Deformation Law of the Main Canal Bottom Plate under Coupling Effect of Main Canal Leakage and Shield Tunneling
-
摘要: 盾构下穿南水北调干渠时,在渠底结构渗漏条件下,将造成更为严重的危害,因此为研究在双向作用耦合作用下的扰动变形规律,采用FEFLOW软件模拟渠道不同渗漏工况时地下水渗流影响范围,利用FLAC3D软件建立干渠-地层-隧道模型,进行不同施工工况的协同变形数值模拟.研究表明:当渠道局部渗漏量接近或大于100 m3/d时,渗漏的平面影响范围大于100 m,在垂直方向上渠道渗漏中心至隧洞顶板的地层由包气带转化为饱水带,该地层从不饱和状态转变为饱和状态;正常工况与渗漏工况模拟结果对比,渠底变形曲线形态分别为“W型”和“V型”,最大沉降量为3.6 mm和6.4 mm,沉降槽宽度分别为27 m和45 m.表明渠底渗漏将使得渠底变形沉降槽深度增大,是由于渠底渗漏使得影响范围内土层强度降低、压缩系数改变,饱和土层需产生更大变形抵消应力变化.Abstract: When a shield tunnel passes under the main canal of the South-to-North Water Diversion Project, leakage at the bottom of the canal structure can lead to more severe hazards. Therefore, to study the disturbance deformation patterns under the coupling effects of bidirectional interactions, the FEFLOW software was used to simulate the influence range of groundwater seepage under different leakage conditions in the canal. The FLAC3D software was employed to establish a model of the canal-stratum-tunnel system, and numerical simulations of cooperative deformation under different construction conditions were conducted. The study shows that when the local leakage volume in the canal approaches or exceeds 100 m³/day, the planar influence range of the leakage exceeds 100 m. In the vertical direction, the stratum from the leakage center to the tunnel roof transitions from the vadose zone to the saturated zone, changing from an unsaturated to a saturated state. Comparing the simulation results of normal conditions with leakage conditions, the deformation curves at the canal bottom exhibit "W-shaped" and "V-shaped" patterns, respectively, with maximum settlements of 3.6 mm and 6.4 mm, and settlement trough widths of 27 m and 45 m. The results indicate that leakage at the canal bottom increases the depth of the settlement trough. This is because the leakage reduces the soil strength and alters the compression coefficient within the affected range, requiring greater deformation in the saturated soil layer to counteract stress changes.
-
表 1 下穿区间地层分布
Table 1. Distribution of strata in the tunnel underpass area
地层时代 地层岩性 层厚(m) 平均厚度(m) 第四系全新统人工堆积物(Q4ml) 第①层杂填土 1.0~7.0 4.65 第①1层素填土 3.0~7.0 4.66 第四系上更新统上段冲洪积物(Q3-3al+pl) 第⑤1层黏质粉土 2.7~7.4 5.23 第四系上更新统中段冲洪积物(Q3-2al+pl) 第⑥2层黏质粉土 2.8~5.3 3.93 第四系上更新统下段冲洪积物(Q3-2al+pl) 第⑦2层黏质粉土 2.9~6.0 4.46 第⑦1层粉质黏土 3.0~9.1 5.68 第四系中更新统冲洪积物(Q2al+pl) 第⑧11层粉质黏土 8.7~13.2 10.53 第⑧12层粉质黏土 6.4~13.0 9.43 第⑧13层粉质黏土 7.6~18.9 13.36 第⑧2层细砂 该层呈透镜体状零星分布 第⑧8层卵石土 该层呈透镜体状零星分布 表 2 土体物理力学参数
Table 2. Physical and mechanical parameters of soil
土层 岩性 厚度(m) 密度(kg/m3) 黏聚力(kPa) 摩擦角(°) 压缩模量(MPa) 1 杂填土 4.7 1.78 7.0 15.5 10.2 2 黏质粉土 13.6 1.83 16.4 23.1 10.5 3 粉质黏土 12.5 1.93 16.8 17.3 10.6 4 粉质黏土 6.2 1.92 17.8 17.8 10.8 5 粉质黏土 20.8 1.91 17.8 17.7 10.8 表 3 模拟工况汇总
Table 3. Summary of simulated operating conditions
工况 对比模型 破损程度 工况一 渠道侧壁土工膜出现局部撕裂 撕裂长度为4 m、宽度为2.5 m 工况二 渠道底板土工膜出现局部撕裂 撕裂长度为4 m、宽度为4 m 工况三 渠道底板土工膜出现裂缝 裂缝长度为45 m、宽度为0.2 m 工况四 渠道底板土工膜出现撕裂 撕裂长度为45 m、宽度为2 m 表 4 渗漏工况模拟结果
Table 4. Simulation results of leakage conditions
计算工况 渗漏概况 平均渗漏量(m3/d) 平面影响范围(m) 垂向影响范围(m) 工况一 侧壁土工膜局部撕裂
4.0 m×2.5 m95 108 18 工况二 底板土工膜局部撕裂
4 m×4 m34 28 4 工况三 底板土工膜裂缝
45.0 m×0.2 m100 169 12.5 工况四 底板土工膜撕裂
45 m×2 m125 223 12.5 表 5 土体物理力学参数
Table 5. Physical and mechanical parameters of soil
土层 岩性 埋深
(m)密度
(kg/m3)粘聚力
(kPa)摩擦角
(°)压缩模量
(MPa)泊松比
μ1 杂填土 4.7 1.78 7.0 15.5 10.2 0.34 2 黏质粉土 11.7 1.82 16.4 23.1 10.5 0.30 黏质粉土 18.3 1.91 16.5 23.5 10.5 0.30 3 粉质黏土 24.8 1.95 32.9 16.8 10.7 0.32 粉质黏土 30.8 1.91 32.6 17.7 10.8 0.31 4 粉质黏土 43.5 1.94 32.0 17.8 10.9 0.31 粉质黏土 63.0 1.97 32.5 17.8 10.8 0.32 表 6 结构部件材料参数
Table 6. Material parameters of structural components
结构部件 厚度(m) 弹模(MPa) 密度(kg/m3) 泊松比 隧道衬砌 0.3 35 000 2 500 0.2 渠道 0.08 30 000 2 500 0.2 表 7 渗漏工况饱和土体力学参数
Table 7. Mechanical parameters of saturated soil under leakage conditions
土层 岩性 密度(kg/m3) 黏聚力(kPa) 摩擦角(°) 变形模量(MPa) 泊松比μ 饱和 粉质黏土 2.03 20.0 10.0 12.5 0.40 表 8 正常工况与渗漏工况的变形对比
Table 8. Comparison of deformation between normal working conditions and leakage working conditions
对比项 正常工况 渗漏工况 最大沉降位置 先开挖隧洞对应渠底 先开挖隧洞对应渠底 最大沉降量 约3.6 mm 约6.4 mm 沉降曲线形态 W型 V型 沉降槽宽度 约27 m 约45 m -
Cao, Y. S., Chang, J. X., Huang, Q., et al., 2017. Real⁃Time Control Strategy for Water Conveyance of Middle Route Project of South⁃to⁃North Water Diversion in China. Advances in Water Science, 28(1): 133-139(in Chinese with English abstract). Chen, C., 2021. Research on Construction Technology and Stratum Deformation of Shield Tunneling through the Main Canal of South⁃to⁃North Water Transfer Project (Dissertation). Zhengzhou University, Zhengzhou (in Chinese with English abstract). Chen, R. P., Song, X., Meng, F. Y., et al., 2022. Analytical Approach to Predict Tunneling⁃Induced Subsurface Settlement in Sand Considering Soil Arching Effect. Computers and Geotechnics, 141: 104492. https://doi.org/10.1016/j.compgeo.2021.104492 Jia, X. F., Li, C. J., Ren, L., et al., 2022. Settlement Control of Subway Shield Tunnel under the Main Channel of South⁃to⁃North Water Diversion under Complex Conditions. Safety and Environmental Engineering, 29(1): 77-84, 118(in Chinese with English abstract). Li, Q. W., Yan, E. C., Yang, G., et al., 2019. Simulation of Three⁃Dimensional Seepage Field of the Bank Slope Groundwater Based on FEFLOW. Safety and Environmental Engineering, 26(2): 38-44(in Chinese with English abstract). Tang, M., Xu, W. T., Zhang, C., et al., 2022. Risk Assessment of Sectional Water Quality Based on Deterioration Rate of Water Quality Indicators: A Case Study of the Main Canal of the Middle Route of South⁃to⁃North Water Diversion Project. Ecological Indicators, 135: 108592. https://doi.org/10.1016/j.ecolind.2022.108592 Tian, J. J., Zhu, K., Cai, S., et al., 2021. Inversion Analysis of Peck Formula Based on Zhengzhou Subway Running down the Main Channel of South-to-North Water Transfer. Safety and Environmental Engineering, 28(2): 109-113, 132(in Chinese with English abstract). Wang, J. X., Fu, H. X., Zhu, Y. F., et al., 2010. Advance in Calculation of Subsidence Caused by Shield Tunnel Based on Strata Loss. Chinese Journal of Underground Space and Engineering, 6(1): 112-119, 150 (in Chinese with English abstract). Wang, X. R., Liu, X., Zhang, X., et al., 2023. Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel. Earth Science, 48(6): 2415-2426 (in Chinese with English abstract). Wang, X. R., Qin, W. Q., Yu, H. C., 2024. Research on Dynamic Response Law of Shield Tunnel and Surrounding Soil Based on Vibration Action of Subway Train. Earth Science, 49(12): 4673-4689(in Chinese with English abstract). Wang, Y., Zeng, C. N, Li, W. W., et al., 2023. Thermodynamic Performance of Phase Change Mortar Based on Shape⁃Stabilized Phase Change Material. Earth Science, 48(12): 4680-4688(in Chinese with English abstract). Wang, Z. D., Jiang, L. M., Rao, Y., 2019. Estimation of Ground Settlement Induced by Shield Tunnel Excavation Based on the Time⁃Space Relationship. Journal of Civil and Environmental Engineering, 41(1): 62-69 (in Chinese with English abstract). Woo, S. Y., Kim, S. J., Lee, J. W., et al., 2021. Evaluating the Impact of Interbasin Water Transfer on Water Quality in the Recipient River Basin with SWAT. Science of the Total Environment, 776: 145984. https://doi.org/10.1016/j.scitotenv.2021.145984 Wu, H. M., Shu, Y. M., Zhu, J. G., 2011. Implementation and Verification of Interface Constitutive Model in FLAC3D. Water Science and Engineering, 4(3): 305-316. https://doi.org/10.3882/j.issn.1674⁃2370.2011.03.007 Yang, X., Zou, Q., Wang, Q., 2013. Analysis on Influence of Shield Tunneling Crossing underneath Existing Trunk Canal of South⁃to⁃North Water Transfer Project. Tunnel Construction, 33(7): 562-566 (in Chinese with English abstract). Yang, Z. X., Du, J. Q., Sun, F. X., et al., 2023. Model Test for Optimization of Design Parameters of Shield Tunnel under Water Transmission Main Canal. Science Technology and Engineering, 23(31): 13573-13581(in Chinese with English abstract). Zhu, C. H., Li, N., 2016. Estimation Method and Laws Analysis of Surface Settlement Due to Tunneling. Rock and Soil Mechanics, 37(Suppl. 2): 533-542(in Chinese with English abstract). 曹玉升, 畅建霞, 黄强, 等, 2017. 南水北调中线输水调度实时控制策略. 水科学进展, 28(1): 133-139. 陈超, 2021. 盾构下穿南水北调干渠施工技术及地层变形研究(硕士学位论文). 郑州: 郑州大学. 贾晓凤, 李春剑, 任磊, 等, 2022. 地铁盾构隧道下穿南水北调干渠的沉降控制研究. 安全与环境工程, 29(1): 77-84, 118. 李庆伟, 晏鄂川, 杨广, 等, 2019. 基于FEFLOW的岸坡地下水三维渗流场模拟研究. 安全与环境工程, 26(2): 38-44. 田均举, 朱坤, 蔡松, 等, 2021. 基于郑州地铁下穿南水北调干渠的Peck公式反演分析. 安全与环境工程, 28(2): 109-113, 132. 王建秀, 付慧仙, 朱雁飞, 等, 2010. 基于地层损失的盾构沉降计算方法研究进展. 地下空间与工程学报, 6(1): 112-119, 150. 王晓睿, 刘旭, 张昕, 等, 2023. 小半径曲线隧道下地铁运行对粉砂土层引起的振动响应规律. 地球科学, 48(6): 2415-2426. doi: 10.3799/dqkx.2023.063 王晓睿, 秦文茜, 于怀昌, 2024. 地铁列车振动作用下盾构隧道及周边土体动力响应规律. 地球科学, 49(12): 4673-4689. doi: 10.3799/dqkx.2023.075 王艳, 曾长女, 李皖皖, 等, 2023. 基于定形相变材料的相变砂浆热力学性能. 地球科学, 48(12): 4680-4688. doi: 10.3799/dqkx.2023.102 王智德, 江俐敏, 饶宇, 2019. 基于时空关系的盾构开挖地表沉降规律. 土木与环境工程学报(中英文), 41(1): 62-69. 杨喜, 邹琦, 王庆, 2013. 地铁隧道穿越南水北调干渠施工影响分析. 隧道建设, 33(7): 562-566. 杨振兴, 杜家庆, 孙飞祥, 等, 2023. 盾构隧道下穿输水干渠设计参数优化模型试验. 科学技术与工程, 23(31): 13573-13581. 朱才辉, 李宁, 2016. 隧道施工诱发地表沉降估算方法及其规律分析. 岩土力学, 37(增刊2): 533-542. -