2009gc002618
      Reiners, P. W., 2005. Past, Present and Future of Thermochronology. Reviews in Mineralogy and Geochemistry, 58(1): 1-18. https://doi.org/10.2138/rmg.2005.58.1
      Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
      Reiners, P. W., Farley, K. A., 2001. Influence of Crystal Size on Apatite (U-Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3-4): 413-420. https://doi.org/10.1016/S0012-821X(01)00341-7
      Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U-Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. https://doi.org/10.1016/j.gca.2003.10.021
      Reiners, P., Zhou, Z., Ehlers, T., et al., 2003. Post- Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology. American Journal of Science, 303(6): 489-518. https://doi.org/10.2475/ajs.303.6.489
      Richards, J. P., 2022. Porphyry Copper Deposit Formation in Arcs: What are the Odds?. Geosphere, 18(1): 130-155. https://doi.org/10.1130/ges02086.1
      Rui, Z. Y., Huang, C. K., Qi, G. M., et al., 1984. Porphyry Copper (Molybdenum) Deposits of China. Geological Publishing House, Beijing, 350 (in Chinese).
      Seedorff, E., Dilles, J. H., Proffett, J. M., et al., 2005. Porphyry Deposits: Characteristics and Origin of Hypogene Features. Economic Geology 100th Anniversary Volume, 251-298. https://doi.org/10.5382/AV100.10
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Spikings, R., Simpson, G., 2014. Rock Uplift and Exhumation of Continental Margins by the Collision, Accretion, and Subduction of Buoyant and Topographically Prominent Oceanic Crust. Tectonics, 33(5): 635-655. https://doi.org/10.1002/2013TC003425
      Staisch, L. M., Niemi, N. A., Clark, M. K., et al., 2016. Eocene to Late Oligocene History of Crustal Shortening within the Hoh Xil Basin and Implications for the Uplift History of the Northern Tibetan Plateau. Tectonics, 35(4): 862-895. https://doi.org/10.1002/2015TC003972
      Sun, J. B., Chen, W., Yu, S., et al., 2017. Study on Zircon (U-Th)/He Dating Technique. Acta Petrologica Sinica, 33(6): 1947-1956 (in Chinese with English abstract).
      Sun, M. Y., Monecke, T., Reynolds, T. J., et al., 2021. Understanding the Evolution of Magmatic-Hydrothermal Systems Based on Microtextural Relationships, Fluid Inclusion Petrography, and Quartz Solubility Constraints: Insights into the Formation of the Yulong Cu-Mo Porphyry Deposit, Eastern Tibetan Plateau, China. Mineralium Deposita, 56(5): 823-842. https://doi.org/10.1007/s00126-020-01003-6
      Sun, M. Y., Qu, H. C., Li, Q. Y., et al., 2015. Recognition of the Ore-Forming Porphyry in the Yulong Cu Deposit and Its Geological Significance. Acta Petrologica et Mineralogica, 34(4): 493-504 (in Chinese with English abstract).
      Tang, J. X., 2003. The Study on Metallogeny and Localizing Forecast of Yulong Porphyry Copper-Molybdenum Mineralization, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Tang, J. X., Wang, C. H., Qu, W. J., et al., 2009. Re-Os Isotopic Dating of Molybdenite from the Yulong Porphyry Copper-Molybdenum Deposit in Tibet and Its Metallogenic Significance. Rock and Mineral Analysis, 28(3): 215-218 (in Chinese with English abstract).
      Tang, J. X., Zhang, L., Li, Z. J., et al., 2006. Porphyry Copper Deposit Controlled by Structural Nose Trap: Yulong Porphyry Copper Deposit in Eastern Tibet. Mineral Deposits, 25(6): 652-662 (in Chinese with English abstract).
      Tang, R. L., Luo, H. S., 1995. The Geology of Yulong Porphyry Copper (Molybdenum) Ore Belt, Xizang (Tibet). Geological Publishing House, Beijing, 320 (in Chinese).
      Vermeesch, P., 2009. Radial Plotter: A Java Application for Fission Track, Luminescence and Other Radial Plots. Radiation Measurements, 44(4): 409-410. https://doi.org/10.1016/j.radmeas.2009.05.003
      Vermeesch, P., 2018. Isoplot R: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, C. H., Tang, J. X., Chen, J. P., et al., 2009. Chronological Research of Yulong Copper-Molybdenum Porphyry Deposit. Acta Geologica Sinica, 83(10): 1445-1455 (in Chinese with English abstract).
      Wolf, R. A., Farley, K. A., Kass, D. M., 1998. Modeling of the Temperature Sensitivity of the Apatite (U-Th)/He Thermochronometer. Chemical Geology, 148(1-2): 105-114. https://doi.org/10.1016/S0009-2541(98)00024-2
      Wu, L., Wang, F., Shan, J. N., et al., 2016. (U-Th)/He Dating of International Standard Durango Apatite. Acta Petrologica Sinica, 32(6): 1891-1900 (in Chinese with English abstract).
      Wu, L. M., Min, K., Gao, J. F., et al., 2021. Principle, Experimental Process and Application of Fission Track LA-ICP-MS/FT Method. Geology and Resources, 30(1): 75-84 (in Chinese with English abstract).
      Xie, Y. L., Hou, Z. Q., Xu, J. H., et al., 2005. Evolution of Multi-Stage Ore-Forming Fluid and Mineralization: Evidence from Fluid Inclusions in Yulong Porphyry Copper Deposit, East Tibet. Acta Petrologica Sinica, 21(5): 1409-1415 (in Chinese with English abstract).
      Yu, C., Yang, Z. M., Zhou, L. M., et al., 2019. Impact of Laser Focus on Accuracy of U-Pb Dating of Zircons by LA-ICPMS. Mineral Deposits, 38(1): 21-28 (in Chinese with English abstract).
      Yang, F., Wen, Y. M., Jepson, G., et al., 2024. Prolonged Exhumation and Preservation of the Yuku Molybdenum Ore Field, East Qinling, China: Constraints from Medium- to Low-Temperature Thermochronology. Ore Geology Reviews, 167: 105973. https://doi.org/10.1016/j.oregeorev.2024.105973
      Yang, T. N., Ding, Y., Zhang, H. R., et al., 2014. Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 126(11-12): 1654-1682. https://doi.org/10.1130/b30921.1
      Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011. Permo-Triassic Arc Magmatism in Central Tibet: Evidence from Zircon U-Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3/4): 270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006
      Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China: Mineral Deposits of China. 1601 Mclean: Society of Economic Geologists, Special Publication, 22: 133-187. https://doi.org/10.5382/SP.22.05
      Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63: 162-178. https://doi.org/10.1016/j.jseaes.2012.08.025
      Zhang, K. J., Zhang, Y. X., Li, B., et al., 2006. The Blueschist-Bearing Qiangtang Metamorphic Belt (Northern Tibet, China) as an In Situ Suture Zone: Evidence from Geochemical Comparison with the Jinsa Suture. Geology, 34(6): 493. https://doi.org/10.1130/g22404.1
      Zhang, Y. Q., Xie, Y. W., Liang, H. Y., et al., 1998. Shoshonitic Series: Geochemical Characteristics of Elements for Ore-Bearing Porphyry from Yulong Copper Ore Belt in Eastern Tibet. Geochemistry, 27(3): 236-243 (in Chinese with English abstract).
      Zhao, H. S., Wang, Q. F., Li, W. C., et al., 2022. The Roles of Emplacement Depth, Magma Volume and Local Geologic Conditions in the Formation of the Giant Yulong Copper Deposit, Eastern Tibet. Ore Geology Reviews, 145: 104877. https://doi.org/10.1016/j.oregeorev.2022.104877
      Zhao, J. X., Qin, K. Z., Xiao, B., et al., 2016. Thermal History of the Giant Qulong Cu-Mo Deposit, Gangdese Metallogenic Belt, Tibet: Constraints on Magmatic- Hydrothermal Evolution and Exhumation. Gondwana Research, 36: 390-409. https://doi.org/10.1016/j.gr.2015.07.005
      Zhong, D. L., Ding, L., 1996. Rising Process of the Qinghai-Xizang (Tibet) Plateau and Its Mechanism. Science in China (Series D: Earth Sciences), 39(4): 369-379.
      郭利果, 刘玉平, 徐伟, 等, 2006. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约. 岩石学报, 22(4): 1009-1016.
      侯增谦, 钟大赉, 邓万明, 2004. 青藏高原东缘斑岩铜钼金成矿带的构造模式. 中国地质, 31(1): 1-14.
      李荫清, 芮宗瑶, 程莱仙, 1981. 玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究. 地质学报, 55(3): 216-231.
      梁华英, 莫济海, 孙卫东, 等, 2008. 藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析. 岩石学报, 24(10): 2352-2358.
      芮宗瑶, 黄崇轲, 齐国明, 等, 1984. 中国斑岩铜(钼)矿床. 北京: 地质出版社, 350.
      孙敬博, 陈文, 喻顺, 等, 2017. 锆石(U-Th)/He定年技术研究. 岩石学报, 33(6): 1947-1956.
      孙茂妤, 曲焕春, 李秋耘, 等, 2015. 西藏玉龙铜矿床成矿斑岩的厘定及地质意义. 岩石矿物学杂志, 34(4): 493-504.
      唐菊兴, 2003. 西藏玉龙斑岩铜(钼) 矿成矿作用与矿床定位预测研究(博士学位论文). 成都: 成都理工大学.
      唐菊兴, 王成辉, 屈文俊, 等, 2009. 西藏玉龙斑岩铜钼矿辉钼矿铼‒锇同位素定年及其成矿学意义. 岩矿测试, 28(3): 215-218.
      唐菊兴, 张丽, 李志军, 等, 2006. 西藏玉龙铜矿床: 鼻状构造圈闭控制的特大型矿床. 矿床地质, 25(6): 652-662.
      唐仁鲤, 罗怀松, 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社, 320.
      王成辉, 唐菊兴, 陈建平, 等, 2009. 西藏玉龙铜钼矿同位素年代学研究. 地质学报, 83(10): 1445-1455.
      吴林, 王非, 单竞男, 等, 2016. 国际标样Durango磷灰石(U-Th)/He年龄测定. 岩石学报, 32(6): 1891-1900.
      武利民, 闵康, 高剑峰, 等, 2021. 裂变径迹LA-ICP-MS/FT法原理、实验流程和应用. 地质与资源, 30(1): 75-84.
      谢玉玲, 侯增谦, 徐九华, 等, 2005. 藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据. 岩石学报, 21(5): 1409-1415.
      于超, 杨志明, 周利敏, 等, 2019. 激光焦平面变化对LA-ICP-MS锆石U-Pb定年准确度的影响. 矿床地质, 38(1): 21-28.
      张玉泉, 谢应雯, 梁华英, 等, 1998. 藏东玉龙铜矿带含矿斑岩及成岩系列. 地球化学, 27(3): 236-243.
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  339
    • HTML全文浏览量:  17
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-08-09
    • 刊出日期:  2025-11-25

    目录

      /

      返回文章
      返回