• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    现代植物培养实验探索二叠纪‒三叠纪大灭绝事件后陆地植被演替的微生物驱动力

    徐珍 喻建新 彭念 迟鸿飞 韩明贤 林雯洁 蒋宏忱

    徐珍, 喻建新, 彭念, 迟鸿飞, 韩明贤, 林雯洁, 蒋宏忱, 2025. 现代植物培养实验探索二叠纪‒三叠纪大灭绝事件后陆地植被演替的微生物驱动力. 地球科学, 50(3): 934-950. doi: 10.3799/dqkx.2025.001
    引用本文: 徐珍, 喻建新, 彭念, 迟鸿飞, 韩明贤, 林雯洁, 蒋宏忱, 2025. 现代植物培养实验探索二叠纪‒三叠纪大灭绝事件后陆地植被演替的微生物驱动力. 地球科学, 50(3): 934-950. doi: 10.3799/dqkx.2025.001
    Xu Zhen, Yu Jianxin, Peng Nian, Chi Hongfei, Han Mingxian, Lin Wenjie, Jiang Hongchen, 2025. Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction. Earth Science, 50(3): 934-950. doi: 10.3799/dqkx.2025.001
    Citation: Xu Zhen, Yu Jianxin, Peng Nian, Chi Hongfei, Han Mingxian, Lin Wenjie, Jiang Hongchen, 2025. Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction. Earth Science, 50(3): 934-950. doi: 10.3799/dqkx.2025.001

    现代植物培养实验探索二叠纪‒三叠纪大灭绝事件后陆地植被演替的微生物驱动力

    doi: 10.3799/dqkx.2025.001
    基金项目: 

    国家自然基金重点项目 42430209

    国家自然基金重点项目 92055201

    详细信息
      作者简介:

      徐珍(1995-),女,博士,从事显生宙陆地生态系统演化和地球系统模拟

      通讯作者:

      徐珍,ORCID:0000-0002-6529-4973. E-mail: Z.xu@leeds.ac.uk

      喻建新,E-mail: yujianxin@cug.edu.cn

    • 中图分类号: P52

    Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction

    • 摘要: 植物通过与微生物共生(如菌根真菌与固氮细菌),增强自身对矿物质营养元素与水分的吸收能力,提高对极端气候的耐受性.尽管植物‒微生物共生作用的意义重大,但由于化石难以保存,地球历史关键气候转折期中有关植物与微生物共生关系的直接证据较为稀缺.以二叠纪‒三叠纪生物大灭绝期间残存植物的现代亲缘种为研究对象(异叶南洋杉Araucaria heterophylla、福建苏铁Cycas revoluta和银杏Ginkgo biloba),通过设置人工气候植物培养箱组的温度,进行一年的培养,通过高通量扩增子测序分析这些植物根系微生物的群落组成和相对丰度变化,与化石记录的植物演化过程对比,探索三叠纪极端温室气候下微生物与植物相互作用关系对植物生存的影响.初步结果表明,在常温25 ℃的基础上升高10 ℃后,南洋杉根际微生物中有益和有害微生物的相对丰度比例高于苏铁和银杏,这可能是南洋杉这类松柏类植物能在早三叠世极端高温环境中成为主要类群的原因之一.然而,随着培养温度降低至30 ℃和25 ℃,苏铁和银杏根际微生物的表现更为优越,分别在稍冷的晚三叠世及之后的群落中占据优势地位.本研究从微生物的角度揭示了二叠纪‒三叠纪大灭绝后植物适应极端温室气候的机制,为理解深时植物‒微生物‒环境相互作用提供了重要数据支撑.

       

    • 图  1  植物‒微生物相互作用关系简图

      Fig.  1.  Schematic representation of plant-microorganism interactions

      图  2  人工气候控制植物培养实验部分植物样本照片

      a、b为南洋杉;c、d为银杏;e、f为苏铁

      Fig.  2.  Representative plant samples used in climate-controlled growth experiments

      图  3  苏铁根系(a)及其上根瘤(b)

      Fig.  3.  Cycas root system (a) and associated root nodules (b)

      图  4  不同植被类型土壤基质、根际土和细根中主要真菌属的相对丰度

      Fig.  4.  Relative abundance of major fungal genera in soil substrates, rhizosphere soil, and fine roots across different plant species

      图  5  不同植被类型土壤基质、根际土和细根中主要细菌属的相对丰度

      Fig.  5.  Relative abundance of major bacterial genera in soil substrates, rhizosphere soil, and fine roots across various plant species

      图  6  25 ℃、30℃、35 ℃培养下南洋杉、苏铁和银杏的根际土与细根的真菌与细菌功能群相对丰度变化

      图中共包括3次采样数据,分别为2023年9月2日实验开始前、2023年11月第2次采样、2024年8月第5次采样.每个数据为3株重复样的平均值

      Fig.  6.  Relative abundance changes of various fungal and bacterial functional groups in soil substrates, rhizosphere soil, and fine roots of Araucaria, Cycas, and Ginkgo cultivated at 25 ℃,30 ℃,and 35 ℃

      图  7  全球晚二叠世至早侏罗世全球温度演化、不同温度培养下植物根系有益/有害微生物相对丰度比例排序、低纬度华南植物大化石中裸子植物组成变化

      全球平均温度数据(黑色)修改自Scotese et al.(2021);全球表面平均温度数据(黄色)修改自Judd et al.(2024);微生物数据来自本文;华南植物大化石中裸子植物组成数据来源于Xu et al.(2022)Yu et al.(2022)

      Fig.  7.  Global temperature evolution from the Late Permian to the Early Jurassic, relative abundance ratios of beneficial vs. harmful microbes in present-day climate-controlled plant growth experiments at varying temperatures, and changes in gymnosperm composition in low-latitude South China plant macrofossils

      表  1  人工气候控制植物培养箱设置条件

      Table  1.   Climatic conditions within the climate-controlled plant growth chambers

      培养箱设置 不同样品培养每日最高温度 最强光照
      (µmol∙m‒2∙s‒1
      空气湿度(%) 土壤湿度(%) 土壤pH pCO2
      (10‒6
      25 ℃ 35 ℃ 30 ℃
      银杏 G1 G4 G8 300 70~80 70~80 6~7 ~420
      G2 G6 G9
      G3 G7 G10
      南洋杉 A1 A4 300 70~80 70~80 6~7 ~420
      A2 A5
      A3 A6
      苏铁 C1 C4 300 70~80 70~80 6~7 ~420
      C2 C5
      C3 C6
      下载: 导出CSV

      表  2  本实验中常见真菌和细菌属种及其常见功能类型

      Table  2.   Common fungal and bacterial functional groups identified in this study

      门/亚门 纲/目/科/属 常见功能类型 参考文献
      真菌 真球囊菌亚门 Glomus 菌根真菌 Ruiz-Lozano et al., 1995
      子囊菌门 Phaeoacremonium 病原体 Crous et al., 1996
      子囊菌门 Fusarium 病原体 Loskutov et al., 2019
      担子菌门 Thanatephrous 病原体 Sun et al., 2023
      子囊菌门 Phialemonium 动物病原体、腐生菌、部分为对植物有益菌 Rivera-Vega et al., 2022
      子囊菌门 Aspergillus 病原菌 Zakaria, 2024
      担子菌门 Leucocoprinus 腐生菌 Arun Kumar and Manimohan, 2009
      子囊菌门 Ascobolus 腐生菌 Maloy and Hughes, 2013
      担子菌门 Conocybe 腐生菌 Song and Bau, 2023
      子囊菌门 Penicillium 腐生菌 Rippon et al., 1965
      细菌 放线菌门 Streptomyces 有益菌,根瘤 Tarkka et al., 2008
      变形菌门 Paraburholderia kururiensis 有益菌 et al., 2019
      变形菌门 Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium 有益菌,根瘤 Zhang et al., 2024
      变形菌门 Burkholderia-Caballeronia-Paraburkholderia 有益菌/病原体 Kaur et al., 2017
      变形菌门 Burkholderiaceae 有益菌,根瘤 Angus et al., 2014
      变形菌门 Variovorax 有益菌,促进根瘤菌生长 Sun et al., 2018
      变形菌门 Dongia 有益菌 Jia et al., 2022
      变形菌门 Enterobacteriaceae 有益菌 Maheshwari, 2011
      变形菌门 Novosphingobium 有益菌 Krishnan et al., 2017
      变形菌门 Pseudomonas 有益菌 Preston, 2004
      变形菌门 Rhodanobacteraceae 有益菌 Xue et al., 2022
      绿弯菌门 Anaerolineae 厌氧腐生菌 Xia et al., 2016
      下载: 导出CSV
    • Angus, A. A., Agapakis, C. M., Fong, S., et al., 2014. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis. PLoS One, 9(1): e83779. https://doi.org/10.1371/journal.pone.0083779
      Arun Kumar, T. K., Manimohan, P., 2009. The Genera Leucoagaricus and Leucocoprinus (Agaricales, Basidiomycota) in Kerala State, India. Mycotaxon, 108(1): 385-428. https://doi.org/10.5248/108.385
      Blackwell, M., 2000. Terrestrial Life: Fungal from the Start? Science, 289(5486): 1884-1885. https://doi.org/10.1126/science.289.5486.1884
      Bunn, R., Lekberg, Y., Zabinski, C., 2009. Arbuscular Mycorrhizal Fungi Ameliorate Temperature Stress in Thermophilic Plants. Ecology, 90(5): 1378-1388. https://doi.org/10.1890/07-2080.1
      Crous, P. W., Gams, W., Wingfield, M. J., et al., 1996. Phaeoacremonium gen. nov. Associated with Wilt and Decline Diseases of Woody Hosts and Human Infections. Mycologia, 88(5): 786-796. https://doi.org/10.1080/00275514.1996.12026716
      Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017-021-00259-4
      Delavaux, C. S., Weigelt, P., Dawson, W., 2019. Mycorrhizal Fungi Influence Global Plant Biogeography. Nature Ecology & Evolution, 3(3): 424-429. https://doi.org/10.1038/s41559-019-0823-4
      Dias, G. M., de Sousa Pires, A., Grilo, V. S., et al., 2019. Comparative Genomics of Paraburkholderia Kururiensis and Its Potential in Bioremediation, Biofertilization, and Biocontrol of Plant Pathogens. MicrobiologyOpen, 8(8): e00801. https://doi.org/10.1002/mbo3.801
      Dotzler, N., Krings, M., Taylor, T. N., et al., 2006. Germination Shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 Million- Year-Old Rhynie Chert. Mycological Progress, 5(3): 178-184. https://doi.org/10.1007/s11557-006-0511-z
      Dotzler, N., Walker, C., Krings, M., et al., 2009. Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400-Million-Year-Old Rhynie Chert. Mycological Progress, 8(1): 9-18. https://doi.org/10.1007/s11557-008-0573-1
      Field, K. J., Daniell, T., Johnson, D., et al., 2020. Mycorrhizas for a Changing World: Sustainability, Conservation, and Society. Plants, People, Planet, 2(2): 98-103. https://doi.org/10.1002/ppp3.10092
      Genre, A., Lanfranco, L., Perotto, S., et al., 2020. Unique and Common Traits in Mycorrhizal Symbioses. Nature Reviews Microbiology, 18: 649-660. https://doi.org/10.1038/s41579-020-0402-3
      Hawkins, H. J., Cargill, R. I. M., Van Nuland, M. E., et al., 2023. Mycorrhizal Mycelium as a Global Carbon Pool. Current Biology, 33(11): R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
      Hoysted, G. A., Kowal, J., Jacob, A., et al., 2018. A Mycorrhizal Revolution. Current Opinion in Plant Biology, 44: 1-6. https://doi.org/10.1016/j.pbi.2017.12.004
      Jia, M., Sun, X., Chen, M., et al., 2022. Deciphering the Microbial Diversity Associated with Healthy and Wilted Paeonia suffruticosa Rhizosphere Soil. Front Microbiol, 13: 967601. https://doi.org/10.3389/fmicb.2022.967601
      Jian, P. Y., Zha, Q., Hui, X. R., et al., 2024. Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae, 10(8): 855. https://doi.org/10.3390/horticulturae10080855
      Judd, E. J., Tierney, J. E., Lunt, D. J., et al., 2024. A 485-Million-Year History of Earth's Surface Temperature. Science, 385(6715): eadk3705. https://doi.org/10.1126/science.adk3705
      Kaur, C., Selvakumar, G., Ganeshamurthy, A. N., 2017. Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium. In: Shukla, P., ed., Recent Advances in Applied Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_10
      Krishnan, R., Menon, R. R., Likhitha, et al., 2017. Novosphingobium Pokkalii Sp Nov, a Novel Rhizosphere-Associated Bacterium with Plant Beneficial Properties Isolated from Saline-Tolerant Pokkali Rice. Research in Microbiology, 168(2): 113-121. https://doi.org/10.1016/j.resmic.2016.09.001
      Loskutov, I. G., Shelenga, T. V., Konarev, A. V., et al., 2019. Biochemical Aspects of Interactions between Fungi and Plants: A Case Study of Fusarium in Oats. Agricultural Biology, 54: 575-588. https://doi.org/10.15389/agrobiology.2019.3.575rus
      Lu, M. Z., 2020. Plant-Microbe Mutualism: Evolutionary Mechanisms and Ecological Functions. Biodiversity Science, 28(11): 1311-1323 (in Chinese with English abstract). doi: 10.17520/biods.2020409
      Ma, Z. Q., Guo, D. L., Xu, X. L., et al., 2018. Evolutionary History Resolves Global Organization of Root Functional Traits. Nature, 555: 94-97. https://doi.org/10.1038/nature25783
      Maheshwari, D. K., 2011. Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin. https://doi.org/10.1007/978-3-642-20332-9 doi: 10.1007/978-3-642-20332-9
      Maloy, S., Hughes, K., 2013. Brenner's Encyclopedia of Genetics. Academic Press, New York.
      Mills, B. J. W., Batterman, S. A., Field, K. J., 2018. Nutrient Acquisition by Symbiotic Fungi Governs Palaeozoic Climate Transition. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1739): 20160503. https://doi.org/10.1098/rstb.2016.0503
      Morris, J. L., Puttick, M. N., Clark, J. W., et al., 2018. The Timescale of Early Land Plant Evolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10): E2274-E2283. https://doi.org/10.1073/pnas.1719588115
      Pirozynski, K. A., Malloch, D. W., 1975. The Origin of Land Plants: A Matter of Mycotrophism. Biosystems, 6(3): 153-164. https://doi.org/10.1016/0303-2647(75)90023-4
      Preston, G. M., 2004. Plant Perceptions of Plant Growth-Promoting Pseudomonas. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359(1446): 907-918. https://doi.org/10.1098/rstb.2003.1384
      Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006-1011. https://doi.org/10.1098/rsbl.2012.0503
      Redecker, D., Kodner, R., Graham, L. E., 2000. Glomalean Fungi from the Ordovician. Science, 289(5486): 1920-1921. https://doi.org/10.1126/science.289.5486.1920
      Remy, W., Taylor, T. N., Hass, H., et al., 1994. Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91(25): 11841-11843. https://doi.org/10.1073/pnas.91.25.11841
      Rippon, J. W., Conway, T. P., Domes, A. L., 1965. Pathogenic Potential of Aspergillus and Penicillium Species. The Journal of Infectious Diseases, 115(1): 27-32. https://doi.org/10.1093/infdis/115.1.27
      Rivera-Vega, L. J., Grunseich, J. M., Aguirre, N. M., et al., 2022. A Beneficial Plant-Associated Fungus Shifts the Balance Toward Plant Growth over Resistance, Increasing Cucumber Tolerance to Root Herbivory. Plants (Basel, Switzerland), 11(3): 282. https://doi.org/10.3390/plants11030282
      Ruiz-Lozano, J. M., Azcon, R., Gomez, M., 1995. Effects of Arbuscular-Mycorrhizal Glomus Species on Drought Tolerance: Physiological and Nutritional Plant Responses. Applied and Environmental Microbiology, 61(2): 456-460. https://doi.org/10.1128/aem.61.2.456-460.1995
      Scotese, C. R., Song, H. J., Mills, B. J. W., et al., 2021. Phanerozoic Paleotemperatures: The Earth's Changing Climate during the last 540 Million Years. Earth-Science Reviews, 215: 103503. https://doi.org/10.1016/j.earscirev.2021.103503
      Shu, W., Tong, J., Yu, J., et al., 2023. Permian-Middle Triassic Floral Succession in North China and Implications for the Great Transition of Continental Ecosystems. GSA Bulletin, 135(7-8): 1747-1767. https://doi.org/10.1130/B36316.1
      Song, H. B., Bau, T., 2023. Conocybe Section Pilosellae in China: Reconciliation of Taxonomy and Phylogeny Reveals Seven New Species and a New Record. Journal of Fungi, 9(9): 924. https://doi.org/10.3390/jof9090924
      Strullu-Derrien, C., Kenrick, P., Pressel, S., et al., 2014. Fungal Associations in Horneophyton Ligneri from the Rhynie Chert (C. 407 Million Year Old) Closely Resemble those in Extant Lower Land Plants: Novel Insights into Ancestral Plant-Fungus Symbioses. New Phytologist, 203(3): 964-979. https://doi.org/10.1111/nph.12805
      Sun, M., Shi, C., Huang, Y., et al., 2023. Effect of Disease Severity on the Structure and Diversity of the Phyllosphere Microbial Community in Tobacco. Frontiers in Microbiology, 13: 1081576. https://doi.org/10.3389/fmicb.2022.1081576
      Sun, S. L., Yang, W. L., Fang, W. W., et al., 2018. The Plant Growth-Promoting Rhizobacterium Variovorax Boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile. Applied and Environmental Microbiology, 84(16): e00298-18. https://doi.org/10.1128/aem.00298-18
      Sun, Y., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End-Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030
      Tao, X., Chen, S. L., 2020. Research Progress on Fungal Fossils. Mycosystema, 39(2): 211-222 (in Chinese with English abstract).
      Tarkka, M. T., Lehr, N. A., Hampp, R., et al., 2008. Plant Behavior Upon Contact with Streptomycetes. Plant Signaling & Behavior, 3(11): 917-919. https://doi.org/10.4161/psb.5996
      Taylor, L. L., Banwart, S. A., Valdes, P. J., et al., 2012. Evaluating the Effects of Terrestrial Ecosystems, Climate and Carbon Dioxide on Weathering over Geological Time: A Global-Scale Process-Based Approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 565-582. https://doi.org/10.1098/rstb.2011.0251
      Taylor, L. L., Leake, J. R., Quirk, J., et al., 2009. Biological Weathering and the Long-Term Carbon Cycle: Integrating Mycorrhizal Evolution and Function into the Current Paradigm. Geobiology, 7(2): 171-191. https://doi.org/10.1111/j.1472-4669.2009.00194.x
      Tian, N., Wang, Y. D., Jiang, Z. K., 2021. A New Permineralized Osmundaceous Rhizome with Fungal Remains from the Jurassic of Western Liaoning, NE China. Review of Palaeobotany and Palynology, 290: 104414. https://doi.org/10.1016/j.revpalbo.2021.104414
      Trappe, J. M., 1987. Phylogenetic and Ecologic Aspects of Mycotrophy in the Angiosperms from an Evolutionary Standpoint. Ecophysiology of VA Mycorrhizal Plants, 5-25.
      van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., et al., 2015. Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. New Phytologist, 205(4): 1406-1423. https://doi.org/10.1111/nph.13288
      Wang, B., Qiu, Y. L., 2006. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza, 16(5): 299-363. https://doi.org/10.1007/s00572-005-0033-6
      Wang, Y. Z., Pan, T. G., Ke, Y. Q., 2003. Study and Utilization on Symbiotic Relation between Microbes and Plants. Chinese Journal of Eco-Agriculture, 11(3): 95-98 (in Chinese with English abstract).
      Xia, Y., Wang, Y., Wang, Y., et al., 2016. Cellular Adhesiveness and Cellulolytic Capacity in Anaerolineae Revealed by Omics-Based Genome Interpretation. Biotechnology for Biofuels, 9: 111. https://doi.org/10.1186/s13068-016-0524-z
      Xie, S. C., Algeo, T. J., Zhou, W. F., et al., 2017. Contrasting Microbial Community Changes during Mass Extinctions at the Middle/Late Permian and Permian/Triassic Boundaries. Earth and Planetary Science Letters, 460: 180-191. https://doi.org/10.1016/j.epsl.2016.12.015
      Xu, Z., Hilton, J., Yu, J. X., et al., 2022. End Permian to Middle Triassic Plant Species Richness and Abundance Patterns in South China: Coevolution of Plants and the Environment through the Permian-Triassic Transition. Earth-Science Reviews, 232: 104136. https://doi.org/10.1016/j.earscirev.2022.104136
      Xue, H., Piao, C. G., Lin, Y. H., et al., 2022. Pinirhizobacter Soli gen. nov., sp. nov., a Novel Low Temperature Resistant Gammaproteobacterium in the Family Rhodanobacteraceae Isolated from Rhizospheric Soil of Larix Gmelinii. Archives of Microbiology, 204(5): 283. https://doi.org/10.1007/s00203-022-02867-0
      Yu, J. X., Broutin, J., Lu, Z. S., 2022. Plants and Palynomorphs around the Permian-Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978-981-19-1492-8 doi: 10.1007/978-981-19-1492-8
      Zakaria, L., 2024. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens (Basel, Switzerland), 13(9): 813. https://doi.org/10.3390/pathogens13090813
      Zhang, K., Chen, X., Shi, X., et al., 2024. Endophytic Bacterial Community, Core Taxa, and Functional Variations within the Fruiting Bodies of Laccaria. Microorganisms, 12(11): 2296. https://doi.org/10.3390/microorganisms12112296
      Zhao, Z. W., 1999. The Roles of Mycorrhizal Fungi in Terrestrial Ecosysytems. Biodiversity Science, 7(3): 240-244 (in Chinese with English abstract). doi: 10.17520/biods.1999037
      Zhu, X. C., Song, F. B., Liu, F. L., 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants. In: Wu, Q. S., ed., Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_8
      卢明镇, 2020. 植物‒微生物互惠共生: 演化机制与生态功能. 生物多样性, 28(11): 1311-1323.
      陶欣, 陈双林, 2020. 真菌化石研究进展. 菌物学报, 39(2): 211-222.
      王元贞, 潘廷国, 柯玉琴, 2003. 微生物与植物共生关系的研究及其利用. 中国生态农业学报, 11(3): 95-98.
      赵之伟, 1999. 菌根真菌在陆地生态系统中的作用. 生物多样性, 7(3): 240-244.
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  119
    • HTML全文浏览量:  79
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-30
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回