• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    沉积碎屑岩断裂带结构特征、渗透性及流体运移规律

    宫亚军 张奎华 王金铎 王千军 王建伟 曾治平 郭瑞超 牛靖靖 范婕 刘慧 闵飞琼

    宫亚军, 张奎华, 王金铎, 王千军, 王建伟, 曾治平, 郭瑞超, 牛靖靖, 范婕, 刘慧, 闵飞琼, 2025. 沉积碎屑岩断裂带结构特征、渗透性及流体运移规律. 地球科学, 50(5): 1968-1986. doi: 10.3799/dqkx.2024.154
    引用本文: 宫亚军, 张奎华, 王金铎, 王千军, 王建伟, 曾治平, 郭瑞超, 牛靖靖, 范婕, 刘慧, 闵飞琼, 2025. 沉积碎屑岩断裂带结构特征、渗透性及流体运移规律. 地球科学, 50(5): 1968-1986. doi: 10.3799/dqkx.2024.154
    Gong Yajun, Zhang Kuihua, Wang Jinduo, Wang Qianjun, Wang Jianwei, Zeng Zhiping, Guo Ruichao, Niu Jingjing, Fan Jie, Liu Hui, Min Feiqiong, 2025. Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone. Earth Science, 50(5): 1968-1986. doi: 10.3799/dqkx.2024.154
    Citation: Gong Yajun, Zhang Kuihua, Wang Jinduo, Wang Qianjun, Wang Jianwei, Zeng Zhiping, Guo Ruichao, Niu Jingjing, Fan Jie, Liu Hui, Min Feiqiong, 2025. Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone. Earth Science, 50(5): 1968-1986. doi: 10.3799/dqkx.2024.154

    沉积碎屑岩断裂带结构特征、渗透性及流体运移规律

    doi: 10.3799/dqkx.2024.154
    基金项目: 

    中国石化股份公司重点科研攻关项目 P22128

    中国石化股份公司重点科研攻关项目 P24017

    中国石化股份公司重点科研攻关项目 P23244

    详细信息
      作者简介:

      宫亚军(1984-),男,副研究员,硕士,从事石油地质综合研究及勘探部署相关工作,主要从事油气成藏研究与勘探部署工作. ORCID:0000-0003-4505-5358. E-mail:278365907@qq.com

    • 中图分类号: P612

    Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone

    • 摘要: 断裂生长过程中形成复杂断裂带,占地壳极小体积的断裂带对壳内流体运移有重要影响,断裂带与地层流体之间流固相互作用研究具有重要地质及工程意义.以近30年来沉积碎屑岩断裂带结构、渗透性及流体运移等方面取得的多学科研究进展为重点,总结断裂带结构类型及其几何学特征,系统梳理了断裂带渗透率数据,分析了渗透性变化规律,阐述了包括优势路径、渗流特征、幕式过程、临界条件以及多场耦合渗流机制等在内的断裂带流体运移规律.研究表明,断裂带划分为二元、三级结构体系,具有“分段幂律”发育规律,断裂带渗透率变化主要受3类因素控制,不同要素相互竞争控制的渗透性变化形成断裂带流体的幕式运移过程,其运移渗流规律是应力-温压-渗流-化学等多场耦合结果.通过多学科综合研究,以期加深对断裂-流体-成藏(矿)这一复杂过程的理解,断裂带非线性、多相态、多场渗流规律需深入研究.

       

    • 图  1  断层断裂带地质特征与划分

      修改自Choi et al.(2016)

      Fig.  1.  Geological characteristics and division of fault zone across a fault

      图  2  断裂带地质特征与划分

      Choi et al.(2016)

      Fig.  2.  Simple schematic illustration of the fault damage zone around a fault

      图  3  变形带微观形变特征及其渗透率

      数据引自Fossen et al.(2007, 2018)

      Fig.  3.  Graph showing microscopic characteristics and permeability of deformation bands

      图  4  断距与断裂长度关系

      数据汇编自Kolyukhin and Torabi(2012)

      Fig.  4.  Comparison plot of displacement versus length for faults

      图  5  断距与核部厚度关系

      数据汇编自Knott et al.(1996)Sperrevik et al.(2002)Wibberley et al.(2008)Childs et al.(2009)Torabi and Berg(2011)

      Fig.  5.  Thickness of fault core versus displacement for faults

      图  6  断距与裂缝带宽度关系

      数据汇编自Faulkner et al.(2011)Savage and Brodsky(2011)Kolyukhin and Torabi(2012)

      Fig.  6.  Thickness of damage zone versus displacement for faults

      图  7  断裂带裂缝密度与距断层核部距离

      Fig.  7.  Fracture density with distance from the fault core for faults

      图  8  断裂带不同断层岩渗透率

      数据引自Neuzil(1994)Fossen et al.(2007)Jolley et al.(2007)Nieto Camargo and Jensen(2012)Walker et al.(2013)Fisher et al.(2018)

      Fig.  8.  Graph showing permeability of fault rock in fault zone

      图  9  断裂带流体渗流的水文地质模型

      Seebeck et al.(2014)

      Fig.  9.  Schematic hydrogeological properties of fault zone architecture

      图  10  断裂活动周期中应力、压力及渗透性演化示意

      修改自段庆宝等(2015)Warren-Smith et al.(2019)

      Fig.  10.  Schematic diagram illustrating the stress, fluid pressure, and permeability evolution in a fault zone during the seismic cycle

      图  11  准噶尔盆地南缘碎屑岩断裂结构特征

      Fig.  11.  Characteristics of fault zone in north margin of Junggar basin

      表  1  几种主要裂缝介质渗流公式

      Table  1.   Several experiential equations of flow in fracture

      主要模型 公式及其变形 参数 引用文献
      立方公式 $ v=\frac{g{w}^{2}}{12\mu }J $ v.流速,m/s;J.水力梯度,MPa/m;g.重力加速度,9.8 m/s2
      μ.流体粘度,Pa·s;W.缝宽,m.
      王媛和速宝玉,2002
      $ q=\frac{g}{12\mu }{w}^{n}{J}^{m}\frac{1}{1+\mathrm{\epsilon }{\delta }^{\eta }} $ q.单宽流量,m3/s;g.重力加速度,9.8 m/s2μ.流体粘度,Pa·s;
      δ.相对粗造度,无量纲;εηmn.均为系数,无量纲.
      许光祥等,2003
      Izbash公式 $ J=-a{v}^{m} $
      $ v=C\sqrt[]{RJ} $
      $ J=B{v}^{2} $
      v.流速,m/s;J.水力梯度,MPa/m;
      CRBa.均为系数,无量纲
      杨天鸿等,2016
      Forchheimer公式 $ J=-(av+b{v}^{2}) $
      $ J=av+b{v}^{1.5}+c{v}^{2} $
      $ J=av+b{v}^{3} $
      v.流速,m/s;J.水力梯度,MPa/m;
      abc.均为常数,无量纲
      杨天鸿等,2016
      下载: 导出CSV

      表  2  岩石破裂断裂准则(据付旭等,2011)

      Table  2.   Criteria for different modes of brittle failure (Fu et al., 2011)

      断裂模式及条件 破裂要素的函数关系 主要参数
      拉张断裂
      σ1σ3 < 4T
      τ2=4T(σnPf)+4T2
      Pf=σ3+T
      σ1,最大主应力,MPa;σ3,最小主应力,MPa;
      T,抗张强度,MPa;σn,正应力,MPa;Pf,流体压力,MPa;C,内聚力,MPa;τ,剪应力,MPa;μi
      摩擦系数,无量纲;μs,静摩系数,无量纲;
      θr,断层面与σ1夹角,°
      张性剪切断层
      4T < σ1σ3 < 5.66T
      τ2=4T(σnPf)+4T2
      Pf=σ3+[8T(σ1+σ3)-(σ1σ3)2]/16T
      压性剪切断层
      σ1σ3 > 5.667T
      τ=C+μiσnPf
      Pf=σ3+[8T‒(σ1σ3)]/3
      无粘合力断层再剪切 τ=μsσnPf
      Pf=σ3‒[(σ1σ3)(1‒0.75tanθr)]/
      [0.75(cotθr+tanθr)]
      下载: 导出CSV
    • Aydin, A., 1978. Small Faults Formed as Deformation Bands in Sandstone. Pure and Applied Geophysics, 116(4): 913-930. https://doi.org/10.1007/BF00876546
      Aydin, A., Borja, R. I., Eichhubl, P., 2006. Geological and Mathematical Framework for Failure Modes in Granular Rock. Journal of Structural Geology, 28(1): 83-98. https://doi.org/10.1016/j.jsg.2005.07.008
      Aydin, A., Johnson, A. M., 1978. Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone. Pure and Applied Geophysics, 116(4): 931-942. https://doi.org/10.1007/BF00876547
      Balsamo, F., Storti, F., Salvini, F., et al., 2010. Structural and Petrophysical Evolution of Extensional Fault Zones in Low-Porosity, Poorly Lithified Sandstones of the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32(11): 1806-1826. https://doi.org/10.1016/j.jsg.2009.10.010
      Barton, C. A., Zoback, M. D., Moos, D., 1995. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23(8): 683. https://doi.org/10.1130/0091-7613(1995)0230683: ffapaf>2.3.co;2 doi: 10.1130/0091-7613(1995)0230683:ffapaf>2.3.co;2
      Bauer, J. F., Meier, S., Philipp, S. L., 2015. Architecture, Fracture System, Mechanical Properties and Permeability Structure of a Fault Zone in Lower Triassic Sandstone, Upper Rhine Graben. Tectonophysics, 647: 132-145. https://doi.org/10.1016/j.tecto.2015.02.014
      Beach, A., Welbon, A. I., Brockbank, P. J., et al., 1999. Reservoir Damage around Faults; Outcrop Examples from the Suez Rift. Petroleum Geoscience, 5(2): 109-116. https://doi.org/10.1144/petgeo.5.2.109
      Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008
      Berg, S. S., Skar, T., 2005. Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analyses of a Segment of the Moab Fault, SE Utah. Journal of Structural Geology, 27(10): 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
      Berkowitz, B., 2002. Characterizing Flow and Transport in Fractured Geological Media: A Review. Advances in Water Resources, 25(8-12): 861-884. https://doi.org/10.1016/S0309-1708(02)00042-8
      Bonnet, E., Bour, O., Odling, N. E., et al., 2001. Scaling of Fracture Systems in Geological Media. Reviews of Geophysics, 39(3): 347-383. https://doi.org/10.1029/1999rg000074
      Braathen, A., Tveranger, J., Fossen, H., et al., 2009. Fault Facies and Its Application to Sandstone Reservoirs. AAPG Bulletin, 93(7): 891-917. https://doi.org/10.1306/03230908116
      Brixel, B., Klepikova, M., Jalali, M. R., et al., 2020. Tracking Fluid Flow in Shallow Crustal Fault Zones: 1. Insights from Single-Hole Permeability Estimates. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018200. https://doi.org/10.1029/2019jb018200
      Caine, J. S., Bruhn, R. L., Forster, C. B., 2010. Internal Structure, Fault Rocks, and Inferences Regarding Deformation, Fluid Flow, and Mineralization in the Seismogenic Stillwater Normal Fault, Dixie Valley, Nevada. Journal of Structural Geology, 32(11): 1576-1589. https://doi.org/10.1016/j.jsg.2010.03.004
      Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11): 1025. https://doi.org/10.1130/0091-7613(1996)0241025: fzaaps>2.3.co;2 doi: 10.1130/0091-7613(1996)0241025:fzaaps>2.3.co;2
      Caine, J. S., Forster, C. B., 1999. Fault Zone Architecture and Fluid Flow: Insights from Field Data and Numerical Modeling. Faults and Subsurface Fluid Flow in the Shallow Crust. American Geophysical Union, Washington, D. C., 101-127. https://doi.org/10.1029/gm113p0101
      Cappa, F., Guglielmi, Y., Virieux, J., 2007. Stress and Fluid Transfer in a Fault Zone Due to Overpressures in the Seismogenic Crust. Geophysical Research Letters, 34(5): 2006GL028980. https://doi.org/10.1029/2006gl028980
      Chen, H. H., 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066 (in Chinese with English abstract).
      Chen, L., Talwani, P., 2001. Mechanism of Initial Seismicity Following Impoundment of the Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 91(6): 1582-1594. https://doi.org/10.1785/0120000293
      Chester, F. M., Logan, J. M., 1986. Implications for Mechanical Properties of Brittle Faults from Observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124(1): 79-106. https://doi.org/10.1007/BF00875720
      Childs, C., Manzocchi, T., Walsh, J. J., et al., 2009. A Geometric Model of Fault Zone and Fault Rock Thickness Variations. Journal of Structural Geology, 31(2): 117-127. https://doi.org/10.1016/j.jsg.2008.08.009
      Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
      Clemenzi, L., Storti, F., Balsamo, F., et al., 2015. Fluid Pressure Cycles, Variations in Permeability, and Weakening Mechanisms along Low-Angle Normal Faults: The Tellaro Detachment, Italy. Geological Society of America Bulletin, 127(11-12): 1689-1710. https://doi.org/10.1130/b31203.1
      Cowie, P. A., Scholz, C. H., 1992. Physical Explanation for the Displacement-Length Relationship of Faults Using a Post-Yield Fracture Mechanics Model. Journal of Structural Geology, 14(10): 1133-1148. https://doi.org/10.1016/0191-8141(92)90065-5
      Cowie, P. A., Shipton, Z. K., 1998. Fault Tip Displacement Gradients and Process Zone Dimensions. Journal of Structural Geology, 20(8): 983-997. https://doi.org/10.1016/S0191-8141(98)00029-7
      Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture‐ Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1-2): 217-233. doi: 10.1111/j.1468-8123.2010.00281.x
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Duan, Q. B., Yang, X. S., Chen, J. Y., 2015. Review of Geochemical and Petrophysical Responses to Fluid Processes within Seismogenic Fault Zones. Progress in Geophysics, 30(6): 2448-2462 (in Chinese with English abstract).
      Eichhubl, P., Davatzes, N. C., Becker, S. P., 2009. Structural and Diagenetic Control of Fluid Migration and Cementation along the Moab Fault, Utah. AAPG Bulletin, 93(5): 653-681. https://doi.org/10.1306/02180908080
      Evans, J. P., Bradbury, K. K., 2004. Faulting and Fracturing of Nonwelded Bishop Tuff, Eastern California. Vadose Zone Journal, 3(2): 602. https://doi.org/10.2136/vzj2004.0602
      Evans, J. P., Forster, C. B., Goddard, J. V., 1997. Permeability of Fault-Related Rocks, and Implications for Hydraulic Structure of Fault Zones. Journal of Structural Geology, 19(11): 1393-1404. https://doi.org/10.1016/S0191-8141(97)00057-6
      Evans, K. F., Genter, A., Sausse, J., 2005. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 1. Borehole Observations. Journal of Geophysical Research: Solid Earth, 110(B4): 2004JB003168. https://doi.org/10.1029/2004jb003168
      Fan, J., Jiang, Y. L., Liu, J. D., et al., 2017. Relationship of Fault with Hydrocarbon Migration and Accumulation in Longfengshan Area, Changling Faulted Depression. Earth Science, 42(10): 1817-1829 (in Chinese with English abstract).
      Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., et al., 2010. A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones. Journal of Structural Geology, 32(11): 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009
      Faulkner, D. R., Mitchell, T. M., Jensen, E., et al., 2011. Scaling of Fault Damage Zones with Displacement and the Implications for Fault Growth Processes. Journal of Geophysical Research, 116(B5): B05403. https://doi.org/10.1029/2010jb007788
      Fischer, T., Matyska, C., Heinicke, J., 2017. Earthquake-Enhanced Permeability-Evidence from Carbon Dioxide Release Following the ML 3.5 Earthquake in West Bohemia. Earth and Planetary Science Letters, 460: 60-67. https://doi.org/10.1016/j.epsl.2016.12.001
      Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019
      Flodin, E. A., Aydin, A., 2004. Evolution of a Strike-Slip Fault Network, Valley of Fire State Park, Southern Nevada. Geological Society of America Bulletin, 116(1): 42. https://doi.org/10.1130/B25282.1
      Fossen, H., 2010. Deformation Bands Formed during Soft-Sediment Deformation: Observations from SE Utah. Marine and Petroleum Geology, 27(1): 215-222. https://doi.org/10.1016/j.marpetgeo.2009.06.005
      Fossen, H., Rotevatn, A., 2016. Fault Linkage and Relay Structures in Extensional Settings—A Review. Earth-Science Reviews, 154: 14-28. https://doi.org/10.1016/j.earscirev.2015.11.014
      Fossen, H., Schultz, R. A., Shipton, Z. K., et al., 2007. Deformation Bands in Sandstone: A Review. Journal of the Geological Society, 164(4): 755-769. https://doi.org/10.1144/0016-76492006-036
      Fossen, H., Soliva, R., Ballas, G., et al., 2018. A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution. Geological Society, London, Special Publications, 459(1): 9-33. https://doi.org/10.1144/sp459.4
      Fu, X., Zhang, D. H., Yin, X. B., 2011. Deformation of Rock, Fluid Pressures and Hydrothermal Deposits. Geological Bulletin of China, 30(4): 595-604 (in Chinese with English abstract). . doi: 10.3969/j.issn.1671-2552.2011.04.017
      Ghosh, K., Mitra, S., 2009. Structural Controls of Fracture Orientations, Intensity, and Connectivity, Teton Anticline, Sawtooth Range, Montana. AAPG Bulletin, 93(8): 995-1014. https://doi.org/10.1306/04020908115
      Giger, S. B., Tenthorey, E., Cox, S. F., et al., 2007. Permeability Evolution in Quartz Fault Gouges under Hydrothermal Conditions. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004828. https://doi.org/10.1029/2006jb004828
      Gong, Y. J., Qin, F., Zhao, L. Q., et al., 2019. Fault Zone Structure and Fluid Flow Model of the Hongyanchi Fault in Southern Junggar Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 38(4): 729-737 (in Chinese with English abstract).
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
      Gudmundsson, A., 2001. Fluid Overpressure and Flow in Fault Zones: Field Measurements and Models. Tectonophysics, 336(1-4): 183-197. https://doi.org/10.1016/S0040-1951(01)00101-9
      Haney, M. M., Snieder, R., Sheiman, J., et al., 2005. A Moving Fluid Pulse in a Fault Zone. Nature, 437: 46. https://doi.org/10.1038/437046a
      Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145
      Hao, F., Zou, H. Y., Jiang, J. Q., 2000. Dynamics of Petroleum Accumulation and Its Advances. Earth Science Frontiers, 7(3): 11-21 (in Chinese with English abstract).
      Hennings, P., Allwardt, P., Paul, P., et al., 2012. Relationship between Fractures, Fault Zones, Stress, and Reservoir Productivity in the Suban Gas Field, Sumatra, Indonesia. AAPG Bulletin, 96(4): 753-772. https://doi.org/10.1306/08161109084
      Hestir, K., Long, J. C. S., 1990. Analytical Expressions for the Permeability of Random Two-Dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Media Theories. Journal of Geophysical Research: Solid Earth, 95(B13): 21565-21581. https://doi.org/10.1029/jb095ib13p21565
      Holdsworth, R. E., McCaffrey, K. J. W., Dempsey, E., et al., 2019. Natural Fracture Propping and Earthquake-Induced Oil Migration in Fractured Basement Reservoirs. Geology, 47(8): 700-704. https://doi.org/10.1130/G46280.1
      Ingebritsen, S. E., Manga, M., 2019. Earthquake Hydrogeology. Water Resources Research, 55(7): 5212-5216. https://doi.org/10.1029/2019wr025341
      Jolley, S. J., Dijk, H., Lamens, J. H., et al., 2007. Faulting and Fault Sealing in Production Simulation Models: Brent Province, Northern North Sea. Petroleum Geoscience, 13(4): 321-340. https://doi.org/10.1144/1354-079306-733
      Kang, Y. S., Guo, Q. J., Zhu, J. C., et al., 2003. Light Etched Physical Simulation Experiment on Oil Migration in Fractured Media. Acta Petrolei Sinica, 24(4): 44-47 (in Chinese with English abstract).
      Kim, Y. S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26(3): 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
      Kim, Y. S., Sanderson, D. J., 2005. The Relationship between Displacement and Length of Faults: A Review. Earth-Science Reviews, 68(3-4): 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
      Knott, S. D., Beach, A., Brockbank, P. J., et al., 1996. Spatial and Mechanical Controls on Normal Fault Populations. Journal of Structural Geology, 18(2/3): 359-372. https://doi.org/10.1016/S0191-8141(96)80056-3
      Kolyukhin, D., Torabi, A., 2012. Statistical Analysis of the Relationships between Faults Attributes. Journal of Geophysical Research (Solid Earth), 117(B5): B05406. https://doi.org/10.1029/2011JB008880
      Li, S. Y., He, T. M., Yin, X. C., 2010. Introduction of Rock Fracture Mechanics. University of Science and Technology of China Press, Hefei (in Chinese).
      Li, Y. T., Deng, S., Zhang, J. B., et al., 2023. Fault Zone Architecture of Strike-Slip Faults in Deep, Tight Carbonates and Development of Reservoir Clusters under Fault Control: A Case Study in Shunbei, Tarim Basin. Earth Science Frontiers, 30(6): 80-94 (in Chinese with English abstract).
      Luo, Q., Wang, Q. J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract).
      Luo, X. R., 2011. Simulation and Characterization of Pathway Heterogeneity of Secondary Hydrocarbon Migration. AAPG Bulletin, 95(6): 881-898. https://doi.org/10.1306/11191010027
      Ma, D. B., Wu, G. H., Zhu, Y. F., et al., 2019. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment: Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example. Earth Science Frontiers, 26(1): 225-237 (in Chinese with English abstract).
      Manzocchi, T., Heath, A. E., Walsh, J. J., et al., 2002. The Representation of Two Phase Fault-Rock Properties in Flow Simulation Models. Petroleum Geoscience, 8(2): 119-132. https://doi.org/10.1144/petgeo.8.2.119
      Neuzil, C. E., 1994. How Permeable are Clays and Shales? Water Resources Research, 30(2): 145-150. https://doi.org/10.1029/93WR02930
      Nieto Camargo, J. E., Jensen, J. L., 2012. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas. Natural Resources Research, 21(3): 395-409. https://doi.org/10.1007/s11053-012-9181-5
      Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
      Rotevatn, A., Bastesen, E., 2014. Fault Linkage and Damage Zone Architecture in Tight Carbonate Rocks in the Suez Rift (Egypt): Implications for Permeability Structure along Segmented Normal Faults. Geological Society, London, Special Publications, 374(1): 79-95. https://doi.org/10.1144/sp374.12
      Savage, H. M., Brodsky, E. E., 2011. Collateral Damage: Evolution with Displacement of Fracture Distribution and Secondary Fault Strands in Fault Damage Zones. Journal of Geophysical Research, 116(B3): B03405. https://doi.org/10.1029/2010jb007665
      Seebeck, H., Nicol, A., Walsh, J. J., et al., 2014. Fluid Flow in Fault Zones from an Active Rift. Journal of Structural Geology, 62: 52-64. https://doi.org/10.1016/j.jsg.2014.01.008
      Shipton, Z. K., Cowie, P. A., 2001. Damage Zone and Slip-Surface Evolution over Μm to Km Scales in High- Porosity Navajo Sandstone, Utah. Journal of Structural Geology, 23(12): 1825-1844. https://doi.org/10.1016/S0191-8141(01)00035-9
      Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
      Smeraglia, L., Fabbi, S., Billi, A., et al., 2022. How Hydrocarbons Move along Faults: Evidence from Microstructural Observations of Hydrocarbon-Bearing Carbonate Fault Rocks. Earth and Planetary Science Letters, 584: 117454. https://doi.org/10.1016/j.epsl.2022.117454
      Song, M. S., Zhao, L. Q., Gong, Y. J., et al., 2016. Quantitative Assessment on Trap Oil-Bearing Property in Ultra-Denudation Zones at the Northwestern Margin of Junggar Basin. Acta Petrolei Sinica, 37(1): 64-72 (in Chinese with English abstract).
      Sperrevik, S., Færseth, R. B., Gabrielsen, R. H., 2000. Experiments on Clay Smear Formation along Faults. Petroleum Geoscience, 6(2): 113-123. https://doi.org/10.1144/petgeo.6.2.113
      Sperrevik, S., Gillespie, P. A., Fisher, Q. J., et al., 2002. Empirical Estimation of Fault Rock Properties. Norwegian Petroleum Society Special Publications, 11(3): 109-125. https://doi.org/10.1016/S0928-8937(02)80010-8
      Storti, F., Holdsworth, R. E., Salvini, F., 2003. Intraplate Strike-Slip Deformation Belts. Geological Society, London, Special Publications, 210(1): 1-14. https://doi.org/10.1144/gsl.sp.2003.210.01.01
      Su, S. M., Jiang, Y. L., 2021. Fault Zone Structures and Its Relationship with Hydrocarbon Migration and Accumulation in Petroliferous Basin. Journal of China University of Petroleum (Edition of Natural Science), 45(4): 32-41 (in Chinese with English abstract).
      Sun, T. W., Fu, G., Lü, Y. F., et al., 2012. A Discussion on Fault Conduit Fluid Mechanism and Fault Conduit Form. Geological Review, 58(6): 1081-1090 (in Chinese with English abstract).
      Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, ks. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004665. https://doi.org/10.1029/2006jb004665
      Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
      Valoroso, L., Chiaraluce, L., Collettini, C., 2014. Earthquakes and Fault Zone Structure. Geology, 42(4): 343-346. https://doi.org/10.1130/g35071.1
      Walker, R. J., Holdsworth, R. E., Imber, J., et al., 2013. Fault Zone Architecture and Fluid Flow in Interlayered Basaltic Volcaniclastic-Crystalline Sequences. Journal of Structural Geology, 51: 92-104. https://doi.org/10.1016/j.jsg.2013.03.004
      Wang, L. C., Cardenas, M. B., 2017. Linear Permeability Evolution of Expanding Conduits Due to Feedback between Flow and Fast Phase Change. Geophysical Research Letters, 44(9): 4116-4123. https://doi.org/10.1002/2017gl073161
      Wang, Y., Su, B. Y., 2002. Research on the Behavior of Fluid Flow in a Single Fracture and Its Equivalent Hydraulic Aperture. Advances in Water Science, 13(1): 61-68 (in Chinese with English abstract).
      Wang, Z., Huang, L., Liu, C. Y., et al., 2024. Distribution of Strike-Slip Fault-Fracture Volume and Its Controlling Factors in the Southwestern Ordos Basin. Journal of China University of Mining & Technology, 53(4): 793-807 (in Chinese with English abstract).
      Warren-Smith, E., Fry, B., Wallace, L., et al., 2019. Episodic Stress and Fluid Pressure Cycling in Subducting Oceanic Crust during Slow Slip. Nature Geoscience, 12: 475-481. https://doi.org/10.1038/s41561-019-0367-x
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974
      Wibberley, C. A., Yielding, G., Di Toro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: A Review. Geological Society of London Special Publications, 299(1): 5-33. https://doi.org/10.1144/SP299.2
      Williams, R. T., Goodwin, L. B., Mozley, P. S., 2017. Diagenetic Controls on the Evolution of Fault-Zone Architecture and Permeability Structure: Implications for Episodicity of Fault-Zone Fluid Transport in Extensional Basins. Geological Society of America Bulletin, 129(3/4): 464-478. https://doi.org/10.1130/B31443.1
      Xia, Z. G., 1983. Classification, Identification and Formation Conditions of Fault Rocks. Geological Review, 29(6): 578-583 (in Chinese with English abstract).
      Xu, C. G., 2016. Strike-Slip Transfer Zone and Its Control on Formation of Medium and Large-Sized Oilfields in Bohai Sea Area. Earth Science, 41(9): 1548-1560 (in Chinese with English abstract).
      Xu, G. X., Zhang, Y. X., Ha, Q. L., 2003. Super-Cubic and Sub-Cubic Law of Rough Fracture Seepage and Its Experiments Study. Journal of Hydraulic Engineering, 34(3): 74-79 (in Chinese with English abstract).
      Xue, L., Li, H. B., Brodsky, E. E., et al., 2013. Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone. Science, 340(6140): 1555-1559. https://doi.org/10.1126/science.1237237
      Yamaguchi, A., Cox, S. F., Kimura, G., et al., 2011. Dynamic Changes in Fluid Redox State Associated with Episodic Fault Rupture along a Megasplay Fault in a Subduction Zone. Earth and Planetary Science Letters, 302(3-4): 369-377. https://doi.org/10.1016/j.epsl.2010.12.029
      Yang, G. L., Ren, Z. L., He, F. Q., 2022. Fault-Fracture Body Growth and Hydrocarbon Enrichment of the Zhenjing Area, the Southwestern Margin of the Ordos Basin. Oil & Gas Geology, 43(6): 1382-1396 (in Chinese with English abstract).
      Yang, T. H., Shi, W. H., Li, S. C., et al., 2016. State of the Art and Trends of Water-Inrush Mechanism of Nonlinear Flow in Fractured Rock Mass. Journal of China Coal Society, 41(7): 1598-1609 (in Chinese with English abstract).
      Yang, T. H., Tang, C. A., Zhu, W. C., et al., 2001. Coupling Analysis of Seepage and Stresses in Rock Failure Process. Chinese Journal of Geotechnical Engineering, 23(4): 489-493 (in Chinese with English abstract).
      Yao, Y. D., Ge, J. L., 2003. New Pattern and Its Rules of Oil Non-Darcy Flow in Porous Media. Oil Drilling & Production Technology, 25(5): 40-42 (in Chinese with English abstract).
      Yu, H., Li, S. J., Man, L. T., et al., 2011. Research Progress of Water Flow in Fractal Fracture Network System of Rock Mass. Journal of Harbin Institute of Technology, 43(S1): 94-99 (in Chinese with English abstract).
      Zeng, L. B., Gong, L., Su, X. C., et al., 2024. Natural Fractures in Deep to Ultra-Deep Tight Reservoirs: Distribution and Development. Oil & Gas Geology, 45(1): 1-14 (in Chinese with English abstract).
      Zhang, P. Z., Xu, X. W., Wen, X. Z., et al., 2008. Slip Rates and Recurrence Intervals of the Longmen Shan Active Fault Zone and Tectonic Implications for the Mechanism of the May 12 Wenchuan Earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese with English abstract).
      Zhang, Y., Gartrell, A., Underschultz, J. R., et al., 2009. Numerical Modelling of Strain Localisation and Fluid Flow during Extensional Fault Reactivation: Implications for Hydrocarbon Preservation. Journal of Structural Geology, 31(3): 315-327. https://doi.org/10.1016/j.jsg.2008.11.006
      陈红汉, 2023. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展. 地球科学, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
      段庆宝, 杨晓松, 陈建业, 2015. 地震断层带流体作用的岩石物理和地球化学响应研究综述. 地球物理学进展, 30(6): 2448-2462.
      范婕, 蒋有录, 刘景东, 等, 2017. 长岭断陷龙凤山地区断裂与油气运聚的关系. 地球科学, 42(10) : 1817-1829. doi: 10.3799/dqkx.2017.568
      付旭, 张德会, 印贤波, 2011. 岩石变形、流体压力与热液成矿关系的研究现状. 地质通报, 30(4): 595-604.
      宫亚军, 秦峰, 赵乐强, 等, 2019. 准噶尔盆地南缘红雁池断裂带结构特征及流体运移模式. 矿物岩石地球化学通报, 38(4): 729-737.
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      郝芳, 邹华耀, 姜建群, 2000. 油气成藏动力学及其研究进展. 地学前缘, 7(3): 11-21.
      康永尚, 郭黔杰, 朱九成, 等, 2003. 裂缝介质中石油运移模拟实验研究. 石油学报, 24(4): 44-47.
      李世愚, 和泰名, 尹祥础, 2010. 岩石断裂力学导论. 合肥: 中国科学技术大学出版社.
      李映涛, 邓尚, 张继标, 等, 2023. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例. 地学前缘, 30(6): 80-94.
      罗群, 王千军, 杨威, 等, 2023. 走滑断裂内部结构渗透差异特征及其输导控藏模式. 地球科学, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092
      马德波, 邬光辉, 朱永峰, 等, 2019. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例. 地学前缘, 26(1): 225-237.
      宋明水, 赵乐强, 宫亚军, 等, 2016. 准噶尔盆地西北缘超剥带圈闭含油性量化评价. 石油学报, 37(1): 64-72.
      苏圣民, 蒋有录, 2021. 含油气盆地断裂带结构特征及其与油气运聚关系. 中国石油大学学报(自然科学版), 45(4): 32-41.
      孙同文, 付广, 吕延防, 等, 2012. 断裂输导流体的机制及输导形式探讨. 地质论评, 58(6): 1081-1090.
      王媛, 速宝玉, 2002. 单裂隙面渗流特性及等效水力隙宽. 水科学进展, 13(1): 61-68.
      王朝, 黄雷, 刘池洋, 等, 2024. 鄂尔多斯盆地西南部走滑断缝体分布规律及其主控因素. 中国矿业大学学报, 53 (4) : 793-807.
      夏宗国, 1983. 断层岩的分类、识别及其形成条件. 地质论评, 29(6): 578-583.
      徐长贵, 2016. 渤海走滑转换带及其对大中型油气田形成的控制作用. 地球科学, 41(9): 1548-1561. doi: 10.3799/dqkx.2016.508
      许光祥, 张永兴, 哈秋舲, 2003. 粗糙裂隙渗流的超立方和次立方定律及其试验研究. 水利学报, 34(3) : 74-79.
      杨桂林, 任战利, 何发岐, 2022. 鄂尔多斯盆地西南缘镇泾地区断缝体发育特征及油气富集规律. 石油与天然气地质, 43(6): 1382-1396.
      杨天鸿, 师文豪, 李顺才, 等, 2016. 破碎岩体非线性渗流突水机理研究现状及发展趋势. 煤炭学报, 41(7): 1598-1609.
      杨天鸿, 唐春安, 朱万成, 等, 2001. 岩石破裂过程渗流与应力耦合分析. 岩土工程学报, 23(4): 489-493.
      姚约东, 葛家理, 2002. 石油渗流新的运动形态及其规律. 重庆大学学报, 23(2) : 150-153.
      于贺, 李守巨, 满林涛, 等, 2011. 岩体分形裂隙网络系统中水流动研究进展. 哈尔滨工业大学学报, 43(S1): 94-99.
      曾联波, 巩磊, 宿晓岑, 等, 2024. 深层-超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1-14.
      张培震, 徐锡伟, 闻学泽, 等, 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4): 1066-1073.
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  32
    • HTML全文浏览量:  11
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-13
    • 网络出版日期:  2025-06-06
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回