Geobiological Perspective for the Formation of Manganiferous Deposit: Principle, Evidence, and Model
-
摘要: 锰是地球系统中重要的过渡金属元素,其地球化学行为主要受到生物与环境的协同控制.沉积/成岩环境中,氧化还原条件与pH值对于锰的沉积-富集过程最为重要.在地质历史时期,大规模锰矿沉积的形成被认为与地球表层系统的氧化过程相关.锰矿的基础研究意义及重要经济属性则促使相关研究者尤为关注锰元素地球化学循环与锰矿成矿机制之间的联系.近年来,随着锰元素的地球生物学富集机制与循环过程相关研究的深入,研究者们逐渐认识到微生物活动在促进沉积物中锰质富集起到了关键控制作用.通过研究现代代表性沉积环境中所形成的富锰沉积物,明确了微生物作用与沉积环境效应共同控制了锰元素在沉积物中的富集过程.但是此前对于深时锰矿床中的地球生物学相关研究较为分散,对研究方法与成矿机制的综述工作尚存不足.本文通过检视世界范围内当前沉积型锰矿床中微生物成矿作用相关研究案例与研究进展,从中抽提出4个重要分析技术模块:(1)显微观察模块;(2)光谱分析模块;(3)同位素信号模块与(4)综合分析模块.以上4个技术模块的使用可有效识别出微生物成矿相关证据.当前锰矿床内微生物成矿作用相关证据包括:微生物成因显微结构与构造、广泛发育的生物成因自生矿物、具有显著生物信号的碳-硫及其他稳定同位素特征、与微生物活动有关的元素或组分富集现象及生物标志物等有机地球化学信号等.综合沉积型锰矿床在地球生物学视角下的成矿过程,可总结出微生物参与下的锰矿两阶段成矿机制,包括第1阶段的氧化富集阶段与第2阶段的还原保存阶段.锰氧化微生物有可能与铁氧化微生物及光合作用微生物共同构成了复杂的微生物席体系.Abstract: Manganese (Mn) is a crucial transition metal element within the Earth system, whose geochemical behavior is predominantly influenced by the synergistic interaction of biological and environmental factors. In sedimentary and diagenetic environments, redox conditions and pH levels play a pivotal role in controlling the processes of manganese precipitation and enrichment. Over geological history, the formation of large-scale manganese deposits has been closely linked to oxidation in Earth's surface systems. The fundamental research significance and considerable economic value of manganese deposits have driven a sustained focus on the relationship between the geochemical cycling of manganese and the mechanisms underlying ore formation. Recent advances in studies on the geobiological enrichment mechanisms and cycling processes of manganese have highlighted the critical role of microbial activity in manganese enrichment within sediments. Research on manganiferous sediments in representative modern sedimentary environments indicates that the enrichment of manganese is jointly governed by microbial processes and sedimentary environmental factors. Nevertheless, studies on the geobiological aspects of ancient manganese deposits have been fragmented, and comprehensive reviews of research methods and ore-forming mechanisms remain inadequate. This study systematically reviews current research cases and progress on microbial mineralization in sedimentary manganese deposits worldwide, identifying four key analytical technology modules: (1) microscopic observation, (2) spectroscopic analysis, (3) isotopic signal analysis, and (4) integrative analysis. These modules collectively enable the effective extraction of evidence related to microbial mineralization processes. Key evidence includes microstructures and textures of microbial origin, extensively developed biogenic authigenic minerals, stable isotopic characteristics (e.g., carbon-sulfur isotopes) with distinct biological signals, elemental or compositional enrichment associated with microbial activity, and organic geochemical signatures such as biomarkers. A geobiological synthesis of the ore-forming processes in sedimentary manganese deposits reveals a two-stage ore-forming mechanism involving microbial participation. This mechanism comprises an initial oxidation-enrichment stage (Stage 1) and a subsequent preservation stage under reducing conditions (Stage 2). Manganese-oxidizing microbes likely function within complex microbial mat systems, interacting with iron-oxidizing microbes and photosynthetic microbes to facilitate manganese deposition.
-
图 1 中国南方地区成冰系至二叠系代表性锰矿石内的微生物记录镜下证据
其中a、b、c图分别为成冰系大塘坡组、石炭系巴平组、二叠系茅口组锰矿石的岩石薄片照片.a1至a3为成冰系大塘坡组纹层状锰矿石中微生物相关构造(均为正交镜下观察结果,放大40倍,红色箭头指示微生物结构).b1与b2指示了样品中的微米级结核及类似生物席的弱层状纹理,b3为b2的阴极发光照片.c1至c3为矿化的微生物产生的微观纹,明显可见结核和颗粒悬浮在微晶基质中.综合修改自Yu et al.(2019,2021a,2021b)
Fig. 1. Microscopic evidence of microbial records within representative manganese deposits from the Nanhua System to the Permian in southern China
图 2 扫描电子显微镜(SEM)观察到的中国南方地区成冰系大塘坡组(a、b),石炭系巴平组(c、d)及二叠系茅口组(e、f)锰矿石中似平行状微层理、交织状微层理及微团块与微球粒等与微生物成矿作用相关的显微沉积构造
Fig. 2. Microbial mineralization-related micro-sedimentary structures observed under scanning electron microscopy (SEM) in manganese ores from the Cryogenian Datangpo Formation (a, b), the Carboniferous Baping Formation (c, d), and the Permian Maokou Formation (e, f) in southern China, including parallel-like micro-laminations, interwoven micro- laminations, micro-nodules, and micro-spherules
图 3 广西中部忻城地区石炭系巴平组锰矿样品MS-2的岩石薄片及拉曼光谱分析所得矿物和有机质分布情况
拉曼光谱分析路径沿图中的L4-L4′.红色箭头标注了锐钛矿产出层位.修改自Yu et al.(2021b)
Fig. 3. Mineralogical and organic matter distribution in the thin section and Raman analysis of the Carboniferous Baping Formation manganese ore sample MS-2 from the Xincheng area, central Guangxi
图 4 地质历史时期碳酸锰矿床中碳同位素记录与锰含量相关关系
其中图4a为无机碳同位素(δ13Ccarb),图4b为有机碳同位素(δ13Corg).数据来源于Dong et al.(2023)、Gao et al.(2021)、Gutzmer and Beukes(1998)、Hein et al.(1999)、Huang et al.(2022)、Kuleshov and Bych(2002)、Okita(1992)、Polgari et al.(1991)、Tan et al.(2021)、Wang et al.(2019)、Wu et al.(2016)、Yu et al.(2016,2021b,2024)、Zhang et al.(2020,2021b)
Fig. 4. Correlation between carbon isotope record
表 1 锰氧化细菌及真菌的常见种属及分类
Table 1. Common genera and classifications of manganese-oxidizing bacteria and fungi
分类 细菌 真菌 门类 变形菌门Proteobacteria 放线菌门Actinobacteria 厚壁菌门Firmicutes 子囊菌门Ascomycota 属种 纤发菌属Leptothrix 阿霉素属Agromyces 芽孢杆菌属Bacillus 黄瓜织球壳菌Plectosphaerella cucumerina 假单胞菌属Pseudomonas 微杆菌属Microbacterium 短芽胞杆菌属Brevibacillus 棘壳孢属Pyrenochaeta sp. 纤维素单胞菌Cellulomonas 铜绿假单胞菌属Cupriavidus 壳多孢属Stagonospora sp. 罗氏菌属Ralstonia 枝顶孢霉菌Acremonium strictum 贪噬菌属Variovorax 大肠杆菌属Escherichia 土微菌属Pedomicrobium 赤细菌属Erythrobacter Albidiferax属 柠檬酸杆菌属 Citrobacter 黄杆菌属 Flavobacterium 橙单胞菌属 Aurantimonas 玫瑰杆菌属Roseobacter 假交替单胞菌属Pseudoalteromonas 海洋交替单胞菌属Alteromonas 海杆菌属Marinobacter 盐单胞菌属Halomonas 甲基盒菌属Methylarcula 不动杆菌属Acinetobacter 泛菌属Pantoea 磺脲类属Sulfurimonas 注:修改自Santelli et al. (2011)、Hansel and Learman (2015)、段国文等(2020). -
Banfield, M. J., Salvucci, M. E., Baker, E. N., et al., 2001. Crystal Structure of the NADP (H)-Dependent Ketose Reductase from Bemisia Argentifolii at 2.3 Å Resolution. Journal of Molecular Biology, 306: 239-250. https://doi.org/10.1006/jmbi.2000.4381 Beal, E. J., House, C. H., Orphan, V. J., 2009. Manganese- and Iron-Dependent Marine Methane Oxidation. Science, 325(5937): 184-187. https://doi.org/10.1126/science.1169984 Biondi, J. C., Lopez, M., 2017. Urucum Neoproterozoic-Cambrian Manganese Deposits (MS, Brazil): Biogenic Participation in the Ore Genesis, Geology, Geochemistry, and Depositional Environment. Ore Geology Reviews, 91: 335-386. https://doi.org/10.1016/j.oregeorev.2017.09.018 Biondi, J. C., Polgári, M., Gyollai, I., et al., 2020. Biogenesis of the Neoproterozoic Kremydilite Manganese Ores from Urucum (Brazil): A New Manganese Ore Type. Precambrian Research, 340: 105624. https://doi.org/10.1016/j.precamres.2020.105624 Blöthe, M., Wegorzewski, A., Müller, C., et al., 2015. Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules. Environmental Science & Technology, 49(13): 7692-7700. https://doi.org/10.1021/es504930v Bücking, C., Schicklberger, M., Gescher, J., 2012. Microbial Metal Respiration: From Geochemistry to Potential Applications. Springer, Berlin, 49-82. Burke, I. T., Kemp, A. E. S., 2002. Microfabric Analysis of Mn-Carbonate Laminae Deposition and Mn-Sulfide Formation in the Gotland Deep, Baltic Sea. Geochimica et Cosmochimica Acta, 66(9): 1589-1600. https://doi.org/10.1016/S0016-7037(01)00860-2 Butuzova, G. Y., Drits, V. A., Morozov, A. A., et al., 2009. Sediment-Hosted Mineral Deposits. Blackwell Publishing Ltd., Oxford, 57-72. Calvert, S. E., Pedersen, T. F., 1996. Sedimentary Geochemistry of Manganese; Implications for the Environment of Formation of Manganiferous Black Shales. Economic Geology, 91: 36-47. https://doi.org/10.2113/gsecongeo.91.1.36 Canfield, D. E., Erik, K., Bo, T., 2005. Advances in Marine Biology. Academic Press, London. Chen, F. G., Pufahl, P. K., Wang, Q. F., et al., 2022. A New Model for the Genesis of Carboniferous Mn Ores, Longtou Deposit, South China Block. Economic Geology, 117: 107-125. https://doi.org/10.5382/econgeo.4855 Chen, F. G., Wang, Q. F., Yang, S. J., et al., 2018. Space-Time Distribution of Manganese Ore Deposits along the Southern Margin of the South China Block, in the Context of Palaeo-Tethyan Evolution. International Geology Review, 60(1): 72-86. https://doi.org/10.1080/00206814.2017.1320689 Cho, H., Kim, K. H., Son, S. K., et al., 2018. Fine-Scale Microbial Communities Associated with Manganese Nodules in Deep-Sea Sediment of the Korea Deep Ocean Study Area in the Northeast Equatorial Pacific. Ocean Science Journal, 53(2): 337-353. https://doi.org/10.1007/s12601-018-0032-0 Clement, B. G., Luther, G. W., Tebo, B. M., 2009. Rapid, Oxygen-Dependent Microbial Mn(Ⅱ) Oxidation Kinetics at Sub-Micromolar Oxygen Concentrations in the Black Sea Suboxic Zone. Geochimica et Cosmochimica Acta, 73(7): 1878-1889. https://doi.org/10.1016/j.gca.2008.12.023 Daye, M., Klepac-Ceraj, V., Pajusalu, M., et al., 2019. Light-Driven Anaerobic Microbial Oxidation of Manganese. Nature, 576: 311-314. https://doi.org/10.1038/s41586-019-1804-0 Deng, X. D., Li, J. W., Vasconcelos, P., 2016. 40Ar/39Ar Dating of Supergene Mn-Oxides from the Zunyi Mn Deposit, Guizhou Plateau, SW China: Implications for Chemical Weathering and Paleoclimatic Evolution Since the Late Miocene. Chemical Geology, 445(16): 185-198. https://doi.org/10.1016/j.chemgeo.2016.02.009 Dick, G. J., Clement, B. G., Webb, S. M., et al., 2009. Enzymatic Microbial Mn(Ⅱ) Oxidation and Mn Biooxide Production in the Guaymas Basin Deep-Sea Hydrothermal Plume. Geochimica et Cosmochimica Acta, 73(21): 6517-6530. https://doi.org/10.1016/j.gca.2009.07.039 Dong, Z. G., Peng, Z. D., Robbins, L. J., et al., 2023. Episodic Ventilation of Euxinic Bottom Waters Triggers the Formation of Black Shale-Hosted Mn Carbonate Deposits. Geochimica et Cosmochimica Acta, 341: 132-149. https://doi.org/10.1016/j.gca.2022.11.027 Dong, Z. G., Zhang, B. L., Gyollai, I., et al., 2024. Microbial Contribution to the Formation of the Carboniferous Sedimentary Manganese Deposits in Northwestern China. Ore Geology Reviews, 170: 106124. https://doi.org/10.1016/j.oregeorev.2024.106124 Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255 (in Chinese with English abstract). Du, Y. S., Yu, W. C., Zhou, Q., et al., 2023. Discussion about the Coupling Relationship between the Breakup of Supercontinent and the Large-Scale Manganese Accumulation in China. Journal of Palaeogeography (Chinese Edition), 25(6): 1211-1234 (in Chinese with English abstract). Duan, G. W., Geng, X. Y., Wei, X. Y., et al., 2020. Advances in Physiological and Ecological Functions of Manganese Oxidizing Bacteria and the Underlying Molecular Mechanisms. Microbiology China, 47(9): 3039-3053 (in Chinese with English abstract). Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 96(3): 141-162. https://doi. org/10.1016/j. earscirev. 2008.https://doi.org/10.005 doi: 10.1016/j.earscirev.2008.https://doi.org/10.005 Ehrlich, H. L., 1963. Bacteriology of Manganese Nodules: I. Bacterial Action on Manganese in Nodule Enrichments. Applied and Environmental Microbiology, 11: 15-19. https://doi.org/10.1128/am.11.1.15-19.1963 Estes, E. R., eer, P. F., Nordlund, D., et al., 2017. Biogenic Manganese Oxides as Reservoirs of Organic Carbon and Proteins in Terrestrial and Marine Environments. Geobiology, 15(1): 158-172. https://doi.org/10.1111/gbi.12195 Fan, D. L., Liu, T. B., Ye, J., 1992. The Process of Formation of Manganese Carbonate Deposits Hosted in Black Shale Series. Economic Geology, 87: 1419-1429. https://doi.org/10.2113/gsecongeo.87.5.1419 Fan, D. L., Yang, P. J., 1999. Introduction to and Classification of Manganese Deposits of China. Ore Geology Reviews, 15(1-3): 1-13. https://doi.org/10.1016/ S0169-1368(99)00011-6 doi: 10.1016/S0169-1368(99)00011-6 Fan, D. L., Ye, J., Yin, L. M., et al., 1999. Microbial Processes in the Formation of the Sinian Gaoyan Manganese Carbonate Ore, Sichuan Province, China. Ore Geology Reviews, 15(1-3): 79-93. https://doi.org/10.1016/S0169-1368(99)00016-5 Fang, H., Tang, D. J., Shi, X. Y., et al., 2020. Manganese-Rich Deposits in the Mesoproterozoic Gaoyuzhuang Formation (Ca. 1.58 Ga), North China Platform: Genesis and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966. https://doi.org/10.1016/j.palaeo.2020.109966 Fischer, W. W., Hemp, J., Johnson, J. E., 2015. Manganese and the Evolution of Photosynthesis. Origins of Life and Evolution of Biospheres, 45(3): 351-357. https://doi.org/10.1007/s11084-015-9442-5 Fu, Y., Xu, Z. G., Pei, H. X., et al., 2014. Study on Metallogenic Regularity of Manganese Ore Deposits in China. Acta Geologica Sinica, 88(12): 2192-2207 (in Chinese with English abstract). Gao, Z. F., Zhu, X. K., Wang, D., et al., 2021. Insights into Hydrothermal Controls and Processes Leading to the Formation of the Late Ediacaran Gaoyan Stratiform Manganese-Carbonate Deposit, Southwest China. Ore Geology Reviews, 139: 104524. https://doi.org/10.1016/j.oregeorev.2021.104524 Glasby, G. P., 2006. Manganese: Predominant Role of Nodules and Crusts. In: Schulz, H. D., Zabel, M., eds., Marine Geochemistry. Springer, Berlin, 371-427. Gralnick, J. A., Newman, D. K., 2007. Extracellular Respiration. Molecular Microbiology, 65: 1-11. https://doi.org/10.1111/j.1365-2958.2007.05778.x Granina, L., Müller, B., Wehrli, B., 2004. Origin and Dynamics of Fe and Mn Sedimentary Layers in Lake Baikal. Chemical Geology, 205(1-2): 55-72. https://doi.org/10.1016/j.chemgeo.2003.12.018 Gutzmer, J., Beukes, N. J., 1998. The Manganese Formation of the Neoproterozoic Penganga Group, India; Revision of an Enigma. Economic Geology, 93(7): 1091-1102. https://doi.org/10.1016/S1342-937X(05)70812-1 Haas, J., 2012. Influence of Global, Regional, and Local Factors on the Genesis of the Jurassic Manganese Ore Formation in the Transdanubian Range, Hungary. Ore Geology Reviews, 47: 77-86. https://doi.org/10.1016/j.oregeorev.2011.08.006 Hansel, C. M., 2017. Advances in Microbial Physiology, 70. Academic Press, London. Hansel, C. M., Learman, D., 2015. Ehrlich's Geomicrobiology. CRC Press, Boca Raton, 401-452. Havig, J. R., McCormick, M. L., Hamilton, T. L., et al., 2015. The Behavior of Biologically Important Trace Elements across the Oxic/Euxinic Transition of Meromictic Fayetteville Green Lake, New York, USA. Geochimica et Cosmochimica Acta, 165: 389-406. https://doi.org/10.1016/j.gca.2015.06.024 Hein, J. R., Fan, D. L., Ye, J., et al., 1999. Composition and Origin of Early Cambrian Tiantaishan Phosphorite-Mn Carbonate Ores, Shaanxi Province, China. Ore Geology Reviews, 15(1-3): 95-134. https://doi.org/10.1016/S0169-1368(99)00017-7 Heller, C., Kuhn, T., Versteegh, G. J. M., et al., 2018. The Geochemical Behavior of Metals during Early Diagenetic Alteration of Buried Manganese Nodules. Deep Sea Research Part I: Oceanographic Research Papers, 142: 16-33. https://doi.org/10.1016/j.dsr.2018.09.008 Henkel, J. V., Dellwig, O., Pollehne, F., et al., 2019. A Bacterial Isolate from the Black Sea Oxidizes Sulfide with Manganese (Ⅳ) Oxide. Proceedings of the National Academy of Sciences, 116(25): 12153-12155. https://doi.org/10.1073/pnas.1906000116 Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re-Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033 Herndon, E. M., Havig, J. R., Singer, D. M., et al., 2018. Manganese and Iron Geochemistry in Sediments Underlying the Redox-Stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. https://doi.org/10.1016/j.gca.2018.04.013 Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983 Huang, Q., Jiang, S. Y., Pi, D. H., et al., 2023. Thermochemical Oxidation of Methane by Manganese Oxides in Hydrothermal Sediments. Communications Earth & Environment, 4: 224. https://doi.org/10.1038/s43247-023-00891-6 Huang, Q., Pi, D. H., Jiang, S. Y., et al., 2022. The Dual Role of Microbes in the Formation of the Malkantu Manganese Carbonate Deposit, NW China: Petrographic, Geochemical, and Experimental Evidence. Chemical Geology, 606: 120992. https://doi.org/10.1016/j.chemgeo.2022.120992 Jiao, L. X., She, Z. B., Papineau, D., et al., 2023. Evidence for High-Frequency Oxygenation of Ediacaran Shelf Seafloor during Early Evolution of Complex Life. Communications Earth & Environment, 4: 429. https://doi.org/10.1038/s43247-023-01080-1 Johnson, J. E., Savalia, P., Davis, R., et al., 2016a. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction. Environmental Science & Technology, 50(8): 4248-4258. https://doi.org/10.1021/acs.est.5b04834 Johnson, J. E., Webb, S. M., Ma, C., et al., 2016b. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record. Geochimica et Cosmochimica Acta, 173: 210-231. https://doi.org/10.1016/j.gca.2015.10.027 Kang, Y., Zhu, R., Liu, K., et al., 2024. Detrital and Authigenic Clay Minerals in Shales: A Review on Their Identification and Applications. Heliyon, 10(20): e39239. https://doi.org/10.1016/j.heliyon.2024.e39239 Kerr, R. A., 1984. Manganese Nodules Grow by Rain from Above: The Rain of Plant and Animal Remains Falling into the Deep Sea not only Provides Metals to Nodules but also Determines Nodule Growth Rates and Composition. Science, 223(4636): 576-577. https://doi.org/10.1126/science.223.4636.576 Konhauser, K. O., Urrutia, M. M., 1999. Bacterial Clay Authigenesis: A Common Biogeochemical Process. Chemical Geology, 161(4): 399-413. https://doi.org/10.1016/S0009-2541(99)00118-7 Krylov, A. A., Hachikubo, A., Minami, H., et al., 2018. Authigenic Rhodochrosite from a Gas Hydrate-Bearing Structure in Lake Baikal. International Journal of Earth Sciences, 107(6): 2011-2022. https://doi.org/10.1007/s00531-018-1584-z Kuleshov, V. N., Bych, A. F., 2002. Isotopic Composition (δ13C, δ18O) and Origin of Manganese Carbonate Ores of the Usa Deposit (Kuznetskii Alatau). Lithology and Mineral Resources, 37(4): 330-343. https://doi.org/10.1023/A:1019995322515 Kuliński, K., Rehder, G., Asmala, E., et al., 2022. Biogeochemical Functioning of the Baltic Sea. Earth System Dynamics, 13: 633-685. https://doi.org/10.5194/esd-13-633-2022 Lewis, B. L., Landing, W. M., 1991. The Biogeochemistry of Manganese and Iron in the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S773-S803. https://doi.org/10.1016/ S0198-0149(10)80009-3 doi: 10.1016/S0198-0149(10)80009-3 Li, Y., Zhuang, Z. Y., Ye, H., et al., 2022. Evolution of Manganese-Bearing Minerals in Deep-Time Earth and Oxygenic Photosynthesis. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 203-212 (in Chinese with English abstract). Lin, H., Szeinbaum, N. H., DiChristina, T. J., et al., 2012. Microbial Mn(Ⅳ) Reduction Requires an Initial One-Electron Reductive Solubilization Step. Geochimica et Cosmochimica Acta, 99: 179-192. https://doi.org/10.1016/j.gca.2012.09.020 Liu, C., Wang, Z. R., MacDonald, F. A., 2018. Sr and Mg Isotope Geochemistry of the Basal Ediacaran Cap Limestone Sequence of Mongolia: Implications for Carbonate Diagenesis, Mixing of Glacial Meltwaters, and Seawater Chemistry in the Aftermath of Snowball Earth. Chemical Geology, 491: 1-13. https://doi.org/10.1016/j.chemgeo.2018.05.008 Liu, C., Wang, Z. R., Raub, T. D., et al., 2014. Neoproterozoic Cap-Dolostone Deposition in Stratified Glacial Meltwater Plume. Earth and Planetary Science Letters, 404: 22-32. https://doi.org/10.1016/j.epsl.2014.06.039 Liu, F., Feng, X. H., Chen, X. H., et al., 2008. Advances in the Study of Biological Genesis of Manganese Oxide Minerals and Their Characteristics. Earth Science Frontiers, 15(6): 66-73 (in Chinese with English abstract). Mandernack, K. W., Fogel, M. L., Tebo, B. M., et al., 1995b. Oxygen Isotope Analyses of Chemically and Microbially Produced Manganese Oxides and Manganates. Geochimica et Cosmochimica Acta, 59(21): 4409-4425. https://doi.org/10.1016/0016-7037(95)00299-F Mandernack, K. W., Post, J., Tebo, B. M., 1995a. Manganese Mineral Formation by Bacterial Spores of the Marine Bacillus, Strain SG-1: Evidence for the Direct Oxidation of Mn(Ⅱ) to Mn(Ⅳ). Geochimica et Cosmochimica Acta, 59(21): 4393-4408. https://doi.org/10.1016/0016-7037(95)00298-E Mandernack, K. W., Tebo, B. M., 1993. Manganese Scavenging and Oxidation at Hydrothermal Vents and in Vent Plumes. Geochimica et Cosmochimica Acta, 57(16): 3907-3923. https://doi.org/10.1016/0016-7037(93)90343-U Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). Maynard, B., 2014. Treatise of Geochemistry 2nd Edition, Vol. 7, Sediments, Diagenesis, and Sedimentary Rocks. Pergamon, Oxford, 289-308. Maynard, J. B., 2003. Treatise on Geochemistry. Pergamon, Oxford, 289-308. Maynard, J. B., 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. Economic Geology, 105: 535-552. https://doi.org/10.2113/gsecongeo.105.3.535 Meng, Q., Xue, W. Q., Chen, F. Y., et al., 2022. Stratigraphy of the Guadalupian (Permian) Siliceous Deposits from Central Guizhou of South China: Regional Correlations with Implications for Carbonate Productivity during the Middle Permian Biocrisis. Earth-Science Reviews, 228: 104011. https://doi.org/10.1016/j.earscirev.2022.104011 Michaelis, W., Seifert, R., Nauhaus, K., et al., 2002. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 297(5583): 1013-1015. https://doi.org/10.1126/science.1072502 Miletto, M., Wang, X. L., Planavsky, N. J., et al., 2021. Marine Microbial Mn(Ⅱ) Oxidation Mediates Cr(Ⅲ) Oxidation and Isotope Fractionation. Geochimica et Cosmochimica Acta, 297: 101-119. https://doi.org/10.1016/j.gca.2021.01.008 Moffett, J. W., 1994, A Radiotracer Study of Cerium and Manganese Uptake onto Suspended Particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 58: 695-703. https://doi.org/10.1016/0016-7037(94)90499-5 Morgan, J. J., 2005. Kinetics of Reaction between O2 and Mn(Ⅱ) Species in Aqueous Solutions. Geochimica et Cosmochimica Acta, 69(1): 35-48. https://doi.org/10.1016/j.gca.2004.06.013 Nealson, K. H., Saffarini, D., 1994. Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation. Annual Review of Microbiology, 48: 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523 Nicholson, K., Hein, J. R., Bühn, B., et al., 1997. Precambrian to Modern Manganese Mineralization: Changes in Ore Type and Depositional Environment. Geological Society, London, Special Publications, 119(1): 1-3. https://doi.org/10.1144/GSL.SP.1997.119.01.01 Okita, P. M., 1992. Manganese Carbonate Mineralization in the Molango District, Mexico. Economic Geology, 87: 1345-1366. https://doi.org/10.2113/gsecongeo.87.5.1345 Polgári, M., Gyollai, I., Fintor, K., et al., 2019. Microbially Mediated Ore-Forming Processes and Cell Mineralization. Frontiers in Microbiology, 10: 2731. https://doi.org/10.3389/fmicb.2019.02731 Polgári, M., Hein, J. R., Tóth, A., et al., 2012a. Microbial Action Formed Jurassic Mn-Carbonate Ore Deposit in Only a Few Hundred Years (Úrkút, Hungary). Geology, 40(10): 903-906. https://doi.org/10.1130/G33304.1 Polgári, M., Hein, J. R., Vigh, T., et al., 2012b. Microbial Processes and the Origin of the ÚRKÚT Manganese Deposit, Hungary. Ore Geology Reviews, 47: 87-109. https://doi.org/10.1016/j.oregeorev.2011.10.001 Polgári, M., Németh, T., Pál-Molnár, E., et al., 2016. Correlated Chemostratigraphy of Mn-Carbonate Microbialites (Úrkút, Hungary). Gondwana Research, 29(1): 278-289. https://doi.org/10.1016/j.gr.2014.12.002 Polgari, M., Okita, P. M., Hein, J. R., 1991. Stable Isotope Evidence for the Origin of the Urkut Manganese Ore Deposit, Hungary. Journal of Sedimentary Research, 61. Post, J. E., 1999. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceedings of the National Academy of Sciences, 96(7): 3447-3454. https://doi.org/10.1073/pnas.96.7.3447 Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi'ao Formation-Datangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Bulletin of Geological Science and Technology, 34(6): 47-57 (in Chinese with English abstract). Rajabzadeh, M. A., Haddad, F., Polgári, M., et al., 2017. Investigation on the Role of Microorganisms in Manganese Mineralization from Abadeh-Tashk Area, Fars Province, Southwestern Iran by Using Petrographic and Geochemical Data. Ore Geology Reviews, 80: 229-249. https://doi.org/10.1016/j.oregeorev.2016.06.035 Reolid, M., El Kadiri, K., Abad, I., et al., 2011. Jurassic Microbial Communities in Hydrothermal Manganese Crust of the Rifian Calcareous Chain, Northern Morocco. Sedimentary Geology, 233(1-4): 159-172. https://doi.org/10.1016/j.sedgeo.2010.11.008 Richter, K., Schicklberger, M., Gescher, J., 2012. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration. Applied and Environmental Microbiology, 78(4): 913-921. https://doi.org/10.1128/aem.06803-11 Romano, C. A., Zhou, M. W., Song, Y., et al., 2017. Biogenic Manganese Oxide Nanoparticle Formation by a Multimeric Multicopper Oxidase Mnx. Nature Communications, 8: 746. https://doi.org/10.1038/s41467-017-00896-8 Roy, S., 1988. Manganese Metallogenesis: A Review. Ore Geology Reviews, 4(1-2): 155-170. https://doi.org/10.1016/0169-1368(88)90011-X Roy, S., 1992. Environments and Processes of Manganese Deposition. Economic Geology, 87: 1218-1236. https://doi.org/10.2113/gsecongeo.87.5.1218 Roy, S., 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Science Reviews, 77(4): 273-305. https://doi.org/10.1016/j.earscirev.2006.03.004 Saffarini, D., Brockman, K., Beliaev, A., et al., 2015. Bacteria-Metal Interactions. Springer International Publishing, Cham, 21-40. Santelli, C. M., Webb, S. M., Dohnalkova, A. C., et al., 2011. Diversity of Mn Oxides Produced by Mn(Ⅱ)-Oxidizing Fungi. Geochimica et Cosmochimica Acta, 75: 2762-2776. https://doi.org/10.1016/j.gca.2011.02.022 Shields, G. A., 2005. Neoproterozoic Cap Carbonates: A Critical Appraisal of Existing Models and the Plumeworld Hypothesis. Terra Nova, 17(4): 299-310. https://doi.org/10.1111/j.1365-3121.2005.00638.x Shiraishi, F., Matsumura, Y., Chihara, R., et al., 2019. Depositional Processes of Microbially Colonized Manganese Crusts, Sambe Hot Spring, Japan. Geochimica et Cosmochimica Acta, 258: 1-18. https://doi.org/10.1016/j.gca.2019.05.023 Sjöberg, S., Callac, N., Allard, B., et al., 2018. Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden. Geomicrobiology Journal, 35(8): 657-674. https://doi.org/10.1080/01490451.2018.1444690 Solomon, E. I., Sundaram, U. M., Machonkin, T. E., 1996. Multicopper Oxidases and Oxygenases. Chemical Reviews, 96(7): 2563-2606. https://doi.org/10.1021/cr950046o Song, H. Y., Algeo, T. J., Song, H. J., et al., 2023. Global Oceanic Anoxia Linked with the Capitanian (Middle Permian) Marine Mass Extinction. Earth and Planetary Science Letters, 610: 118128. https://doi.org/10.1016/j.epsl.2023.118128 Sutherland, K. M., Wankel, S. D., Hansel, C. M., 2018. Oxygen Isotope Analysis of Bacterial and Fungal Manganese Oxidation. Geobiology, 16(4): 399-411. https://doi.org/10.1111/gbi.12288 Tan, Z. Z., Jia, W. L., Li, J., et al., 2021. Geochemistry and Molybdenum Isotopes of the Basal Datangpo Formation: Implications for Ocean-Redox Conditions and Organic Matter Accumulation during the Cryogenian Interglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 563: 110169. https://doi.org/10.1016/j.palaeo.2020.110169 Tang, Y. Z., Zeiner, C. A., Santelli, C. M., et al., 2013. Fungal Oxidative Dissolution of the Mn(Ⅱ)-Bearing Mineral Rhodochrosite and the Role of Metabolites in Manganese Oxide Formation. Environmental Microbiology, 15(4): 1063-1077. https://doi.org/10.1111/1462-2920.12029 Tebo, B. M., 1991. Manganese(Ⅱ) Oxidation in the Suboxic Zone of the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S883-S905. https://doi.org/10.1016/S0198-0149(10)80015-9 Tebo, B. M., Bargar, J. R., Clement, B. G., et al., 2004. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 32: 287-328. https://doi.org/10.1146/annurev.earth.32.101802.120213 Tebo, B. M., Johnson, H. A., McCarthy, J. K., et al., 2005. Geomicrobiology of Manganese(Ⅱ) Oxidation. Trends in Microbiology, 13(9): 421-428. https://doi.org/10.1016/j.tim.2005.07.009 Templeton, A. S., Knowles, E. J., Eldridge, D. L., et al., 2009. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts. Nature Geoscience, 2: 872-876. https://doi.org/10.1038/ngeo696 Thamdrup, B., 2000. Bacterial Manganese and Iron Reduction in Aquatic Sediments. In: Schink, B., ed., Advances in Microbial Ecology. Springer, Boston, 41-84. Thamdrup, B., Rosselló-Mora, R., Amann, R., 2000. Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments. Applied and Environmental Microbiology, 66(7): 2888-2897. https://doi.org/10.1128/aem.66.7.2888-2897.2000 Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 Trimble, R., Ehrlich, H., 1968. Bacteriology of Manganese Nodules: Ⅲ. Reduction of MnO2 by Two Strains of Nodule Bacteria. Applied and Environmental Microbiology, 16: 695-702. https://doi.org/10.1128/am.16.5.695-702.1968 Tully, B. J., Heidelberg, J. F., 2013. Microbial Communities Associated with Ferromanganese Nodules and the Surrounding Sediments. Frontiers in Microbiology, 4: 161. https://doi.org/10.3389/fmicb.2013.00161 Vandieken, V., Pester, M., Finke, N., et al., 2012. Three Manganese Oxide-Rich Marine Sediments Harbor Similar Communities of Acetate-Oxidizing Manganese- Reducing Bacteria. The ISME Journal, 6(11): 2078-2090. https://doi.org/10.1038/ismej.2012.41 Vicenzi, E. P., Grissom, C. A., Livingston, R. A., et al., 2016. Rock Varnish on Architectural Stone: Microscopy and Analysis of Nanoscale Manganese Oxide Deposits on the Smithsonian Castle, Washington, DC. Heritage Science, 4(1): 26. https://doi.org/10.1186/s40494-016-0093-2 Volz, J. B., Liu, B., Köster, M., et al., 2020. Post-Depositional Manganese Mobilization during the Last Glacial Period in Sediments of the Eastern Clarion- Clipperton Zone, Pacific Ocean. Earth and Planetary Science Letters, 532: 116012. https://doi.org/10.1016/j.epsl.2019.116012 Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract). Wang, P., Algeo, T. J., Zhou, Q., et al., 2019. Large Accumulations of 34S-Enriched Pyrite in a Low-Sulfate Marine Basin: The Sturtian Nanhua Basin, South China. Precambrian Research, 335: 105504. https://doi.org/10.1016/j.precamres.2019.105504 Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032 Wang, R., Wang, S., Tai, Y. P., et al., 2017. Biogenic Manganese Oxides Generated by Green Algae Desmodesmus Sp. WR1 to Improve Bisphenol a Removal. Journal of Hazardous Materials, 339: 310-319. https://doi.org/10.1016/j.jhazmat.2017.06.026 Wang, T. G., Li, M. J., Wang, C. J., et al., 2008. Organic Molecular Evidence in the Late Neoproterozoic Tillites for a Palaeo-Oceanic Environment during the Snowball Earth Era in the Yangtze Region, Southern China. Precambrian Research, 162(3-4): 317-326. https://doi.org/10.1016/j.precamres.2007.09.009 Wang, X., Li, Y., Li, Y. Z., et al., 2018. Effects of Mg2+ and SO42- on the Formation of Manganese Carbonate Induced by Microorganisms in Shallow Water. Earth Science, 43(S1): 145-156 (in Chinese with English abstract). Webb, S. M., Dick, G. J., Bargar, J. R., et al., 2005. Evidence for the Presence of Mn(Ⅲ) Intermediates in the Bacterial Oxidation of Mn(Ⅱ). Proceedings of the National Academy of Sciences, 102(15): 5558-5563. https://doi.org/10.1073/pnas.0409119102 Wei, W., Yu, W. C., Du, Y. S., et al., 2024. A New Salinity-Based Model for Cryogenian Mn-Carbonate Deposits. Precambrian Research, 403: 107309. https://doi.org/10.1016/j.precamres.2024.107309 Wittkop, C., Swanner, E. D., Grengs, A., et al., 2020. Evaluating a Primary Carbonate Pathway for Manganese Enrichments in Reducing Environments. Earth and Planetary Science Letters, 538: 116201. https://doi.org/10.1016/j.epsl.2020.116201 Wu, C. Q., Zhang, Z. W., Xiao, J. F., et al., 2016. Nanhuan Manganese Deposits within Restricted Basins of the Southeastern Yangtze Platform, China: Constraints from Geological and Geochemical Evidence. Ore Geology Reviews, 75: 76-99. https://doi.org/10.1016/j.oregeorev.2015.12.003 Wu, C., Luo, Y. X., Xue, S. G., et al., 2023. Research Progress of Heavy Metal Biomineralization Induced by Iron and Manganese-Oxidizing Bacteria in Soils. Acta Pedologica Sinica, 60(4): 953-968 (in Chinese with English abstract). Yang, J., Jansen, M. F., Macdonald, F. A., et al., 2017. Persistence of a Freshwater Surface Ocean after a Snowball Earth. Geology, 45: 615-618. https://doi.org/10.1130/G38920.1 Yu, H., Leadbetter, J. R., 2020. Bacterial Chemolithoautotrophy via Manganese Oxidation. Nature, 583: 453-458. https://doi.org/10.1038/s41586-020-2468-5 Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023 Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2022. Evaluation of Alkalinity Sources to Cryogenian Cap Carbonates, and Implications for Cap Carbonate Formation Models. Global and Planetary Change, 217: 103949. https://doi.org/10.1016/j.gloplacha.2022.103949 Yu, W. C., Liu, Z. C., Zhang, B. L., et al., 2024. A Distinct Manganese Deposit on a Middle Permian Carbonate Platform in South China. Chemical Geology, 662: 122227. https://doi.org/10.1016/j.chemgeo.2024.122227 Yu, W. C., Polgári, M., Fintor, K., et al., 2021a. Contribution of Microbial Processes to the Enrichment of Middle Permian Manganese Deposits in Northern Guizhou, South China. Ore Geology Reviews, 136: 104259. https://doi.org/10.1016/j.oregeorev.2021.104259 Yu, W. C., Polgári, M., Gyollai, I., et al., 2019. Microbial Metallogenesis of Cryogenian Manganese Ore Deposits in South China. Precambrian Research, 322: 122-135. https://doi.org/10.1016/j.precamres.2019.01.004 Yu, W. C., Polgári, M., Gyollai, I., et al., 2021b. Microbial Metallogenesis of Early Carboniferous Manganese Deposit in Central Guangxi, South China. Ore Geology Reviews, 136: 104251. https://doi.org/10.1016/j.oregeorev.2021.104251 Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract). Zhang, B. L., Wang, C. L., Robbins, L., et al., 2020. Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains, Xinjiang Province, China: Implications for the Depositional Environment and the Origin of Mineralization. Economic Geology, 115: 1559-1588. https://doi.org/10.5382/econgeo.4729 Zhang, B., Cao, J., Hu, K., et al., 2022. Microbially-Mediated Mn Redox Cycling and Mn Carbonate Precipitation in the Marinoan Glacial Aftermath, South China. Global and Planetary Change, 217: 103950. https://doi.org/10.1016/j.gloplacha.2022.103950 Zhang, B., Cao, J., Liao, Z. W., et al., 2021a. Dynamic Biogeochemical Cycling and Mineralization of Manganese of Hydrothermal Origin after the Marinoan Glaciation. Chemical Geology, 584: 120502. https://doi.org/10.1016/j.chemgeo.2021.120502 Zhang, Y., Li, J., Chen, L., et al., 2021b. Manganese Carbonate Stromatolites of the Ediacaran Doushantuo Formation in Chengkou, Northern Yangtze Craton, China. Journal of Palaeogeography, 10(1): 22. https://doi.org/10.1186/s42501-021-00099-9 Zhou, H., Fu, C., 2020. Manganese-Oxidizing Microbes and Biogenic Manganese Oxides: Characterization, Mn(Ⅱ) Oxidation Mechanism and Environmental Relevance. Reviews in Environmental Science and Bio/Technology, 19(3): 489-507. https://doi.org/10.1007/s11157-020-09541-1 Zhou, Q., Du, Y. S., Yuan, L. J., et al., 2016. The Structure of the Wuling Rift Basin and Its Control on the Manganese Deposit during the Nanhua Period in Guizhou-Hunan-Chongqing Border Area, South China. Earth Science, 41(2): 177-188 (in Chinese with English abstract). 董志国, 张连昌, 王长乐, 等, 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. 杜远生, 余文超, 周琦, 等, 2023. 超大陆裂解与中国大规模成锰作用的耦合关系探讨. 古地理学报, 25(6): 1211-1234. 段国文, 耿新燕, 魏绪宇, 等, 2020. 锰氧化细菌的生理生态功能与作用机制研究进展. 微生物学通报, 47(9): 3039-3053. 付勇, 徐志刚, 裴浩翔, 等, 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192-2207. 李艳, 庄子仪, 叶欢, 等, 2022. 深时地球锰矿物演化与产氧光合作用. 矿物岩石地球化学通报, 41(2): 203-212. 刘凡, 冯雄汉, 陈秀华, 等, 2008. 氧化锰矿物的生物成因及其性质的研究进展. 地学前缘, 15(6): 66-73. 毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. 齐靓, 余文超, 杜远生, 等, 2015. 黔东南华纪铁丝坳期-大塘坡期古气候的演变: 来自CIA的证据. 地质科技通报, 34(6): 47-57. 王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. 王霄, 李艳, 黎晏彰, 等, 2018. 浅海Mg2+和SO42-对微生物诱导形成锰碳酸盐的影响. 地球科学, 43(S1): 145-156. 吴川, 罗雨轩, 薛生国, 等, 2023. 铁/锰氧化菌诱导土壤重金属生物成矿研究进展. 土壤学报, 60(4): 953-968. 翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. 周琦, 杜远生, 袁良军, 等, 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188. -