• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川盆地东北部侏罗系凉高山组页岩油甜点与富集区评价

    白雪峰 王民 王鑫 李军辉 卢双舫 杨鑫翊 李天一

    白雪峰, 王民, 王鑫, 李军辉, 卢双舫, 杨鑫翊, 李天一, 2024. 四川盆地东北部侏罗系凉高山组页岩油甜点与富集区评价. 地球科学, 49(12): 4483-4500. doi: 10.3799/dqkx.2024.910
    引用本文: 白雪峰, 王民, 王鑫, 李军辉, 卢双舫, 杨鑫翊, 李天一, 2024. 四川盆地东北部侏罗系凉高山组页岩油甜点与富集区评价. 地球科学, 49(12): 4483-4500. doi: 10.3799/dqkx.2024.910
    Bai Xuefeng, Wang Min, Wang Xin, Li Junhui, Lu Shuangfang, Yang Xinyi, Li Tianyi, 2024. Evaluation of Shale Oil Sweet Spot and Rich Area in Jurassic Lianggaoshan Formation, Northeast Sichuan Basin. Earth Science, 49(12): 4483-4500. doi: 10.3799/dqkx.2024.910
    Citation: Bai Xuefeng, Wang Min, Wang Xin, Li Junhui, Lu Shuangfang, Yang Xinyi, Li Tianyi, 2024. Evaluation of Shale Oil Sweet Spot and Rich Area in Jurassic Lianggaoshan Formation, Northeast Sichuan Basin. Earth Science, 49(12): 4483-4500. doi: 10.3799/dqkx.2024.910

    四川盆地东北部侏罗系凉高山组页岩油甜点与富集区评价

    doi: 10.3799/dqkx.2024.910
    基金项目: 

    国家自然科学基金 42473064

    详细信息
      作者简介:

      白雪峰(1979-),男,博士研究生,教授级高级工程师,从事油气勘探工作.ORCID:0009⁃0002⁃3974⁃515X. E⁃mail:bxf@petrochina.com.cn

      通讯作者:

      王民,E⁃mail:wangm@upc.edu.cn

    • 中图分类号: P618.13

    Evaluation of Shale Oil Sweet Spot and Rich Area in Jurassic Lianggaoshan Formation, Northeast Sichuan Basin

    • 摘要: 2020年四川盆地东北部平安1井在侏罗系凉高山组页岩层系试油112.8 m3/d,页岩油勘探获得突破.然而,其他相继部署的多口井日产油量差异较大,勘探开发效果并不理想,制约了页岩油富集区的优选.对此,本文分别基于改进后的ΔlgR法和地层游离油量恢复模型获取含油性甜点参数(游离油量)、利用多元线性回归分析得到物性甜点参数(孔隙度)、借助Bowers法预测弹性能甜点参数(地层压力系数)、综合随机森林算法预测的脆性指数和数学模型获取的杨氏模量得到可压裂性甜点(可压裂性指数),通过采取一种改进后的层次分析计算方法获取了甜点综合评价指数并将其应用于重点页岩油勘探井,认为PY1井、PA1井的潜在有利层段分布于凉上1的底部、凉上2的底部和凉上3的中部,YQ1井分布于凉上1的中底部、凉上3的底部和顶部.平面优选目标区主要集中在PY1、PA1井的北部和YQ1井附近.

       

    • 图  1  页岩油甜点评价流程图

      Fig.  1.  Flow chart for shale oil sweet spot evaluation

      图  2  四川盆地地质概况图(a)和下侏罗统地层柱状图(b)(据Wang et al.,2024修改)

      Fig.  2.  Geologic overview map of the Sichuan basin (a) and histogram of the Lower Jurassic stratigraphy (b) (modified from Wang et al., 2024)

      图  3  实测TOCΔlgRTOC(a)、预测TOC(b)关系及实测S1ΔlgR$ {}_{{S}_{1}} $(c)、预测S1(d)关系

      Fig.  3.  Measured TOC vs. ΔlgRTOC (a), predicted TOC (b) and measured S1 vs. ΔlgR$ {}_{{S}_{1}} $ (c), predicted S1 (d)

      图  4  岩心孔隙度与AC(a)、DEN(b)和CNL(c)测井值关系

      Fig.  4.  The relationship between rock porosity and AC (a), DEN (b) and CNL (c) logging value

      图  5  残差直方图(a)与正态PP图(b)

      Fig.  5.  Histogram of residuals (a) and normal P-P plot (b)

      图  6  基于常规测井法的实测岩心孔隙度与预测孔隙度关系

      Fig.  6.  The relationship between the measured porosity of rock sample and the porosity predicted by logging

      图  7  凉高山组实测地层压力系数与预测地层压力系数关系

      Fig.  7.  Relationship between measured formation pressure coefficient and predicted formation pressure coefficient in Lianggaoshan Formation

      图  8  实测脆性指数与预测脆性指数关系

      a. 训练样本;b. 测试样本

      Fig.  8.  Relationship between measured brittleness index and predicted brittleness index

      图  9  实测杨氏模量与预测杨氏模量关系

      Fig.  9.  Relationship between measured Young's modulus and predicted Young's modulus

      图  10  PA1井凉高山组甜点综合指数单井图

      Fig.  10.  Map of sweet spot comprehensive evaluation index logging in PA1 well

      图  11  PY1井凉高山组甜点综合指数单井图

      岩相类型:0.其他岩相,1.粉砂质泥岩,2.含有机质纹层状黏土质页岩,3.富有机质纹层状黏土质页岩,4.含有机质纹层状长英质页岩,5.含有机质层状混合质页岩,6.(细)粉砂岩

      Fig.  11.  Map of sweet spot comprehensive evaluation index logging in PY1 well

      图  12  YQ1井凉高山组甜点综合指数单井图

      Fig.  12.  Map of sweet spot comprehensive evaluation index logging in YQ1 well

      图  13  川东北地区YQ1⁃PY1⁃PA1⁃DY1井凉高山组甜点综合评价指数空间分布特征

      Fig.  13.  Spatial distribution characteristics of sweet spot comprehensive evaluation index of YQ1⁃PY1⁃PA1⁃DY1 in the Lianggaoshan Formation in Northeast Sichuan

      图  14  川东北地区凉高山组有利区平面分布特征

      Fig.  14.  Characteristics of sweet spot area planar distribution in the Lianggaoshan Formation in Northeast Sichuan

      表  1  川东北地区凉高山组杨氏模量和泊松比测试结果

      Table  1.   Results of Young's modulus and Poisson's ratio of Lianggaoshan Formation, Northeast Sichuan Province, China

      井名 深度(m) 样品直径(mm) 样品高度(mm) 样品质量(g) 围压(MPa) 杨氏模量(GPa) 泊松比
      PY1 3 025.90 25.18 26.26 34.21 34.35 25.75 0.264
      PY1 3 029.10 25.05 49.74 65.47 36.35 32.24 0.321
      PY1 3 109.61 25.11 36.71 48.39 37.32 33.08 0.271
      PY1 3 148.80 25.01 41.31 53.16 37.79 31.78 0.256
      PY1 3 156.30 25.28 35.67 47.80 37.88 42.28 0.220
      YS5 1 651.77 25.12 37.28 48.05 19.82 29.19 0.283
      PA1 2 862.70 25.19 27.26 35.98 34.35 26.43 0.217
      YS6 1 737.50 25.23 24.78 32.80 20.85 22.67 0.237
      下载: 导出CSV

      表  2  比较矩阵中不同参数的判断值

      Table  2.   The judgment values of different parameters in the comparison matrix

      参数1:
      游离油量
      参数2:
      孔隙度
      参数3:
      地层压力系数
      参数4:
      可压裂性指数
      rj
      参数1:游离油量 1 0 0 0 1
      参数2:孔隙度 2 1 1 0 4
      参数3:地层压力系数 2 1 1 0 4
      参数4:可压裂性指数 2 2 2 1 7
      ri 7 4 4 1
      注:rirj分别表示某个参数i或参数j与所有参数比较后的判断值之和.
      下载: 导出CSV
    • Adiguna, H., Torres⁃Verdín, C., 2013. Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon⁃Bearing Shale from Conventional Well Logs. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, U. S. A., SPE⁃166139⁃MS.https://doi.org/10.2118/166139⁃ms
      Alzahabi, A., AlQahtani, G., Soliman, M. Y., et al., 2015. Fracturability Index is a Mineralogical Index: A New Approach for Fracturing Decision. SPE Saudi Arabia Section Annual Technical Symposium and Exhibition. Al⁃Khobar, Saudi Arabia, SPE⁃178033⁃MS.https://doi.org/10.2118/178033⁃ms
      Biau, G., Scornet, E., 2016. A Random Forest Guided Tour. Test, 25(2): 197-227. https://doi.org/10.1007/s11749⁃016⁃0481⁃7
      Bilgeri, D., Ademeno, E. B., 1982. Predicting Abnormally Pressured Sedimentary Rocks. Geophysical Prospecting, 30(5): 608-621. https://doi.org/10.1111/j.1365⁃2478.1982.tb01329.x
      Bowers, G. L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488⁃pa
      Chen, S. Y., Zhang, S., Wang, Y. S., et al., 2016. Lithofacies Types and Reservoirs of Paleogene Fine⁃Grained Sedimentary Rocks in Dongying Sag, Bohai Bay Basin. Petroleum Exploration and Development, 43(2): 198-208(in Chinese with English abstract).
      Eaton, B. A., Eaton, T. L., 1997. Fracture Gradient Prediction for the New Generation. World Oil, 218(10): 93-100.
      Feng, R. H., 2021. Improving Uncertainty Analysis in Well Log Classification by Machine Learning with a Scaling Algorithm. Journal of Petroleum Science and Engineering, 196: 107995. https://doi.org/10.1016/j.petrol.2020.107995
      Hou, L. H., Luo, X., Yu, Z. C., et al., 2021. Key Factors Controlling the Occurrence of Shale Oil and Gas in the Eagle Ford Shale, the Gulf Coast Basin: Models for Sweet Spot Identification. Journal of Natural Gas Science and Engineering, 94: 104063. https://doi.org/10.1016/j.jngse.2021.104063
      He, W. Y., Bai, X. F., Meng, Q. A., et al., 2022. Accumulation Geological Characteristics and Major Discoveries of Lacustrine Shale Oil in Sichuan Basin. Acta Petrolei Sinica, 43(7): 885-898(in Chinese with English abstract).
      Huang, R. C., Wang, Y., Cheng, S. J., et al., 2014. Optimal Selection of Logging⁃Based TOC Calculation Methods of Shale Reservoirs: A Case Study of the Jiaoshiba Shale Gas Field, Sichuan Basin. Natural Gas Industry, 34(12): 25-32(in Chinese with English abstract).
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale⁃Gas Systems: The Mississippian Barnett Shale of North⁃Central Texas as One Model for Thermogenic Shale⁃Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Jin, X. C., Shah, S. N., Roegiers, J. C., et al., 2014. Fracability Evaluation in Shale Reservoirs: An Integrated Petrophysics and Geomechanics Approach. SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, U. S. A., SPE-168589-MS. https://doi.org/10.2118/168589⁃ms
      Kane, O. I., Hu, M. Y., Cai, Q. S., et al., 2023. Sedimentary Facies, Lithofacies Paleogeography, and an Evaluation of the Ordovician Sequences in the Sichuan Basin, Southwest China. Marine and Petroleum Geology, 149: 106096. https://doi.org/10.1016/j.marpetgeo.2023.106096
      Licitra, D., Lovrincevich, E., Vittore, F., et al., 2015. Sweet Spots in Vaca Muerta: Integration of Subsurface and Production Data in Loma Campana Shale Development, Argentina. Unconventional Resources Technology Conference. San Antonio, Texas, U. S. A. . Society of Petroleum Engineers, 20-22. https://doi.org/10.2118/178563⁃ms
      Li, J. B., Lu, S. F., Chen, G. H., et al., 2019. A New Method for Measuring Shale Porosity with Low⁃Field Nuclear Magnetic Resonance Considering Non⁃Fluid Signals. Marine and Petroleum Geology, 102: 535-543. https://doi.org/10.1016/j.marpetgeo.2019.01.013
      Li, J. B., Wang, M., Lu, S. F., et al., 2020. A New Method for Predicting Sweet Spots of Shale Oil Using Conventional Well Logs. Marine and Petroleum Geology, 113: 104097. https://doi.org/10.1016/j.marpetgeo.2019.104097
      Liu, C., Lu, S. F., Xue, H. T., 2014. Variable⁃Coefficient ΔlogR Model and Its Application in Shale Organic Evaluation. Progress in Geophysics, 29(1): 312-317(in Chinese with English abstract).
      Ni, D. M., Han, L. G., Ning, Y. L., et al., 2011. Formation Pressure Prediction by Analysis on Bi⁃Spectrum Velocity. Global Geology, 30(4): 648-654(in Chinese with English abstract).
      Niu, D. M., Li, Y. L., Zhang, Y. F., et al., 2022. Multi⁃Scale Classification and Evaluation of Shale Reservoirs and 'Sweet Spot' Prediction of the Second and Third Members of the Qingshankou Formation in the Songliao Basin Based on Machine Learning. Journal of Petroleum Science and Engineering, 216: 110678. https://doi.org/10.1016/j.petrol.2022.110678
      Pan, S. Q., Guo, Q. L., Zou, C. N., et al., 2023. Identification of Sweet Spots in Shale⁃Type and Siltstone⁃Type "Shale Oil Systems": A Case Study of the Chang 7 Member in Ordos Basin. Science China: Earth Sciences, 66(7): 1647-1663(in Chinese). doi: 10.1007/s11430-022-1042-x
      Saaty, T. L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48(1): 9-26. https://doi.org/10.1016/0377⁃2217(90)90057⁃i
      Tang, X., Zhang, T. W., Zhang, J. C., et al., 2020. Effects of Pore Fluids on Methane Sorption in the Lower Bakken Shales, Williston Basin, USA. Fuel, 282: 118457. https://doi.org/10.1016/j.fuel.2020.118457
      Wang, F., Gale, J. F. W., 2009. Screening Criteria for Shale⁃Gas Systems. Gulf Coast Association of Geological Societies, 59: 779-793.
      Wang, M., Li, M., Li, J. B., et al., 2022. Comparative Analysis of Test Methods for Shale Oil Content. Acta Petrolei Sinica, 43(12): 1758-1769(in Chinese with English abstract).
      Wang, M., Ma, R., Li, J. B., et al., 2019. Occurrence Mechanism of Lacustrine Shale Oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 46(4): 789-802(in Chinese with English abstract).
      Wang, M., Yang, J. L., Wang, X., et al., 2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142(in Chinese with English abstract).
      Wang, X., Wang, M., Zhao, C., et al., 2024. Reservoir Characteristics and Controlling Factors of the Middle-High Maturity Multiple Lithofacies Reservoirs of the Lianggaoshan Formation Shale Strata in the Northeastern Sichuan Basin, China. Marine and Petroleum Geology, 161: 106692. https://doi.org/10.1016/j.marpetgeo.2024.106692
      Xu, Z. Y., Zhao, J. Z., Li, J., 2019. The Impact of Organic Matter Content on Overpressure Analysis and Its Correction Method in the First Member of Cretaceous Qingshankou Formation, Placanticline Area, Songliao Basin. Oil & Gas Geology, 40(4): 938-946(in Chinese with English abstract).
      Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015. Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil. Petroleum Exploration and Development, 42(5): 555-565(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SKYK201505002.htm
      Yang, Z., Zou, C., Wu, S., et al., 2019. Formation, Distribution and Resource Potential of the "Sweet Areas (Sections)" of Continental Shale Oil in China. Marine and Petroleum Geology, 102: 48-60. https://doi.org/10.1016/j.marpetgeo.2018.11.049
      Zhang, J. Y., Sun, J. M., 2012. Log Evaluation on Shale Hydrocarbon Reservoir. Well Logging Technology, 36(2): 146-153(in Chinese with English abstract).
      Zhao, W. Z., Bian, C. S., Li, Y. X., et al., 2023. Organic Matter Transformation Ratio, Hydrocarbon Expulsion Efficiency and Shale Oil Enrichment Type in Chang 73 Shale of Upper Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 50(1): 12-23(in Chinese with English abstract).
      Zhao, X. Z., Pu, X. G., Jin, F. M., et al., 2019a. Geological Characteristics and Key Exploration Technologies of Continental Shale Oil Sweet Spots: A Case Study of Member 2 of Kongdian Formation in the Cangdong Sag in the Huanghua Depression, Bohai Bay Basin. Petroleum Research, 4(2): 97-112. https://doi.org/10.1016/j.ptlrs.2019.01.006
      Zhao, X. Z., Zhou, L. H., Pu, X. G., et al., 2019b. Exploration Breakthroughs and Geological Characteristics of Continental Shale Oil: A Case Study of the Kongdian Formation in the Cangdong Sag, China. Marine and Petroleum Geology, 102: 544-556. https://doi.org/10.1016/j.marpetgeo.2018.12.020
      Zorski, T., Ossowski, A., Środoń, J., et al., 2011. Evaluation of Mineral Composition and Petrophysical Parameters by the Integration of Core Analysis Data and Wireline Well Log Data: The Carpathian Foredeep Case Study. Clay Minerals, 46(1): 25-45. https://doi.org/10.1180/claymin.2011.046.1.25
      陈世悦, 张顺, 王永诗, 等, 2016. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征. 石油勘探与开发, 43(2): 198-208.
      黄仁春, 王燕, 程斯洁, 等, 2014. 利用测井资料确定页岩储层有机碳含量的方法优选: 以焦石坝页岩气田为例. 天然气工业, 34(12): 25-32.
      何文渊, 白雪峰, 蒙启安, 等, 2022. 四川盆地陆相页岩油成藏地质特征与重大发现. 石油学报, 43(7): 885-898.
      刘超, 卢双舫, 薛海涛, 2014. 变系数ΔlogR方法及其在泥页岩有机质评价中的应用. 地球物理学进展, 29(1): 312-317.
      倪冬梅, 韩立国, 宁媛丽, 等, 2011. 双谱速度分析下的地层压力预测. 世界地质, 30(4): 648-654.
      潘松圻, 郭秋雷, 邹才能, 等, 2023. 页岩型与粉砂岩型"页岩油系统" 甜点段判识: 以鄂尔多斯盆地长7段为例. 中国科学: 地球科学, 53(7): 1663-1678.
      王民, 李明, 李进步, 等, 2022. 页岩含油率多种测试方法对比. 石油学报, 43(12): 1758-1769.
      王民, 马睿, 李进步, 等, 2019. 济阳坳陷古近系沙河街组湖相页岩油赋存机理. 石油勘探与开发, 46(4): 789-802.
      王民, 杨金路, 王鑫, 等, 2023. 基于随机森林算法的泥页岩岩相测井识别. 地球科学, 48(1): 130-142. doi: 10.3799/dqkx.2022.181
      徐泽阳, 赵靖舟, 李军, 2019. 松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法. 石油与天然气地质, 40(4): 938-946.
      杨智, 侯连华, 陶士振, 等, 2015. 致密油与页岩油形成条件与"甜点区" 评价. 石油勘探与开发, 42(5): 555-565.
      张晋言, 孙建孟, 2012. 利用测井资料评价泥页岩油气"五性"指标. 测井技术, 36(2): 146-153.
      赵文智, 卞从胜, 李永新, 等, 2023. 鄂尔多斯盆地三叠系长73亚段页岩有机质转化率、排烃效率与页岩油主富集类型. 石油勘探与开发, 50(1): 12-23.
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  239
    • HTML全文浏览量:  85
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-06-10
    • 网络出版日期:  2025-01-10
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回